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3Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France.
4Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.

We describe the proximity effect in a short disordered metallic junction between three supercon-
ducting leads. Andreev bound states in the multi-terminal junction may cross the Fermi level. We
reveal that for a quasi-continuous metallic density of states, crossings at the Fermi level manifest
as closing of the proximity-induced gap. We calculate the local density of states for a wide range
of transport parameters using quantum circuit theory. The gap closes inside an area of the space
spanned by the superconducting phase differences. We derive an approximate analytic expression
for the boundary of the area and compare it to the full numerical solution. The size of the area
increases with the transparency of the junction and is sensitive to asymmetry. The finite density
of states at zero energy is unaffected by electron-hole decoherence present in the junction, although
decoherence is important at higher energies. Our predictions can be tested using tunneling transport
spectroscopy. To encourage experiments, we calculate the current-voltage characteristic in a typical
measurement setup. We show how the structure of the local density of states can be mapped out
from the measurement.

PACS numbers: Pacs

I. INTRODUCTION

The density of states in a normal metal is strongly
modified by contact to one or multiple superconductors
placed in its proximity. In junctions with two supercon-
ductors, the development of a minigap in the density of
states has been in the focus of research for many years1.
Recent attention has been given to the possibility of en-
gineering states inside the minigap in the context of Ma-
jorana zero energy states2,3. To this end, it would be
advantageous if the Andreev states in a Josephson junc-
tion could be brought to zero energy, i.e. at the Fermi
level, by controlling only the superconducting phase of
the junction. Zero energy Andreev states together with
spin-orbit coupling provide the opportunity to manip-
ulate single fermionic quasiparticles4. The motivation
is to increase understanding of quasiparticle dynamics
and facilitate designs of superconducting spin quantum
memory bits7. Unfortunately, in two terminal Josephson
junctions Andreev states do not cross the Fermi level ex-
cept at a singular phase difference8,9, ϕ = π, and only in
systems with reflectionless transport channels.

Recent work4–6 shows that the situation is different in
a Josephson junction with multiple terminals (N ≥ 3).
The Andreev states have been shown to cross the Fermi
level if the superconducting phases wind by 2π around
the junction4. The crossing points have been termed
Weyl points, as they are analogous to Weyl singular-
ities studied in 3D solids, with Andreev bound states
corresponding to energy bands and the superconduct-
ing phase differences corresponding to quasi-momenta5,6.
The presence of Weyl points has been illustrated theoret-
ically by using scattering theory to model junctions con-
sisting of a quantum dot connected to three4 or four5,6 su-

FIG. 1. (Color online.) Left. Two superconducting rings can
be used to control the two independent superconducting phase
differences in a three terminal superconducting junction via
fluxes Φ1,2. Right. Quantum circuit theory model of a three
terminal superconduting device using a single node.

perconductors. In particular, in three-terminal junctions,
Weyl points appear along a closed curve in the space
spanned by two independent superconducting phases.
The area enclosed by the curve is shown to be maximal
for a fully transparent quantum dot4.

Weyl points have been found for some choices of the
scattering matrix describing the junction, but not for all.
The existence or absence of Weyl points in the spectrum
is determined by the details of the junction scattering
matrix. The requirements for presence of Weyl points are
not yet well understood, but are very important in view
of their experimental observation. From the viewpoint of
the experimental realization, it is advantageous to study
metallic junctions, that do not require the strict electrical
confinement of quantum dots. Metallic junctions have a
quasi-continuous spectrum of states, in contrast to the
discrete states in a quantum dot. The larger number of
states discourages use of the scattering theory approach.
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FIG. 2. (Color online.) Left. Local density of states at the
Fermi level as a function of phase differences for a symmet-
ric junction with transmission coefficient T = 0.9. The fig-
ure illustrates the gapped regime (dark colored regions) and
gapless regime (light colored regions). We define the phase
φ = ϕ1 = −ϕ3, with ϕ2 = 0, that parameterizes an axis along
which the system undergoes transitions between gapped and
gapless regimes. Right. Above: the density of states as a func-
tion of energy in the gapped regime, at φ = 0.44π. Below:
the same in the gapless regime, at φ = 0.63π.

To model metallic junctions, quasiclassical methods are
better suited.

In this paper, we study the local density of states in
a disordered metallic junction between three supercon-
ductors (see Fig. 1). The dimensions of the junction are
assumed short at the scale of the superconducting coher-
ence length, but much larger than the mean free path of
electrons in the metallic island, in the normal state. We
show that the junction exhibits two regimes. One where
the density of states has a finite minigap, similar to the
minigap in two terminal junctions, and another where
the minigap is closed and the density of states is finite
at all energies. The transition between these regimes can
be made in equilibrium, by varying the superconducting
phase differences. The absence of the minigap is a mani-
festation of states crossing at the Fermi level. In metallic
junctions the gapless regime corresponds to an area in the
space spanned by the superconducting phase differences,
as in Fig. 2, in contrast to quantum dot junctions where
the regime corresponds only to a closed curve. The larger
parameter space is an additional advantage of metallic
junctions in view of the experimental observation of the
effect.

The paper is organized as follows. In Sec. II we intro-
duce the theoretical method used. Sec. III presents our
analytical derivation of the local density of states in the
junction, showing the presence of a gapped and a gap-
less regime. Sec. IV presents the comparison between
analytical and numerical results, discussing the physical
mechanism at the origin of the gapless regime. Sec. V
discusses the effect of electron-hole decoherence in the
junction. In Sec. VI we propose to observe the predic-
tions using tunneling spectroscopy and provide a numer-
ical simulation of the results of a typical measurement
setup. Sec. VII presents our conclusions.

II. THEORETICAL METHOD

To determine the local density of states in the disor-
dered metallic island, we use the method of quantum
circuit theory10, whereby the junction is separated into
circuit elements described by spatially independent qua-
siclassical Green’s functions. If the size of the island is
much smaller than the superconducting coherence length,
the appropriate circuit contains a single node connected
to three superconducting terminals (see Fig. 1). Trans-
port in the circuit is described using the quasiclassical
action that is extremized with respect to the unknown
retarded Green’s function in the island Ĝ. The retarded
Green’s function matrix is conveniently parametrized by

Ĝ = (~n(θ, φ) · ~̂τ), where ~̂τ is the vector of Pauli matri-
ces in Nambu space. The spectral vector11, ~n(θ, φ), is
generally parametrized by two complex numbers θ and
φ, with nx = sin(iθ) sin(φ), ny = sin(iθ) cos(φ), and
nz = cos(iθ). In the superconducting bulk with energy
gap |∆|, assumed the same for all three superconductors,
φS takes the value of the superconducting phase ϕi cor-
responding to superconductor i = {1, 2, 3}, and θS has
the following energy dependence,

θS =

{
−iπ2 + 1

2 ln 1+ω
1−ω , ω < 1,

1
2 ln ω+1

ω−1 , ω > 1,

where ω = E/|∆|. In the limit of low energy ω � 1,
the spectral vector in superconductor i has the following
simple form, ~ni = (sin(ϕi), cos(ϕi),−iω). In terms of the
spectral vector of the island ~n and of those of the super-
conductors ~ni, the quasiclassical action of the junction
takes the form

S = 2Re

{∑
i

∑
p

ln

[
1 +

Tp,i
2

((~n · ~ni)− 1)

]}
, (1)

where p labels the open transport channels in each of
the junction contacts and Tp,i represents the correspond-
ing transmission coefficient. The spectral vector in the
metallic island ~n(θ, φ) is obtained by extremization of the
action under the constraint ~n2 = 1. We introduce a com-
plex Lagrange multiplier λ such that the extremization
problem reduces to a set of four complex equations

~∇~n,λΛ(~n, λ) = ~0, Λ(~n, λ) = S(~n) + λ~n2. (2)

In general, the equations are strongly non-linear in terms
of the unknowns, ~n and λ, and are solved numerically.
The local density of states in the metallic island is ob-
tained from ~n by ρ(ω)/ρN = Re{nz} = Re{cos(iθ)},
where ρN is the density of states in the normal state.

III. ANALYTICAL RESULTS

Before we discuss the full numerical solution, we
present analytic results in the tunnel limit, i.e. the trans-
mission coefficients of all channels are small, Tp,i � 1. In
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FIG. 3. (Color online.) Top left: Schematic of a fully symmetric junction with transmission coefficient τ . Left to right: The
local density of states is calculated at the Fermi level as a function of phases, for transmissions τ = 0.1, 0.3, 0.5, 0.7, 0.9, using
the full numerical solution. The horizontal x-axis represents ϕ1, while the vertical y-axis represents ϕ3, with ϕ2 = 0. The
boundary of the gapless region calculated using the result in Eq. 6 is shown in bright green.
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FIG. 4. (Color online.) Top left: Schematic of an asymmetric junction with one contact described by transmission τ and
the other two fully transparent. Left to right: The same as in Fig. 3 for the asymmetric junction with two fully transparent
contacts.

the lowest order, the action takes the form

S(1) = 2Re{(~n · ~ns)}, (3)

where ~ns =
∑
i gi~ni is a spectral vector that depends

on the superconducting phase differences and gi =∑
p(Tp,i/2) is proportional to the normal state conduc-

tance of contact i in units of the conductance quantum.
We find two types of solutions in terms of ~ns that dif-
fer in the structure of the local density of states. i. If

~ns is non-vanishing, the extrema of the action S(1) occur
when the vectors ~n and ~ns are aligned. In this case, we
find that the z-component of ~n is purely imaginary in the
limit of low energy ω � 1, nz = −iω, meaning that the
local density of states in the island has a finite gap. ii.
In the opposite case, when ~ns = ~0, the action vanishes in
the lowest order. To study this situation we include the
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FIG. 5. (Color online.) Top left: Schematic of an asymmetric junction with two contacts described by transmission τ and the
third fully transparent. Left to right: The same as in Fig. 3 for the asymmetric junction with a single fully transparent contact.

next order terms in the action

S(2) = 2Re

{∑
i

[
(gi + qi)(~n · ~ni)−

qi
2

(~n · ~ni)2
]}

, (4)

where qi =
∑
p (Tp,i/2)

2
is proportional to the conduc-

tance of coherent processes that transfer two pairs of
quasiparticles between the leads. We solve Eq. 2 using
the action S(2), in the limit of low energy ω � 1,

Re

{∑
i

[(gi + qi)− qi(~n · ~ni)]~ni

}
+ λ~n = 0, (5)

together with nz =
√

1− n2x − n2y. The z-component of

the equation is of order ω and can be eliminated if the
Lagrange multiplier λ is also of order ω. The x- and y-
components of the equation are of order 1 and can be
solved for nx,y,

nx =
a4a3 − a1a5
2 (a23 − a2a5)

; ny =
a1a3 − a4a2
2 (a23 − a2a5)

;

nz =
√

1− n2x − n2y. (6)

where we define the coefficients a1 =
∑
i(gi + qi) sin(ϕi),

a2 =
∑
i qi sin2(ϕi), a3 =

∑
i qi sin(ϕi) cos(ϕi), a4 =∑

i(gi + qi) cos(ϕi), and a5 =
∑
i qi cos2(ϕi). Compo-

nents nx and ny are real, while component nz is real
if n2x + n2y ≤ 1 and purely imaginary otherwise. The

relation n2x + n2y ≤ 1 defines an area in the space of su-
perconducting phases where the local density of states in
the island is finite at small energies, i.e. the gap in the
density of states is closed. Estimations of nx and ny yield
nx,y ∝ T−1, meaning that n2x + n2y ≤ 1 defines a smaller

area for smaller transmission coefficients. We have com-
pared the analytic results for the boundary of this area
with our full numerical solution in Figs. 3, 4, and 5 and
have found excellent agreement up to large transmission
coefficients.

IV. NUMERICAL RESULTS

The numerical method used to obtain the exact solu-
tion is presented in Appendix. To restrict the number of
parameters, we assume in all calculations that the num-
ber of open channels is the same for all contacts and that
the channels in each contact have equal transmission co-
efficients, i.e. they are independent of channel label p.
We stress that our results are not restricted to this situa-
tion; the method can be applied for any type of contacts.
We have checked that the conclusions we present are ro-
bust with respect to change of the details of the contacts,
as well as to change of the relative size of the supercon-
ducting gap of the three superconducting leads.

The details of the contacts determine the shape of the
area corresponding to the gapless regime. For a symmet-
ric junction this area diminishes, but does not vanish,
at low transparency (see Fig. 3). As the transparency
is increased the area reaches a maximum at T = 1. It
is notable that the maximal area resembles the full pa-
rameter space where the superconducting phases wind by
2π around the junction, i.e. the necessary condition for
presence of Weyl points4, but does not fully cover it.

For the asymmetric junction with two fully transpar-
ent contacts, described in Fig. 4, the case of low trans-
parency corresponds to a symmetric junction with only
two, rather than three, superconductors. The symmet-
ric two terminal junction exhibits reflectionless transport
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FIG. 6. (Color online.) a. Density of states as a function of energy plotted for different values of the phase φ defined in Fig.
2. b. Density of states plotted as a function of energy for different dwell times, τd, and for φ chosen in the gapless regime, at
φ = π. c. The same as for panel b, for φ chosen in the gapped regime, at φ = 0.1π.

channels leading to a crossing at the Fermi level at the
singular point ϕ3 = π. As the transmission of the third
contact increases, the line ϕ3 = π is deformed gradu-
ally and the area corresponding to the gapless regime
increases.

In the case of the asymmetric junction with a single
fully transparent contact, described in Fig. 5, we find
that the presence of a gapless regime is conditioned by
the transmission coefficient exceeding a threshold value.
In contrast, for the symmetric junction we find a non-
vanishing area corresponding to the gapless regime at
all low transparencies. This denotes an apparent signifi-
cance of processes involving all three superconductors in
the emergence of the gapless regime.

Let us discuss the physical mechanism that leads to
closing of the minigap in the density of states. The gap-
less regime corresponds to the situation when the balance
of currents is dominated by transport processes involving
coherent transfer of multiple Cooper pairs between the
leads. This follows from our analytic derivation where
second order terms are needed to find extrema of the ac-
tion in perturbation theory. Multi-pair processes are not
special to the geometry with three superconductors, they
also manifest in conventional Josephson junctions with
two superconductors. However, in conventional junc-
tions multi-pair processes do not give rise to a gapless
regime12. It is possible that the gapless regime emerges
as a result of non-local multi-pair processes that require
multiple terminals (N ≥ 3). Non-local transport pro-
cesses consist of exchanges of Cooper pairs that involve
quasiparticles from at least three superconductors13–15.
The superconducting current contributed by non-local
transport processes depends simultaneously on all three
superconducting phases involved.

The fundamental process at the origin of non-local
transport is the non-local Andreev reflection, also termed
crossed Andreev reflection. Crossed Andreev reflec-
tion has been studied for years in the context of junc-
tions formed between a superconductor and two normal
leads16–18. On the contrary, the physics of crossed An-
dreev reflection in junctions with three superconducting
leads has received relatively little attention until now.
Recent extensive studies have so far been restricted to

transport through a single level dot14,15. The rigorous
analysis of non-local processes in metallic junctions with
three superconductors is beyond the scope of this paper
and will be reported elsewhere.

V. DECOHERENCE

Let us turn our attention to the effect of electron-
hole decoherence that appears as a result of quasipar-
ticles spending a finite dwell time, τd, in the junction.
Within quantum circuit theory, decoherence is modeled
by adding the following term to the action that corre-
sponds to a fictitious circuit element where electron-hole
coherence can be dissipated19 (see Fig. 1),

Sf = 2Re

{∑
i

∑
p

ln

[
1 +

Tp,i
2

((~n · ~nf )− 1)

]}
, (7)

where ~nf = (|∆|τd/~)(0, 0,−iω). This additional term
modifies only the z-component of the vector equation
~∇~nΛ(~n, λ) = ~0 that can be eliminated at low energy
ω � 1, (~/|∆|τd). It does not modify the x- and y-
components, leaving the low energy density of states un-
changed. Thus, the boundary of the area in the space of
superconducting phases where the gap is absent remains
unaffected by decoherence.

On the contrary, away from the limit of low energy,
ω & min(1, (~/|∆|τd)), decoherence plays an important
role in the structure of the density of states, as illustrated
in Fig. 6. In the gapless regime, the minigap is replaced
by a dip in the density of states. As illustrated in Fig.
6b, the effect of decoherence is to decrease the width of
this dip. The dip narrows more rapidly when ~/(|∆|τd) .
1. In the gapped regime, we recover a similar effect of
decoherence as in the two terminal junctions, where the
size of the minigap depends strongly on ~/(|∆|τd) (see
Fig. 6c).

Near φ = ϕ1 = −ϕ3 = π, the density of states ex-
hibits a smile-shaped structure located just below the
superconducting gap (see Fig. 6a), reminiscent of the
secondary smile-shaped minigap predicted previously in
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FIG. 7. (Color online.) a. Schematic of the tunneling trans-
port spectroscopy measurement setup. b. Quantum circuit
theory model of the measurement setup. c. Differential con-
ductance of the tunnel probe, G = dI/dV , plotted as a func-
tion of voltage for the same parameters as in Fig. 2. d.
Current measured at low voltage, eV � |∆|, ~τ−1

d , plotted as
a function of phases for the same parameters as in Fig. 2. The
current is normalized by the maximum current at low voltage,
Imax, obtained at (ϕ1, ϕ3) = (2π/3, 4π/3) and (4π/3, 2π/3),
with ϕ2 = 0.

two-terminal junctions20. We note that the structure is
present at low decoherence, but vanishes for intermediate
decoherence, when ~/(|∆|τd) ' 1 (see Fig. 6b). Further
investigation of this structure will be presented elsewhere.

VI. MEASUREMENT

Our predictions can be observed experimentally by
means of tunneling spectroscopy12,21. The minimal setup
has an additional normal metal lead brought in tunnel
contact to the junction, as in Fig. 7a. The differential
conductance of the tunnel contact is proportional to the
local density of states, ρ(eV ), measured at the applied
voltage, provided the contact is sufficiently weak. In this
case, the local density of states is not significantly per-
turbed by the presence of the tunnel probe.

To check this requirement for our three-terminal super-
conducting junction, we have used the quantum circuit
model in Fig. 7b to calculate numerically the tunnel cur-
rent as a function of bias voltage. The results obtained
are presented such that the normalized quantities are in-
dependent of the contact transmission coefficient, chosen
to tp = 0.01 in the numerics.

In Fig. 7c we show that the differential conductance of
the tunnel contact plotted as a function of bias voltage
reproduces the energy dependence of the density of states

plotted in Fig. 2, for the same transport parameters. The
signature of the gapless regime can also be observed by
measuring the low bias current flowing through the tun-
nel contact as a function of superconducting phases. Fig.
7d shows that the low bias current matches the depen-
dence depicted in Fig. 2, mapping out the local density
of states at zero energy as a function of superconducting
phase differences.

The plots in Fig. 7 have been obtained assuming the
limit of vanishing temperature. Our theoretical approach
is also valid for finite temperatures, assuming the tem-
perature is sufficiently small to permit a well developed
proximity effect, kBT � min{|∆|, ~τ−1d }. In this temper-
ature window, the local density of states in the junction
is independent of temperature.

However, from the viewpoint of the experimental real-
ization, at finite temperature, the features presented in
Fig. 7c are blurred by thermal broadening of electronic
transport in the normal contact at the scale eV ' kBT . If
min{|∆|, ~τ−1d } � kBT , the thermal broadening does not
conceal the transition between the gapped and gapless
regimes. The measurement simulated in Fig. 7c can be
used as a signature of this transition. The measurement
simulated in Fig. 7d does not depend on temperature
if the tunnel current can be measured at a voltage bias
chosen such that eV � min{|∆|, ~τ−1d } and eV � kBT .

VII. CONCLUSION

In conclusion, we have shown that the minigap in the
density of states in a three terminal metallic junction can
be closed by varying the superconducting phases. The
area in the space of phase differences where the mini-
gap is closed increases with the junction transparency
and its shape depends strongly on the asymmetry of the
three contacts. These conclusions characterize the low
energy physics and are unaffected by electron-hole deco-
herence in the junction. At large energies, the density
of states depends strongly on decoherence, as in two ter-
minal junctions. Our most important result is the pos-
sibility to efficiently switch between a regime where the
spectrum of states in the junction shows a separation
that can be as large as |∆|, to a regime where the neigh-
boring states are separated by the smallest energy scale
of the junction, the level spacing in the normal metal.
This opens interesting opportunities for designs of single
fermion manipulation schemes and for the realization of
Majorana bound states in multi-terminal superconduct-
ing junctions. We propose a tunneling transport experi-
ment that can observe the predicted results and calculate
its measurement output.
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Appendix: Exact numerical method

For the exact numerical solution we have used the
matrix representation of Green’s functions in the full
Keldysh-Nambu space, rather than spectral vectors as
in the main text. The Green’s functions of the supercon-

ductors are

Ǧi =

(
ǦRi ǦKi
0 ǦAi

)
; (A.1)

ǦRi =
1

ξ

(
ε ∆i

−∆∗i −ε

)
; (A.2)

ǦAi = − 1

ξ∗

(
ε∗ ∆i

−∆∗i −ε∗
)

; (A.3)

ǦKi = (ǦRi − ǦAi ) tanh(E/2kBT ). (A.4)

where complex energies have been introduced ε = E+i0+

and ξ =
√
ε+ |∆|

√
ε− |∆|.

The transport properties are encoded into the current
matrices flowing from reservoir i,

Ii =
2se

2

π~
∑
p

Tp,i[Ǧi, Ǧ]

4 + Tp,i({Ǧi, Ǧ} − 2)
. (A.5)

where Ǧ denotes the Keldysh-Nambu Green’s function of
the node.

Decoherence is described by a matrix current flowing
into a fictitious terminal,

If =
2se

2

π~
∑
i,p

Tp,i[Ǧf , Ǧc], (A.6)

Ǧf = −iEτd
~

(
τ3 0
0 τ3

)
, (A.7)

where ~τ denotes the vector of Pauli matrices in Nambu
space. The choice of Ǧf is such that If carries no particle
or heat currents, but only the information about loss of
electron-hole coherence.

The unknown Green’s function Ǧ is determined by the
balance of current matrices, equivalent to the extremiza-
tion of the action 1 defined in the main text.∑

i

Ǐi + Ǐf = 0. (A.8)

It is convenient to express the current balance equation
as a commutator between matrix Ǧ and a matrix M̌ that
depends on all Ǧi and on the unknown matrix Ǧ,

[Ǧ, M̌ ] = 0, (A.9)

M̌ =
∑

i={1,2,3}

∑
p

Tp,i
Ǧi

4 + Tp,i({Ǧi, Ǧ} − 2)
+

∑
i={1,2,3}

∑
p

Tp,iǦf . (A.10)
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The above equations can be solved numerically using
the following iterative algorithm10,22.

1. Start with an initial guess for Ǧ.
2. Find the matrix P̌ that brings both Ǧ and M̌(Ǧ)

in diagonal form, i.e. P̌ contains the eigenvectors of M̌
as its columns.

3. Diagonalize the matrix M̌ , M̌ ′ = P̌−1M̌P̌ .
4. Update the Green’s function of the node Ǧnew =

P̌ sgn
[
Re
(
M̌ ′
)]

P̌−1.
5. Repeat iteratively until convergence, i.e. matrices

Ǧ and Ǧnew are within a predefined accuracy.
6. Repeat the iterative procedure for every point in

energy space.
The solution at a given point in energy space provides

a convenient initial guess for the iterative procedure at
the next step in energy.
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