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A simple transferable adaptive model is developed and it allows for the first time to simulate by Molecular Dynamics the 

separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase 

diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, 

which are often limited to an interpretation involving the formation of pure clusters, or involving the Modified Random 

Network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the 

formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt. 

 

I. INTRODUCTION 

Phase separation in binary silicate glasses is a widespread phenomenon. Many experimental data concerning 

numerous binary systems have been compiled by Hudon et al.
1
. Some Molecular Dynamics (MD) studies give an insight 

of the conditions leading to this phase separation
2,3

, but they are often limited to an AB mixture that separates into pure 

phases A and B. Even in the case of silica-based glasses, these simulations show the trend for added ions to segregate and 

to form clusters (Ca
2+

, Mg
2+

, Li
+
, Er

3+
, and Eu

3+
, in Ref. 4, 5, 6, 7 and 8, respectively, and a comparison of Li

+
, Na

+
 and 

K
+
 in Ref. 9). This behavior is consistent with the Modified Random Network (MRN) model proposed by Greaves

10
, 

where channels of modifying components are experimentally evidenced, explaining for instance the easier diffusion of 

Na
+
 ions in Na2O-SiO2 binary glass. The existence of Ca-O-Ca and Mg-O-Mg bridges has also been evidenced in CaO-

SiO2
11

 and MgO-SiO2
12

 binary glasses, and confirmed by means of MD simulations
4,5

. However, at a larger scale, the 

study of a phase diagram like the one of the MgO-SiO2 system
13

 shows that the separated phases are not as simple as pure 

MgO ones separated from pure SiO2 others. On the contrary, it predicts under a certain temperature the coexistence of 

two liquid phases, both composed of different proportions of MgO and SiO2: an Mg-rich Si-poor one and a Si-rich Mg-

poor other one. The quench of this mixture can lead to a spinodal decomposition, with tangled channels of both phases, 

or the formation of disjoint areas of one of the phases in a matrix of the other one. This phase separation mechanism is 
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exploited by Blanc et al.
14

 to form nanoparticles (NP), grown in situ within a material composed of, among other 

compounds, MgO and SiO2. Resulting NP have been analyzed by Secondary Ion Mass Spectroscopy (SIMS) and are 

found to correspond to Mg-rich Si-poor phases. This composition trend has been confirmed very recently by a sharper 

analysis using Atom Probe Tomography (ATP)
15

. 

Up to now, no MD simulation has been able to reproduce the formation of such NP in xMgO-(1-x)SiO2 binary 

glasses, by using the phase separation phenomenon occurring for x < 0.4, within the stable immiscibility gap
13

. No MD 

study reports the formation of NP of the size obtained in the present paper (a few tens of Å). Phase separation involves 

cation-Oxygen bonds that are more or less covalent, whose Oxygen are more or less polarized, which more or less screen 

the surrounded cation
1
. Consequently, a fixed-charge model seems to be inefficient to accurately simulate the separation 

of complex phases. One needs to take into account the different ionicity (or covalency) of metal-Oxygen bonds, as well 

as the electrostatic environment of each ion according to its neighbors. Therefore, a variable-charge model is required. 

Such a reactive potential, like ReaxFF
16

 or COMB
17

, is built around a self-consistent charge equilibration scheme and 

bond order concept. It is suitable to simulate multi-component multi-functional systems like an interface between a bulk 

oxide and a bulk metal, but the drawback of its complexity is an increased computational cost. Glassy materials studied 

in this paper are ionic bulk materials and there is no metal/oxide interface. Hence, a simpler adaptive model is proposed 

and developed in this context. This model  has to: (a) take into account the different ionicity of the metal-Oxygen bonds; 

(b) be composition dependent, like, for instance, the one used by Kieu et al. for sodium borosilicate glass systems
18

; (c) 

dynamically and locally adapt, like the one used by Huang et al. to study borate glass anomalies
19

; (d) be as simple as 

possible to perform long-time simulations on large-scale systems; (e) be easily transposable to any silica-based systems. 

After a description of this simple adaptive potential, its accuracy and its transferability (i.e. its ability to explore 

the whole MgO-SiO2 phase diagram with a unique parameter set) are tested on known experimental crystalline and 

glassy structures of various compositions. Then, the effects of the composition of the binary system and the impact of the 

quench rate on phase separation are studied. Finally, the efficiency of this adaptive potential to reproduce the phase 

separation is used to track the formation of NP in a 0.1MgO-0.9SiO2 binary glass. 

 

II. DEVELOPMENT OF THE POTENTIAL 

In the model developed hereinafter, designed for ionic bulk materials, cations are assumed to present fixed 

partial charges. The transferability is assured by the reactive adaptation of each Oxygen charge to its local cationic 

environment. 
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A. Taking into account the more ionic character of Mg-O bond 

1. Determination of Mg charge 

Using the assumption of fixed cation charges, setting the partial charge of Mg
2+

 to the half of the Si
4+

 one is not 

relevant with the fact that the Mg-O bond is more ionic than the Si-O one. Indeed, based on a comparative ab initio study 

of MgO and SiO2
20

, a polarizable force field parameterization sets Mg charge at +1.23e and Si one at +1.86e. The 

resulting ratio is clearly not equal to half. Based on some other ab initio studies of MgO
21,22

, Mg-O bond is expected to 

have a more ionic character than Si-O one in binary silicate glasses. To estimate the new partial charge carried by Mg 

ions, the Rappe & Goddard electronegativity equalization method (QEq)
23

 is used, as implemented in GULP package 

(General Utility Lattice Program)
24,25

, but with a constraint for mean Si charge to be equal to +2.4e (the choice of this 

value is explained in the next paragraph).  Performed on the primitive cell of an MgSiO3 enstatite structure, resulting 

partial charges of each ion are reported in the TABLE I. The two Mg sites and the two Si sites show a very small charge 

deviation to the mean, with, at the maximum, ±1.2% around +1.3254e and ±0.3% around +2.4000e, respectively. In 

contrast, the charge distribution of the six Oxygen sites is broader, with a maximum of ±6.7% around -1.2418e. 

Consequently, only cation charges are fixed in our model: the Si partial charge is set at +2.40e, and the Mg one is 

rounded and set at +1.33e for the rest of this study. 

 TABLE I. GULP partial charge of each atom in primitive cell of MgSiO3 enstatite structure 

 
Mg Si O 

Partial charge 

1.3414 2.3924 -1.1584 

1.3094 2.4076 -1.1677 

  
-1.2416 

  
-1.2612 

  
-1.3078 

  
-1.3139 

Mean charge 1.3254 2.4000 -1.2418 

Deviation to mean charge 1.2% 0.3% 6.7% 

 

2. Parameterization of Mg-O interaction 

 Many fixed-charge potentials for SiO2 are available in the literature and accurately reproduce various properties 

of silica polymorphs. Among them, the one developed by Pedone et al.
26

 is particularly efficient to reproduce structural 

and mechanical properties of silica crystals and glasses. This potential is composed of three terms: a long-range Coulomb 

interaction, a short-range Morse function and a repulsive contribution 𝐶/𝑟12. The complete expression is given by: 

𝑈(𝑟) =
𝑞𝑖𝑞𝑗

𝑟
+ 𝐷𝑖𝑗 [{1 − 𝑒−𝑎𝑖𝑗(𝑟−𝑟0)}

2
− 1] +

𝐶𝑖𝑗

𝑟12
 (1) 
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where 𝑖 and 𝑗 are atom types,  𝑞𝑖 and 𝑞𝑗 are partial charges, 𝐷𝑖𝑗 , 𝑎𝑖𝑗 , 𝑟0 and 𝐶𝑖𝑗 are adjustable parameters, and 𝑟 the 

interatomic distance. For this potential, the Si partial charge is set at +2.40e, which corresponds to the constraint added in 

GULP, as seen in the previous paragraph. This allows keeping on using this potential for silica-based compounds. New 

parameters for Mg-O interaction are derived from the method described by Pedone et al. in their study
26

, using the free 

energy minimization implemented in GULP package, performed on the crystalline structure of MgO periclase. Usually, 

regardless of the oxide that is modeled, a common approximation is to use the Morse parameters of the O-O interaction 

determined in SiO2. The new charge qMg = +1.33e determined in the above paragraph is used, inducing the physical 

choice of qO = -1.33e in order to respect the electroneutrality. This yields the new Mg-O parameters, reported in TABLE 

II, which perfectly reproduce the periclase structural and elastic properties used for the fit: rock-salt structure with cubic 

lattice parameter 4.217 Å, elastic constants C11 = 294 GPa and C12 = 93 GPa. 

TABLE II. Potential parameters (bold : new Mg-O interaction parameters; italic : parameters from Pedone et al.26) 

 𝐷𝑖𝑗 (eV) 𝑎𝑖𝑗 (Å-1) 𝑟0(Å) 𝐶𝑖𝑗(eV.Å12) 

Si2.4-Si2.4 - - - - 

Si2.4-O-1.2 0.340554 2.006700 2.100000 1.0 

Mg1.33-Mg1.33 - - - - 

Mg1.33-Si2.4 - - - - 

Mg1.33-O-1.33 0.209290 1.376871 2.733041 1.0 

Oq-Oq’ 0.042395 1.379316 3.618701 22.0 

q and q’ : each oxygen partial charge depends on its own cationic environment 

 

B. Global and local transferability assured by reactive partial charges of Oxygen atoms 

In order to respect the electroneutrality of the binary system, the negative partial charge of Oxygen atoms is 

adapted to compensate the positive charge of both cations composing the xMgO-(1-x)SiO2 mixing. This yields a value 

that depends on the MgO fraction x, and therefore the model is not yet transferable when changing the proportions of 

each oxide. To assure transferability and to explore the whole phase diagram by means of a unique model, a 

computational method that allows each Oxygen charge to dynamically react to its own cationic environment is designed. 

The charge of each Oxygen atom is equal to a negative weighted sum of the cationic charges surrounding it. All positive 

charges within a sphere of radius 𝑟𝑐𝑢𝑡  around a central Oxygen are multiplied by a weighting function 𝑓(𝑟), decreasing 

with 𝑟, where 𝑟 is the distance between a cation and this central Oxygen atom. Then, all Oxygen atoms within the same 

radius 𝑟𝑐𝑢𝑡  are counted and weighted by the same function 𝑓(𝑟), where 𝑟 is now the distance between an Oxygen atom 

and the central Oxygen. The resulting charge of the central Oxygen is equal to the ratio of the negative weighted sum of 

positive charges to the weighted count of Oxygen atoms, as summarized in equation (2). The weighting function 𝑓(𝑟) has 

the empirical form proposed in equation (3). Finally, to remove possible statistical bias, all Oxygen charges are scaled so 

that the mean value is equal to the mean Oxygen charge imposed by electroneutrality. The cutoff radius 𝑟𝑐𝑢𝑡  of the 

weighting function 𝑓(𝑟) is empirically set at 7.5 Å. This value has been chosen so that the short- and medium-range 
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structure of pure silica glass is unchanged when compared to the non-adaptive Pedone potential. With the chosen form of 

𝑓(𝑟), this 𝑟𝑐𝑢𝑡  distance is long enough to include the first coordination sphere with a weighting factor near unity, and it is 

short enough to evidence local variations of the cationic environment. 

𝑞𝑂𝑥𝑦𝑔𝑒𝑛 =  − ∑ 𝑓(𝑟). 𝑞𝑐𝑎𝑡𝑖𝑜𝑛

𝑐𝑎𝑡𝑖𝑜𝑛𝑠
𝑟<𝑟𝑐𝑢𝑡

   / ∑ 𝑓(𝑟)
𝑂𝑥𝑦𝑔𝑒𝑛 𝑎𝑡𝑜𝑚𝑠

𝑟<𝑟𝑐𝑢𝑡

 

 

(2) 

𝑓(𝑟)   =   
1

2
{1 + 𝑐𝑜𝑠 (

𝜋𝑟

𝑟𝑐𝑢𝑡

)}   ≈   2 (
𝑟

𝑟𝑐𝑢𝑡

)
3

− 3 (
𝑟

𝑟𝑐𝑢𝑡

)
2

+ 1 (3) 

 

Nevertheless, the use of these individual charges in cation-Oxygen attractions would need the short-range part 

(the Morse function) of our potential to be also charge-dependent. For instance, concerning Si-O bond in Mg-enstatite, 

the corresponding Morse part is parameterized for Si
2.4

-O
-1.2

. But with the presence of Mg
1.33

 atoms, Oxygen mean charge 

becomes lower than -1.2e. This results in a stronger Si-O electrostatic attraction that should be balanced by an adequate 

stronger Morse repulsion to keep on fitting the experimental distance. To keep things simple for cation-Oxygen 

interactions, we do the approximation to keep the Oxygen partial charge and Morse parameters as fitted in their pure 

respective materials. This means that the only interactions that adapt in our model (i.e. the only approximation that is not 

neglected or compensated) are the electrostatic parts of the Oxygen-Oxygen repulsions (q and q’ in Table II). 

 

III. COMPUTATIONAL METHODS 

 Molecular dynamics (MD) simulations are carried out by a modified version of LAMMPS
27

 (Large-scale 

Atomic/Molecular Massively Parallel Simulator), with periodic boundary conditions (PBC). LAMMPS uses the velocity-

Störmer-Verlet algorithm to solve the equations of motion.  The modification concerns the computation of Oxygen 

charges and the related O-O repulsions. The general scheme of each time step is: (a) new atomic positions are computed 

from positions, velocities and forces of the previous time step; (b) new Oxygen charges are computed from new 

positions; (c) new forces are calculated from new positions and new Oxygen charges; (d) new velocities are computed 

from new forces, and velocities and forces of the previous time step. 

The long-range Coulomb term is evaluated using the Wolf method
28

, consisting in a spherically-truncated, 

charge-neutralized, shifted, pairwise 1/𝑟 summation. Thus, the following replacement is made in Eq. (1): 

𝑞𝑖𝑞𝑗

𝑟
    →      

𝑞𝑖𝑞𝑗

𝑟
𝑒𝑟𝑓𝑐(𝛼𝑟) − lim

𝑟→𝑅𝑐

{
𝑞𝑖𝑞𝑗

𝑟
𝑒𝑟𝑓𝑐(𝛼𝑟)} (4) 
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where α is the damping parameter and 𝑅𝑐 the long-range cutoff. This method, initially developed for ionic crystals and 

melts, gives good results for amorphous materials like silica
29,30

 and silica-based
31

 glasses. It also well reproduces the 

energetics and the dynamics of various typical systems
32

. The main advantages of the Wolf method are: (a) the 

computational cost increases linearly as 𝑂(𝑁) with system size, instead of, at best, 𝑂(𝑁3/2) for Ewald method (𝑁 is the 

number of atoms involved in the simulation); (b) the inherent periodicity of the Ewald sum is no more imposed to the 

system. For this study, the short-range cutoff is set at 5.5 Å. Considering both the total energy and the short- and 

medium-range structure obtained from melt/quench sequences of a pure SiO2 system, the couple of values α = 0.30 Å
-1

 

and 𝑅𝑐 = 7.5 Å is chosen among the tested ones giving the best match between Wolf and Ewald summations. Unless 

otherwise indicated, the simulations are made at constant atmospheric pressure (P = 1 bar), using the Nosé-Hoover NPT 

algorithm (constant Number of atoms, controlled Pressure and Temperature) with damping parameters of 0.010 ps for 

temperature control and 0.100 ps for pressure control, and a time step of 1 fs. Each Oxygen charge is adapted to its own 

environment at each time step, as explained in the previous paragraph. 

 

IV. RESULTS AND DISCUSSION 

Some known crystalline and glassy structures of various compositions are modeled with this new effective 

potential, and they are compared to experimental data. After this assessment, we study its ability to reproduce the phase 

separation phenomenon as it occurs in xMgO-(1-x)SiO2 binary glasses. Finally, we track the formation of nanoparticles 

(NP) during the slow quench of a 0.1MgO-0.9SiO2 melt, and the mean composition of these NP is analyzed. 

A. Crystal and glass densities 

To assess the transferability of this new reactive potential, we report in TABLE III the computed densities of 

some known xMgO-(1-x)SiO2 crystalline structures: Mg-enstatite (x = 0.50), Mg-forsterite (x = 0.67) and MgO periclase 

(x = 1.00), obtained after a 40-ps NPT stage at 300 K and 1 bar. The deviations to experimental densities are below 5%. 

Pair correlation functions are unaltered and all experimental structures are well-preserved. 

TABLE III. Density (g/cm3) of modeled crystals at 300 K and 1 bar 

Crystal name (xMgO) Mg-enstatite (0.50) Mg-forsterite (0.67) Periclase (1.00) 

Model 3.13 3.10 3.45 

Experimental 3.20 3.23 3.57 

Deviation (%) -2.2% -4.0% -3.4% 

 

Melt/quench sequences from random atomic distributions are performed to model binary glasses containing 

various proportions of MgO and SiO2. Whatever the composition, the number of Si atoms is constant and equal to 2916. 
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The numbers of Magnesium and Oxygen atoms added in the simulation box are adjusted according to the target 

composition. As explained above, the mean charge of Oxygen atoms is controlled to keep neutral the charge of the 

xMg
1.33

O-(1-x)Si
2.4

O2 system. The initial random configuration is melted for 400 ps at 4000 K to form an homogeneous 

liquid, which is then cooled down at 0.5 K/ps (every 400 ps, the temperature is decreased by 200 K), and finally kept at 

300 K for 400 ps. Resulting densities of these glasses are reported in TABLE IV. The FIG. 1 compares computed 

densities with the experimental ones reported by Al-Hasni and Mountjoy
5
 (obtained from experimental work of Wilding 

et al.
33

). Even if the densities of modeled glasses are higher than experimental known values, deviations stay below 9%. 

In fact, this density increase is consistent with the anomalous behavior of silica glass observed by Brückner
34

 and 

Shelby
35

. Indeed, the slower the quench rate is, the lower the experimental density of silica glass is. MD quench rate 

being many orders higher than laboratory ones, it seems consistent for modeled silica-based glass to have a higher 

density than experimental one. This anomalous behavior of silica glass also appears in the MD simulations made by 

Vollmayr et al.
36

, using the BKS potential, and it has also been verified for the potential used in this paper. So, regardless 

of the high quench rate in MD, the density of modeled glass clearly displays a linear dependence with MgO fraction, 

which is confirmed by a correlation coefficient R² = 0.994 close to 1 (black line in FIG. 1), and this, interestingly, even in 

the range where phase separation occurs (see paragraph IV.C). This linear behavior has been previously reported by 

Hanada et al.
37

 for amorphous films prepared by rf-sputtering (for xMgO between 0.0 and 0.6). Such a result allows the 

prediction of a similar behavior for experimental glass prepared by fusion/quench technique, especially in the domain 0.0 

< xMgO < 0.5 for which no published value is available to our knowledge. Hence, we can assume that the experimental 

density 𝜌𝑒𝑥𝑝 of the xMgO-(1-x)SiO2 system is a linear function of the MgO fraction, given by : 𝜌𝑒𝑥𝑝(𝑔. 𝑐𝑚−3) = 2.20 + 

1.96 xMgO (dotted line in FIG. 1). 

TABLE IV. Final densities (g/cm3) of modeled glasses xMgO-(1-x)SiO2 at 300 K and 1 bar 

xMgO 0.00 0.05 0.10 0.20 0.30 0.40 0.45 0.50 0.55 0.60 0.67 

Model 2.27 2.38 2.45 2.58 2.70 2.82 2.88 2.97 3.03 3.08 3.12 

Experimental 2.20       2.74   2.92 

Deviation (%) 3.2%       8.4%   6.8% 

 

FIG. 1. Density of binary glasses xMgO-(1-x)SiO2; MD with the reactive part of the potential (squares); MD linear approximation 

(line); experimental values from Ref. 5 (circles); experimental linear extrapolation (dotted line). 



8 

 

 

B. Structure comparison with X-ray diffraction 

An additional assessment is done by comparing modeled glasses to structural data obtained from X-ray 

diffraction of MgSiO3 glass (x = 0.50) and Mg2SiO4 glass (x = 0.67). Experimental
33

 structure factor S(Q) and total 

correlation function T(r), as well as reconstructed-from-model ones (see Ref. 38 for the method), are displayed in FIG. 2a 

& 2c for MgSiO3 glass, and in FIG. 2b & 2d for Mg2SiO4 glass. MgSiO3 glass and Mg2SiO4 glass partial distribution 

functions are displayed in FIG.2e and FIG.2f, respectively (RDF is for radial distribution function and CDF is for 

cumulated distribution function). Results obtained from our model and from experiments are in good agreement. 

Regarding T(r) functions (FIG. 2c & 2d), modeled and experimental peak positions at 1.60 Å align well in both figures, 

as well as the ones at 2.05 Å for MgSiO3 glass and at 2.07 Å for Mg2SiO4 glass. The peak at 1.60 Å corresponds to Si-O 

correlation distance. The Si-O coordination number (CN) is 4.0, in agreement with the geometry of the SiO4 tetrahedron, 

which is the structural unit of silica-based glasses. Interestingly, the proposed reactive O-O potential accurately 

reproduces this basic tetrahedral structure and its dimensions, as well as a fixed-charge model. Regarding MgO RDF 

(FIG. 2e & 2f), the first peak is asymmetric and never returns to zero, as already stated in previous studies
5,33,39

. This tail 

is a source of controversy to figure out an adequate CN. Depending on the chosen cutoff distance, this CN can differ and 

there is still no consensus on its value. An experimental determination from X-ray diffraction by Wilding et al.
33

 set it at 

4.5 in MgSiO3 glass, and at 5.0 in Mg2SiO4 glass. These values have been calculated by integrating the T(r) function 

between the minima on either side of the Mg-O peak. In MD, the cutoff is usually fixed at the first minimum of the 

partial RDF. From our simulation, this minimum is found at 2.87 Å for the MgSiO3 glass, and at 2.85 Å for the Mg2SiO4 

glass. This yields an Mg-O CN equal to 6.0 for both glasses. This MD result is consistent with the experimental value 

determined by 
25

Mg 3QMAS NMR
40

 for x = 0.50 and by 
25

Mg NMR spectroscopy
41

 for 0.50 < x < 0.67. This agreement 

supports the predominance of a distorted octahedral environment for Mg. In order to definitely figure out this CN issue, if 

the MD cutoffs are chosen like Wilding et al, as the minima on either side of the MgO peak of the modeled T(r) 

functions (solid lines in FIG. 2c & 2d), we find a CN equal to 4.6 for MgSiO3 glass, and 4.8 for Mg2SiO4 glass. 

Surprisingly, these MD values are rather close to Wilding et al. experimental ones. Hence, our model is in well 

agreement with experimental X-ray diffraction and, at the same time, supports the idea of a glass structure in which Mg 

are mostly in a distorted octahedral environment. 
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FIG. 2. (Color online) MgSiO3-glass X-ray diffraction: (a) experimental (dotted) and modeled (solid) structure factor S(Q); (c) 

experimental (dotted) and modeled (solid) total correlation function T(r). Mg2SiO4-glass X-ray diffraction: (b) experimental (dotted) 

and modeled (solid) structure factor S(Q); (d) experimental (dotted) and modeled (solid) total correlation function T(r). Partial 

distribution functions of modeled MgSiO3 glass (e) and Mg2SiO4 glass (f): radial (RDF) and cumulated (CDF). 

 

FIG. 3. (Color online) 3D renderings of quenched structures of some xMgO-(1-x)SiO2 binary glasses. Color code: Mg atoms (blue), Si 

atoms at a distance shorter than 4.0 Å (first minimum of Mg-Si RDF) from Mg atoms (orange), Si atoms at a distance longer than 4.0 

Å from Mg atoms, i.e. demixed Si atoms (yellow). (a) x = 0.1 with 9396 atoms (324 Mg), final box size of 50.31 Å; (b) x = 0.2 with 

10206 atoms (729 Mg), final box size of 50.87 Å; (c) x = 0.3 with 11248 atoms (1250 Mg), final box size of 51.80 Å; (d) x = 0.4 with 

12636 atoms (1944 Mg), final box size of 53.03 Å. 

 

C. Phase separation in xMgO-(1-x)SiO2 binary glasses 

The proposed reactive potential is efficient to reproduce the properties of the known MgO-SiO2 systems. 

Consequently, one can investigate further in studying the phase separation phenomenon which occurs in this binary glass 
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as a function of the MgO fraction. Some 3D renderings of quenched structures are shown in FIG. 3a, 3b, 3c and 3d, for 

xMgO = 0.1, 0.2, 0.3 and 0.4, respectively. Demixed phases are, on one hand, Mg-rich Si-poor phases and, on the other 

hand, Si-rich Mg-poor phases. Regardless of the composition, our MD simulations show that Si atoms are in all phases. 

This confirms the experimental analysis by Secondary Ion Mass Spectroscopy performed by Blanc et al.
14

 on a 

nanostructured optical fiber composed of, among other compounds, MgO and SiO2. Their study evidences that Si atoms 

are everywhere, in the fiber as well as in nanoparticles, which are thus composed of a mixture of MgO and SiO2. 

TABLE V. Percentage of Si atoms located at a distance longer than 4.0 Å from Mg atoms (i.e. demixed Si atoms) in xMgO-(1-

x)SiO2 glasses quenched at 0.5 K/ps, at 5 K/ps, and in a random distribution with same density than the glass quenched at 0.5 

K/ps. 

xMgO 0.00 0.05 0.10 0.20 0.30 0.40 0.45 0.50 0.55 0.60 0.67 

0.5 K/ps 100.0 74.0 56.2 35.2 22.0 11.2 8.2 1.6 0.4 0.1 0.0 

5 K/ps 100.0 72.4 53.4 29.8 14.5 5.8 3.4 1.0 0.2 0.1 0.0 

% difference with 0.5 K/ps 0.0 1.6 2.8 5.4 7.5 5.4 4.8 0.6 0.2 0.0 0.0 

Random distribution 100.0 71.0 48.1 22.0 8.8 1.4 0.6 0.3 0.2 0.0 0.0 

% difference with 0.5 K/ps 0.0 3.0 8.1 13.2 13.2 9.8 7.6 1.3 0.2 0.0 0.0 

 

 

FIG. 4. Percentage of Si atoms at a distance longer than 4.0 Å from Mg atoms (i.e. demixed Si) in xMgO-(1-x)SiO2 binary glasses 

quenched at 0.5 K/ps, at 5 K/ps, and in a random distribution with the same density than the glass quenched at 0.5 K/ps. “Difference” 

curves evidence the existence of the phase separation phenomenon and the improvement with a slower quench rate. 

 

TABLE V and FIG. 4 both report, for various compositions and two different quench rates (0.5 K/ps and 5 

K/ps), the percentage of Si atoms located at a distance longer than 4.0 Å (first minimum of Mg-Si RDF – see FIG. 2e & 

2f) from Mg atoms, i.e. demixed Si atoms. Results for a random distribution with same density than the glass quenched at 

0.5 K/ps are also presented. The differences with this random distribution (i.e. the higher percentage of demixed Si 

atoms) clearly show the existence of the phase separation phenomenon. The quench rate has an effect: it appears that for 

a slower quench rate, the phase separation is improved. But it occurs only for xMgO values lower than approximately 

0.5. This MD result confirms the large immiscibility gap in this binary glass. Indeed, according to Hageman and Oonk
13

, 

two liquids can coexist in this system for xMgO < 0.4 at the monotectic temperature of 1960 K. In their phase diagram, 

the top immiscibility boundary forms a dome peaking at 2260 K, temperature beyond of which only one liquid phase can 
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exist. In fact, because of the high quench rates in MD, that do not allow any crystallization in this case, this immiscibility 

dome can be extended below the monotectic temperature and down to the glass transition temperature. This extrapolation 

leads to a larger immiscibility gap, likely for xMgO values lower than approximately 0.5, as evidenced in our MD 

simulations. 

FIG. 5. (Color online) 3D renderings of quenched structures of 0.1MgO-0.9SiO2 binary glass. (a) Fixed-charge model from 

Mountjoy5; (b1) and (b2) fixed-charge model from Pedone26; (c) adaptive potential used here. Only Mg atoms are shown, but a color 

code is applied to discriminate them according to the size of the phase in which they are located. Mg atoms separated by less than 4.3 

Å (first minimum of Mg-Mg RDF, for all potentials used here) are considered to belong to the same phase.  Color code: see FIG. 6. 

FIG. 6. (Color online) Tracking of the formation of nanoparticles (NP) during the quench of a 0.1MgO-0.9SiO2 melt. Only Mg atoms 

are shown, but a color code is applied to discriminate them according to the size of the NP in which they are located. Mg atoms 

separated by less than 4.3 Å (first minimum of the Mg-Mg RDF) are considered to belong to the same NP. 
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D. Formation of nanoparticles (NP) in a 0.1MgO-0.9SiO2 glass 

To study the formation of nanoparticles during the phase separation, a melt/quench sequence is performed on a 

system with an MgO fraction x equal to 0.1. The random starting configuration, with a volume of approximately 

100x50x100 Å
3
, contains a total of 37584 atoms (1296 Mg). Before going any further, it is interesting to see how the 

adaptive model contributes to phase separation when compared to fixed-charge models. The simulation box, with a 

density set at the extrapolated value of 2.31 g/cm
3
 (see FIG. 1), is quenched at 0.5 K/ps and at constant volume (NVT), 

from 4000 K for our adaptive potential and for Pedone potential
26

 (both with a short-range Morse function), and from 

5000 K for Mountjoy potential
5
 (with a short-range Buckingham function). FIG. 5a (Mountjoy), FIG. 5b1 (Pedone) and 

FIG. 5c (adaptive potential) display the structures obtained in the same conditions, at the end of the stage at 300 K. Only 

Mg atoms are shown (Si atoms are everywhere) and a color code is applied to discriminate them according to the size of 

the phase in which they are located (see FIG. 6 for this color code). Mg atoms separated by less than 4.3 Å (first 

minimum of Mg-Mg RDF, for all potentials used here) are considered to belong to the same phase. While for fixed-

charge models (FIG. 5a & FIG. 5b1) only 2-4% of all Mg are involved in phases gathering at least 21 Mg, this number 

rises up to almost 30% for the adaptive model (FIG. 5c). To ensure that it is not a matter of the quench that would be too 

short, a very long simulation described in the next paragraph (with many temperature stages as long as 6400 ps each) is 

performed, using Pedone potential and the adaptive one. FIG. 5b2 (Pedone) and FIG. 6 at 300K (adaptive) display the 

structures obtained after this same very long treatment, in the same conditions, at the end of the stage at 300 K. For the 

fixed-charge model, the comparison of FIG. 5b1 and FIG. 5b2 shows that the improvement induced by this quench 16 

times slower is low: 10% of all Mg are involved in phases gathering at least 21 Mg, whereas it is 57% with the adaptive 

model (FIG. 6 at 300K). Consequently, taking into account the different ionicity of metal-Oxygen bonds and the ability 

for Oxygen atom to react to its environment are both key features to reproduce the separation of Mg-rich Si-poor phases 

from Mg-poor Si-rich ones. 

To form larger separated phases, the random starting configuration is now quenched at 0.5 K/ps from 4000 K to 

2400 K. Then, very long stages of 6400 ps are successively performed at 2300 K, 2200 K, 2100 K, 2000 K and 1900 K. 

Such a long time is assigned to these stages between 2400 K and 1900 K because it has been noticed that the phase 

separation occurs within this temperature range for this composition. Above 2400 K, there is only one fluctuating liquid. 

Below 1900 K, which is more than 300 K below the glass-transition temperature Tg, the structure is practically fixed (Tg 

= 2196±10 K for this system quenched at 1 K/ps). Times longer than 6400 ps have been tested, but with no improvement 

for this box size. Finally, the system is quenched from 1900 K at 0.5 K/ps to get the ultimate structure at 300 K. The 

nanoparticle formation is tracked by means of successive 3D renderings. The FIG. 6 displays the structures obtained at 

the end of each stage within the temperature range of interest (at 4000K, from 2400 K to 1900 K, and at 300 K). Again, 
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only Mg atoms are shown (Si atoms are everywhere, even in NP) and a color code is applied to discriminate them 

according to the size of the NP in which they are located. Mg atoms separated by less than 4.3 Å (first minimum of the 

Mg-Mg RDF) are considered to belong to the same NP. 

At the end of the stage at 4000 K, the liquid is homogeneous: no phase separation is observed. At the end of this 

simulation, the two largest NP (the red and the orange ones in FIG. 6 at 300 K) are not spherical, and their longest 

dimensions are 66 Å and 49 Å, respectively. A non-spherical shape in related cases can be found in the experimental 

studies by Atom Probe Tomography of Silicon NP
42

 or Erbium-rich clusters
43

 in SiO2. Our two largest NP contain 188 

and 164 Mg atoms, respectively. This represents 14.5% and 12.7% of the total number of Mg atoms, respectively, as 

shown in the FIG. 7 representing the evolution of the NP size distribution during the quench. As the temperature 

decreases, less and less Mg atoms are involved in small NP, to form NP becoming larger and larger. All formed NP 

remain amorphous. 

 

FIG. 7. Evolution of NP size distribution during the quench of a 0.1MgO-0.9SiO2 binary melt. 

 

The FIG. 8 represents the partial charge distribution of Oxygen atoms present in this demixed glass. This 

distribution can be reconstructed by a sum of two Gaussian functions, with a correlation coefficient R
2
 = 0.9991, very 

close to 1. The first Gaussian is centered on -1.2029e, which is the mean charge of Oxygen atoms in the Si-rich Mg-poor 

phase. Since this value is simply linked to the MgO fraction, we can determine that this phase contains 4.4±0.9 %mol 

MgO. The second Gaussian is centered on -1.2204e, which is the mean charge of Oxygen atoms in all the Mg-rich Si-

poor phases, i.e. combining all NP. In the same way, we can determine that these phases contain an average of 27±4 

%mol MgO. This short analysis confirms once more the experimental trend for the composition of these Mg-rich Si-poor 

nanoparticles
14,15

, which finally contain a large amount of Si atoms. Scaled to the total number of atoms (Mg, Si and O), 

this Mg proportion in overall modeled NP represents 9.9%at, and 1.5%at in the matrix. 
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FIG. 8. Distribution of Oxygen partial charge in a demixed 0.1MgO-0.9SiO2 binary glass. 

 

The difference of Oxygen charge between the Si-rich phase and Mg-rich ones is tiny (less than 1.5%). As a 

reminder, in comparison to Pedone fixed-charge model, the Magnesium charge has been enhanced by only 10% in order 

to take into account the more ionic character of Mg-O bond. These small modifications finally become necessary to 

induce the phase separation occurring in this binary system. Many examples of such a subtle balance between molecular 

interactions yielding a phase separation can be found in literature, in modeled as well as real physical systems. For 

instance, in the theoretical study of Lennard-Jones liquid mixtures
44

, a slight alteration of the Lorentz-Berthelot 

combining rules completely changes the mixing behavior. This has been used to improve the qualitative agreement with 

experiment of water-alcohol mixtures
45

. In real physical systems, a simple deuteration of organic molecules has an effect 

on their miscibility
46

. 

 

V. CONCLUSIONS 

The main feature of the potential developed in this paper is to take into account the more or less covalent 

character of metal-Oxygen bonds in bulk ionic materials. A unique set of parameters is enough to explore the full 

composition range of the MgO-SiO2 system. Cations are assumed to have a fixed charge. The global and local 

transferability is assured by the ability for each Oxygen ion to adapt its partial charge according to its own local cationic 

environment.  When compared to fixed-charge models, this simple adaptive potential is far more efficient to reproduce 

the phase separation phenomenon in the MgO-SiO2 binary system, as predicted by the phase diagram
13

 and as 

experimentally observed with the formation of nanoparticles (NP)
14,15

. Indeed, this is the first time, using Molecular 

Dynamics technique, that such large NP are formed in this system, with a composition trend in agreement with the 

known experimental data.  This method can easily be transposed to other binary or ternary systems, or more complex 

ionic bulk materials. It allows the modeling of much larger systems, for instance to study the formation of doped NP with 



15 

 

a very low amount of rare-earth ions. Moreover, the effects of the usual heat treatments on the nucleation/growth process 

of these NP could be investigated more deeply, and would deserve a whole study. 
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