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ABSTRACT

We propose a method for semi-automatic target de-
tection and contrast optimization making joint use
of an adaptive polarimetric imager and a statistical
image segmentation algorithm. It can be used to de-
tect targets that differ from the background by their
polarimetric properties. This method illustrates the
benefits of integrating digital processing algorithms
in the image acquisition process, rather than using
them only for post-processing.

1 INTRODUCTION

Active polarimetric imaging is a powerful tool for re-
vealing contrasts that do not appear in standard in-
tensity images and has been proven useful in such
domains as remote sensing, biomedical imaging or
industrial inspection [1, 2]. Extensive research has
been conducted for optimizing the characteristics of
the systems, in particular to maximize the contrast
between the object of interest and the background in
target detection applications [3, 4, 5, 6, 7]. Most of
these studies assumed that the polarimetric proper-
ties (i.e., the Mueller matrices) of the objects in the
scene were known beforehand. This is obviously a
limitation to their practical use. We propose in this
paper a solution to this issue that consists in per-
forming iteratively image segmentation and contrast
optimization. It is based on the iterative operation
of an active polarimetric imager whose illumination
and analysis polarization states can be anywhere on
the Poincaré sphere, and of a fast and unsupervised
image segmentation algorithm. The benefits of this
approach are demonstrated on real-world images in
difficult situations where target and background dif-
fer only by polarimetric properties.

The paper is organized as follows. In Section 2,
we describe the principle of an adaptive polarimetric
imager and in Section 3, the principle of polarimet-
ric contrast optimization is reviewed. In Section 4,
we present a contrast optimization method that can
be applied to a scene whose polarimetric properties
are unknown, and its validation on images from a

laboratory polarimetric imager. We draw some con-
clusions and perspectives in Section 5.

2 CONTRAST OPTIMIZATION IN POLARIMET-
RIC IMAGING

The principle of an adaptive polarimetric imager is
illustrated in Fig. 1.

Figure 1: Principle of an adaptive scalar polarimetric imaging.
PSG: Polarization State Generator. PSA: Polarization State Ana-
lyzer.

The system illuminates the scene with light com-
ing from a thermal or laser source. Polarization
state in illumination is defined by a Stokes vector
S generated thanks to a Polarization State Genera-
tor (PSG). In the practical implementation we use,
the PSG is composed of two Liquid Crystal Vari-
able Retarders and one polarizer [8]. The output
beam allows illuminating the scene uniformly in po-
larization and intensity. The polarimetric properties
of a region of the scene corresponding to a pixel
in the image is characterized by its Mueller matrix
M . The Stokes vector of the light scattered by this
region is S

′
= MS. It is analyzed by a Polariza-

tion State Analyser (PSA), which is a generalized
polarizer whose eigenstate is the Stokes vector T.
As for the PSG, in the experimental setup we use,
the PSA is composed of two Liquid Crystal Variable
Retarders and one polarizer.

The number of photoelectrons measured at a
pixel of the sensor is:

i =
ηI0
2

TTMS (1)



where the superscript T denotes matrix transposi-
tion. In this equation, S and T are unit intensity,
purely polarized Stokes vectors, I0 is a number of
photons and η is the conversion efficiency between
photons and electrons.

3 CONTRAST OPTIMIZATION IN THE PRES-
ENCE OF SPATIAL FLUCTUATIONS

The system represented in Fig. 1 can be used to op-
timize the contrast in the acquired intensity image.
Let us assume that the scene is composed of two re-
gions: a target characterized by an average Mueller
matrix < Ma > and a background characterized by
an average Mueller matrix < M b >. The objective
is to determine the configurations of the PSG and
the PSA so that the contrast between these to re-
gions in the final intensity image is maximize. The
appropriate expression of the contrast, that is, the
function to optimize, depends on the type of noise
that affects the scene. Different cases have been
analyzed: additive Gaussian noise [6], Poisson shot
noise and speckle noise [9], spatial fluctuations of
the polarization properties [7].

In this paper, we will consider that the image is
disturbed by two different types of noise: The first
one is additive sensor noise which will be assumed
of zero mean and variance σ2. The second one is
due to the fact that from one pixel to the next, the
Mueller matrix randomly fluctuates around its aver-
age value. Each pixel belonging to region u ∈ {a, b}
has a Mueller matrix M that deviates from the av-
erage matrix < Mu > of this region. These spa-
tial fluctuations are characterized by their correlation
matrices defined as:

Gu =< (VM −V<Mu>)(VM −V<Mu>)T > (2)

with VM the 16-component vector obtained by read-
ing the Mueller matrix M in the lexicographic order.
Using this notation and taking into account additive
noise, Eq. 1 can be written as:

i =
ηI0
2

[T⊗ S]TVM + n (3)

where ⊗ denotes the Kronecker product and n is a
random variable of zero mean and variance σ2. No-
tice that i is now a random variable whose statistical
properties depend on the region where the pixel is
located. If we assume that the fluctuations of VM

and n are independent, the mean and variance of i
in region u ∈ {a, b} are given by [7]:

< i >u = ηI0/2× [T⊗ S]TV<Mu> (4)

var[i]u = (ηI0/2)
2 × [T⊗ S]TGu[T⊗ S] + σ2(5)

Our objective is to optimize the discrimination
between the target and the background region in the
intensity image. To quantifiy the quality of this dis-
crimination, we will use the Fisher ratio [10]. Using
the notation defined above, it is defined as:

F(S,T) =
[< i >a − < i >b]

2

var[i]a + var[i]b
(6)

By using Eqs 3, 4 and 5, it can be put in the following
form:

F(S,T) =
[T⊗ S]TGtarget[T⊗ S]

[T⊗ S]TGfluct[T⊗ S] + 8/SNR
(7)

where Gfluct = Ga + Gb is the average covari-
ance matrix of the Mueller matrix fluctuations over
the scene, Gtarget = (< Ma > − < M b >)(<
Ma > − < M b >)T is the interclass covariance
matrix, which represents the difference between the
average Mueller matrices of the two regions, and
SNR = (η2I2

0 )/σ2 is the signal to noise ratio due
to the presence of additive noise.

To optimize the image, one has to determine the
optimal couple of illumination and analysis states
(S,T) that maximizes the function F(S,T) defined
in Eq. 7. It has been shown that this method is effi-
cient and can for example reveal objects appearing
through diffusive media [7]. However, it is based on
the hypothesis that the statistics of the Mueller ma-
trices in the target and in the background regions
are known. In the following section, we propose a
method to deal with cases where this knowledge is
not available.

4 ADAPTIVE POLARIMETRIC CONTRAST OP-
TIMIZATION

4.1 Principle of the method

The proposed method is illustrated on Fig.2. The
first step consists in acquiring the full Mueller image
with a global integration time of t0 seconds. The in-
tegration time of each images is thus about t0/16,
and they consequently have a low SNR. We then
use a fast and unsupervised segmentation algo-
rithm adapted to such noisy 16-dimensional images
(described below) that gives a first estimation of the
target shape. Due to low SNR and inhomogeneities
in some components, this shape estimation is not
perfect. However, from this first segmentation it is
possible to estimate the polarimetric properties of
the pixels inside and outside the segmented region
(object and background). One estimates the aver-
age Mueller matrix

Mu =
1

NΩu

∑
k∈Ωu

Mk
u (8)



with u = {in, out} corresponding to pixels inside
or outside the segmentation boundaries, Ωu the set
containing the NΩu

pixels in the region u, and Mk
u

the Mueller matrix of the pixel k in the region u. The
spatial fluctuations are characterized by the covari-
ance matrix given by:

Gu =
1

NΩu

∑
k∈Ωu

[VMk
u
− VMu

][VMk
u
− VMu

]T (9)

with VM the vectorized Mueller matrix M .

Figure 2: Different steps to detect and recognize a target from a
background

Using these estimates, the PSG and PSA states
S1 and T1 that maximize the contrast between the
two regions are determined by optimizing the cri-
terion in Eq. 7. These states are implemented on
the imaging system to acquire a single image with
an integration time equal to t0 and thus a better
SNR. This image is then segmented in order to re-
fine the shape of the target, which allows one to
obtain a better estimation of the polarimetric prop-
erties of the target and the background (Mu, Gu)
(u ∈ {in, out}), and thus a better estimation of the
optimal PSG/PSA states S2 and T2. These new
states can be implemented on the imaging system
to acquire a new image, that is segmented to further
refine the PSG/PSA estimation. This process of ac-
quisition / segmentation / contrast optimization can
be iterated until the contrast between the target and
the background is sufficient. The number of itera-
tions will depend on the complexity of the scene and

on the difference of polarimetric properties between
the target and the background. However, since all
the steps but the first one are based on single im-
age acquisitions, it is robust to object movements in
the scene.

4.2 Segmentation algorithm

One of the key elements of this method is the
segmentation algorithm. It should be fast, require
no intervention from the user, and be adapted to
both 1D and 16D noisy intensity images. We thus
use the polygonal active contour (snake) proposed
in [11, 12], initially developed for 1D images and
that has been generalized to multi-dimensional im-
ages. This algorithm relies on a Minimum De-
scription Length (MDL) criterion, based on a non-
parametric description of the gray level fluctuations
that are modeled with K-bin histograms. Both the
number and location of the nodes of the polygonal
contour used to separate the object from the back-
ground are estimated iteratively via the optimization
of the MDL criterion which does not contain any pa-
rameter to be tuned by the user.

The most time-consuming step in this algorithm
is the calculus of the K statistics needed to update
the height of the K bins of the histogram after each
deformation of the contour [12]. Fast computation of
these statistics are obtained with summing K pre-
computed images along the contour of the objet,
and a number of bins K between 8 to 16 usually
yields a good tradeoff between computation time
and discrimination capability. The computation time
of this operation can be significantly reduced by vec-
torizing it with the streaming single instruction mul-
tiple data (SIMD) extensions (SSE). As described
in [12], for images with a pixel number N ≤ 32767,
it allows computing S = 8 statistics simultaneously
with only one SSE summation. Assuming that the
grey level values of the 16 Muller matrix components
are independent, the generalization of the 1D MDL
criterion to 16D is straightforward [11], the data ad-
equacy term in the MDL criterion being simply the
sum of the data adequacy terms for each of the 16
components. It is thus necessary to calculate 16 K
statistics, which implies k SSE summations, where k
is the smallest integer not less than (16K)/S. Since
in the considered images N ≤ 32767, S = 8 and
thus only k = 2 K SSE summations are necessary,
allowing to keep a reduced computation time even
when dealing with 16D intensity images. For exam-
ple a 152×162 pixel image is segmented withK=8 in
4 milliseconds for 1D images and less than 20 mil-
liseconds for 16D images on a 2.5 GHz processor
laptop.



4.3 Experimental validation

In order to validate this method, we have used the
adaptive polarimetric imager described in Section 2.
The scheme of the observed scene is represented
in Fig. 3.a. The target is composed of metallic adhe-
sive tape and the background of white plastic. Both
are placed behind a piece of diffusing paper, they
cannot be discriminated on a standard intensity im-
age (see Fig. 3.b).

(a) (b)

Figure 3: (a) Scheme of the scene. (b) Intensity image.

Step 1 Step 2

Step 3 Step 4

Figure 4: Segmentation and contrast optimization on scene of
Fig. 3 in 4 iterations

We first acquire full Mueller data with a short in-
tegration time and we apply the 16D segmentation
algorithm to extract a first estimated shape of the
target (see Fig. 4, step 1). The segmented shape
corresponds to a small part of the object, due to
the presence of noise and spatial fluctuations of
the polarimetric properties in the scene. We extract
the polarimetric properties of the regions inside and
outside this approximate contour, and compute the
PSG/PSA states maximizing the contrast criterion
in Eq. 7. By implementing these polarization states
on the imaging system, we acquire the image pre-
sented in Fig. 4 (step 2). In this optimized intensity
image, the quality of the segmentation and the con-
trast between the target and the background have
been significantly improved. Using this image for a
new 1D segmentation step, we obtain an improve-

ment of the shape estimation. However, as some
fluctuations remain in the images, the shape esti-
mation has still some defects. Two further iterations
of the same process yield the image in Fig.4 (step
4), where we observe that the contrast is sufficiently
improved to yield a precise estimation of the object
shape. In this case, a correct shape estimation is
finally recovered in 4 iterations

5 Conclusion

Polarimetric techniques have a large potential to im-
prove the performance of imaging systems. One of
their main advantages is to reveal contrasts that do
not appear in classical images, which is of great in-
terest in defence but also in medical imaging or in-
dustrial inspection. We have presented a method-
ology for automatic target detection based on the it-
erative interplay between an active polarimetric im-
ager with adaptive capabilities and a snake-based
image segmentation algorithm. Its efficiency has
been demonstrated in a difficult situation where the
target and the background had the same intensity
reflectivities and differed only by their polarimetric
properties.

This method does not require prior knowledge
of the polarimetric properties of the scene, and pro-
vides a scalar image with optimal contrast that can
be further exploited by a human observer. These re-
sults illustrate the benefits of integrating digital pro-
cessing algorithms in the image acquisition process,
rather than using them only for post-processing.
Further research is necessary to precisely quantify
the benefits of this method, in terms of acquisition
time and robustness to target motion during acqui-
sition. We are currently investigating these issues.
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