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Abstract: This paper addresses a method for robust fault detection and estimation by
minimizing the disturbance and uncertainties to residual sensitivity. It consists in the design
of proportional integral observer while minimizing the well known H∞ norm for worst case
uncertainties and disturbance attenuation, and combining a transient response specification.
This multi-objective problem is formulated as linear matrix inequalities (LMI) feasibility
problem in which a cost function is minimized subject to LMI constraints. This approach is
employed to generate a set of robust observers for uncertain switched systems.
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H∞, LMI, MLF.

1. INTRODUCTION

Modern systems (vehicles, aircrafts, trains...) are increas-
ingly equipped with new mechanisms to improve passen-
gers safety Isermann (2005); Venkatasubramanian et al.
(2003); Koenig et al. (2013). These new systems have often
active parts using data from sensors and actuator, for
detection and diagnosis of process faults.

There is an abundance of literature on fault detection (FD)
techniquesChen and Patton (1999); Varrier et al. (2014).
The idea is to compute a residual signal that represents
the inconsistency between the actual plant variables and
the mathematical model, to extract information on pos-
sible changes caused by faults Zhang (2009). In practical
applications, the residuals are corrupted by unknown in-
puts such as noises, disturbances, and uncertainties in the
system model. Hence, the main objective of FD methods is
to generate stable robust residuals that are insensitive to
these noise and uncertainties, while sensitive to faultsShi
and Patton (2012); Liu and Zhou (2007).

The Linear Matrix Inequalities (LMI) formulation is often
used to mathematically express robust fault detection
problem, for classes of uncertain systems with bounded
uncertainties, or non-linear system with Lipschitz non-
linearities. The idea of finding a formulation with bounded
unknowns has been widely studied. Some authors have
proposed adaptive observerPaesa et al. (2010); Pourgholi
and Majd (2013), adding an adaptive term to the observer.
Nevertheless, there are two potential problems in their
implementation: first the adaptive term might increase
unboundedly and become infeasible in computationGu and
Yang (2011). Second, it is an online adaption, that leads
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to more calculation and power consumption. Therefore,
instead of using an adaptive term in the observer, the
proposed method is to extend the Lyapunov function into a
Multiple Lyapunov Function (MLF) resulting to a feasible
LMI problem.

The specifications and objectives under consideration in-
clude H∞ performance and time domain constraints. The
motivations for using this mixed performances are as fol-
lows:

• The time domain constraint that is expressed by pole
region assignment is useful to tune the transient re-
sponse Moore (1976); Patton and Chen (1991, 1997);
Liu and Patton (1998).

• The integral term in the fault observer is convenient
to ensure a zero fault estimation error in steady state
regime.

• The H∞ performance is useful to ensure the residual
robustness to model uncertainties, disturbances and
unknown inputs.

In this paper, a proportional integral observer based filter
is designed with the mixed H∞ / eigen region assignment
objectives. The desired observer is computed by solving
a set of LMIs. A compromise between fault sensitivity,
unknown input rejection, uncertainty robustness and eigen
region assignment is optimized via a convex optimization
algorithm.

The outline of this paper is as follows. After the intro-
duction, problem formulation is given in Section II. In
section III, preliminaries for the H∞ synthesis, the eigen
region synthesis and the fault Proportional integral (PI)
observer formulation. The multi-objective switched robust
fault detection observer scheme is given in Section IV. The
set of LMIs are then solved as an optimization problem.



The above results are illustrated by a numerical example
in Section V with filed data from a car as application
to lateral vehicle control. Finally, Section VI shows the
concluding remarks and the possible future work.

Notations: The notation used in this paper is standard.
XT is the transposed of matrix X, the star symbol (?)
in a symmetric matrix denotes the transposed block in
the symmetric position. The notation P > (<)0 means
P is real symmetric positive (negative) definite matrix.
0 and I denote zeros and identity matrix of appropriate
dimensions.

2. PROBLEM FORMULATION

Consider the state space representation of the linear time
uncertain switched system :

ẋ(t) = Āα(t)x(t) +Bα(t)u(t)
+Ed,α(t)d(t) + Ef,α(t)f(t)

y(t) = Cα(t)x(t) +Dα(t)u(t)
+Fd,α(t)d(t) + Ff,α(t)f(t)

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the measure-
ment output vector, u ∈ Rm is the input vector, d ∈ Rnd
is the disturbance vector, f ∈ Rnf is the vector of faults
to be detected, α(t) is the switching signal, it is assumed
known and measured.

Model uncertainties can be represented in different forms,
in this study additive form is considered as:

Āα(t) = Aα(t) + ∆x,α(t)Nx,α(t) (2)

The matrices Aα, Bα, Ed,α, Ef,α, Cα, Dα, Fd,α and Ff,α
are the nominal LTI system matrices, they are known and
in appropriate dimensions. ∆x,α is the state uncertainty
matrix that is bounded ‖∆x,α‖2 ≤ εx,α, Nx,α define the
directions of these uncertainties.

In the following the subscript t is omitted without confu-
sion for typing simplifications.{

ẋ = (Aα + ∆x,αNx,α)x+Bαu
+Ed,αd+ Ef,αf

y = Cαx+Dαu+ Fd,αd+ Ff,αf
(3)

Assumption 1. In this study the pair (Ãα, C̃α) defined in
(9) is assumed observable, or without loss of generality
is detectable. It is a standard assumption for all fault
detection problems.

That is using Popov criterion, ∀p s.t. <(p) ≥ 0:

rank

[
pI −Aα −Ef

0 pI
Cα 0

]
= n+ rank(Ef,α) (4)

Assumption 2. In this study the system is assumed stable.
This assumption is explained with Theorem 1 and will be
used in Theorem 2.

Introducing local variable χ, the system can be put in the
form: {

ẋ = Aαx+Bαu+ Ed,αd+ Ef,αf + χ
χ = ∆x,αNx,αx
y = Cαx+Dαu+ Fd,αd+ Ff,αf

(5)

The switched robust PI observer for fault detection and
estimation has the form:


˙̂x = Aαx̂+Bαu+ LP,α(y − ŷ) + Ef,αf̂
˙̂
f = LI,α(y − ŷ)
ŷ = Cαx̂+Dαu

(6)

where LP,α and LI,α are respectively the proportional and
integral gain for the robust PI fault observer.

Assuming the static fault case (i.e. ḟ = 0), and define the

errors ex = x− x̂ and ef = f − f̂ , then the following could
be written:

ėx =Aαx+Bαu+ Ed,αd+ Ef,αf + χ

−(Aαx̂+Bαu+ LP,α(y − ŷ) + Ef,αf̂) (7a)

= (Aα − LP,αCα)ex + Ef,αef + χ

+(Ed,α − LP,αFd,α)d− LP,αFf,αf (7b)

ėf =−LI,α(y − ŷ)

=−LI,αCαex − LI,αFd,αd− LI,αFf,αf (7c)

In matrix form:[
ėx
ėf

]
=

([
Aα Ef,α
0 0

]
−
[
LP,α
LI,α

]
[Cα 0]

)[
ex
ef

]
+

[
Ed,α − LP,αFd,α
−LI,αFd,α

]
d

+

[
−LP,αFf,α
−LI,αFf,α

]
f +

[
I
0

]
χ (8a)

rα = [Cα 0]

[
ex
ef

]
+ Fd,αd+ Ff,αf (8b)

Let:

Ãα =

[
Aα Ef,α
0 0

]
, B̃α =

[
Bα
0

]
, C̃α = [Cα 0] ,

Ẽd,α =

[
Ed,α

0

]
, Ĩ =

[
I
0

]
and Lα =

[
LP,α
LI,α

]
(9)

Then the residual generator in (7) with x̃ =
[
eTx eTf

]T
becomes:

˙̃x = (Ãα − LαC̃α)x̃+ (Ẽd,α − LαFd,α)d

+(−LαFf,α)f + Ĩχ

rα = C̃αx̃+ Fd,αd+ Ff,αf

(10)

And the PI observer in (5) with x̄ =
[
x̂T f̂T

]T
:{

˙̄x = Ãαx̄+ B̃αu

+LαFd,αd+ LαFf,αf + LαC̃αx̃
(11)

Let: A∗α = Ãα − LαC̃α, E∗d,α = Ẽd,α − LαFd,α, E∗f,α =
−LαFd,α.

Then the sensitivity functions of disturbance to the resid-
ual is defined as:

Trdα(s) = C̃α(sI −A∗α)−1E∗d,α + Fd,α (12)

The objective of the H∞ switched fault dectection PI
observer is resumed by the following condition:

‖Trdα‖∞ < γα (13)



The problem is formulated as following: Find the matrices

Lα =
[
LTP,α LTI,α

]T
, minimizing γα such that the switched

FD PI observer is stable.

3. PRELIMINARIES

Lemma 1. For any matrices X and Y with appropriate
dimensions, the following statement holds:

XTY + Y TX < XTX + Y TY (14)

Theorem 1. Consider the autonomous system:{
ẋ = Ax
y = Cx

; and the observer

{
˙̂x = Ax̂+ L(y − ŷ)
ŷ = Cx̂

And define the error ex = x− x̂ ⇒ ėx = (A− LC)ex.

Then a suitable Multiple Lyapunov Function (MLF) that
ensures the sufficient stability condition of the system and
the observer is :

V = V1 + V2 (15)

with V1 = x̂TPx̂, V2 = eTxPex, P > 0.

Proof 1. The stability condition is V̇ < 0, then:

V̇ = V̇1 + V̇2 < 0, P > 0

(Ax̂+ LCex)TPx̂+ x̂TP (Ax̂+ LCex)

+((A− LC)ex)TPex + eTxP (A− LC)ex < 0

In matrix form:[
x̂
ex

]T [
ATP + PA PLC

? (A− LC)TP + P (A− LC)

] [
x̂
ex

]
< 0

This inequality holds ∀
[
x̂T eTx

]T 6= 0 , thus:[
ATP + PA PLC

? (A− LC)TP + P (A− LC)

]
< 0

Using Shur complement properties, the diagonal parts
should be negative:

ATP +PA < 0, and (A−LC)TP +P (A−LC) < 0 Hence,
the observer is stable, and the system is stable as well.
�

Theorem 2. For a given uncertain switched system with
faults as defined in (3), if there exits a symmetric matrix
Pα > 0 and positive scalars εx,α and γα, such that the
following inequality holds:


Ωd,α Υd,α PαB̃α −C̃TαUTα Pα
? Jd,α 0 −FTd,αUTα 0

? ? 0 B̃TαPα 0
? ? ? Πα 0

? ? ? ? −1

2
I

 < 0 (16)

where

Ωd,α =PαÃα + UαC̃α + ÃTαPα+

C̃TαU
T
α + C̃Tα C̃α + 2ε2xĪN

T
x,αNx,αĪ

T

Υd,α =PαẼd,α + UαF̃d,α + C̃TαFd,α

Jd,α =FTd,αFd,α − γ2
αI,

Πα =ÃTαPα + PαÃα + 2ε2xĪN
T
x,αNx,αĪ

T + C̃Tα C̃α

Then a robust PI fault detection observer can be designed
where the gain filter Lα = −P−1

α Uα

Proof 2. The followings are the constraints for a general
robust fault detection observer design:

- If there existe Pα > 0, the sufficient stability condition
considering the candidate Multiple Lyapunov Function
(MLF):

Vα = x̃TPαx̃+ x̄TPαx̄ (17a)

V̇α < 0 (17b)

- For a positive scalar γα, the H∞ disturbance rejection
condition (13) is formulated as:

‖rα|f=0‖2 < γα ‖d‖2 (17c)

- The boundedness property of the uncertainties is:

χTχ = xTNT
x,α∆T

x,α∆x,αNx,αx

< ε2xTNT
x,αNx,αx (17d)

Using x = ex + x̂ = ĪT x̃+ ĪT x̄ = ĪT (x̃+ x̄), and with the
property in Lemma 1, we can write:

xTNT
x,αNx,αx = (x̃+ x̄)T ĪNT

x,αNx,αĪ
T (x̃+ x̄)

= x̃T ĪNT
x,αNx,αĪ

T x̃+ x̄T ĪNT
x,αĪNx,αĪ

T x̄

+x̃T ĪNT
x,αNx,αĪ

T x̄+ x̄T ĪNT
x,αĪNx,αĪ

T x̃

< x̃T ĪNT
x,αNx,αĪ

T x̃+ x̄T ĪNT
x,αNx,αĪ

T x̄

+x̃T ĪNT
x,αNx,αĪ

T x̃+ x̄T ĪNT
x,αNx,αĪ

T x̄

= 2x̃T ĪNT
x,αNx,αĪ

T x̃+ 2x̄T ĪNT
x,αNx,αĪ

T x̄ (18)

Combining the equations (17a) - (17c) yields to:

V̇α + rTα rα − γ2
αd

T d < 0 (19)

Let Vα = V1,α + V2,α; V1,α = x̃TPαx̃ and V2,α = x̂TPαx̂.

Then using the properties (16g) and (17), the general form
of the MLF derivatives are:

V̇1,α =(A∗αx̃+ E∗d,αd+ E∗f,αf + Īχ)TPαx̃

+ x̃TPα(A∗αx̃+ E∗d,αd+ E∗f,αf + Īχ)

=x̃T (PαA
∗
α +A∗Tα Pα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (Ed,αd+ E∗f,αf)TPαx̃+ x̃TPαĪχ+ χT ĪTPαx̃

<x̃T (PαA
∗
α +A∗αPα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (E∗d,αd+ E∗f,αf)TPαx̃+ x̃TPαP
T
α x̃+ χT ĪT Īχ

<x̃T (PαA
∗
α +A∗αPα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (E∗d,αd+ E∗f,αf)TPαx̃+ x̃TP 2
αx̃+ ε2xx

TNT
x Nxx

<x̃T (PαA
∗
α +A∗αPα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (E∗d,αd+ E∗f,αf)TPαx̃+ x̃TP 2
αx̃

+ ε2x(2x̃T ĪNT
x,αNx,αĪ

T x̃+ 2x̂T ĪNT
x,αNx,αĪ

T x̂)

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xĪN
T
x,αNx,αĪ

T )x̃

+ x̃TPαE
∗
d,αd+ dTE∗Td,αPαx̃

+ x̃TPαE
∗
f,αf + fTE∗Tf,αPαx̃

+ 2ε2xx̂
T ĪNT

x,αNx,αĪ
T x̂ (20)



V̇2,α = ˙̄xTPαx̄+ x̄TPα ˙̄x

=(Ãαx̄+ B̃αu+ LαC̃αx̃+ LαFd,αd

+ LαFf,αf)TPαx̄+ x̄TPα(Ãαx̄+ B̃αu

+ LαC̃αx̃+ LαFd,αd+ LαFf,αf)

=x̄T (ÃTαPα + PαÃα)x̄+ x̄TPαB̃αu+ uT B̃TαPαx̄

+ x̄TPαLαC̃αx̃+ x̃T C̃TαL
T
αPαx̄+ x̄TPαLαFd,αd

+ dTFTd,αL
T
αPαx̄+ x̄TPαLαFf,αf

+ fTFTf,αL
T
αPαx̄ (21)

In the fault free case, the inequalities (19)-(21) yield to:

V̇α|f=0 + rTα rα − γ2
αd

T d

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xĪN
T
x,αNx,αĪ

T )x̃

+ x̃TPαE
∗
d,αd+ dTE∗Td,αPαx̃+ 2ε2xx̄

T ĪNT
x,αNx,αĪ

T x̄

+ x̄T (ÃTαPα + PαÃα)x̄+ x̄TPαB̃αu

+ uT B̃TαPαx̄+ x̄TPαLαC̃αx̃+ x̃T C̃TαL
T
αPαx̄

+ x̃T C̃TαFd,αd+ dTFTd,αC̃αx̃+ dTFTd,αFd,αd

+ x̄TPαLαFd,αd+ dTFTd,αL
T
αPαx̄

+ x̃T C̃Tα C̃αx̃− γ2
αd

T d

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xĪN
T
x,αNx,αĪ

T + C̃Tα C̃α)x̃

+ x̃T (PαE
∗
d,α + C̃TαFd,α)d+ dT (E∗Td,αPα + FTd,αC̃α)x̃

+ x̄T (ÃTαPα + PαÃα + 2ε2xĪN
T
x,αNx,αĪ

T )x̄+ x̄TPαB̃αu

+ uT B̃TαPαx̄+ x̄TPαLαC̃αx̃+ x̃T C̃TαL
T
αPαx̄

+ x̄TPαLαFd,αd+ dTFTd,αL
T
αPαx̄

+ dT (FTd,αFd,α − γ2
αI)d = Γα|f=0 < 0 (22)

Solving the set of inequalities Γα|f=0 < 0 guarantees the
solution for (19).

In the quadratic form:

x̃du
x̄


T


Ω∗d,α Υ∗d,α PαB̃α C̃TαL
T
αPα

? Jd,α 0 FTd,αL
T
αPα

? ? 0 BTαPα
? ? ? Πα


x̃du
x̄

 < 0 (23)

where

Ω∗d,α = PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xĪN
T
x,αNx,αĪ

T + C̃Tα C̃α,

Υ∗d,α = PαE
∗
d,α + C̃TαFd,α,

Jd,α = FTd,αFd,α − γ2
αI,

Πα = ÃTαPα + PαÃα + 2ε2xĪN
T
x,αNx,αĪ

T + C̃Tα C̃α

This inequality holds ∀
[
x̃T dT uT x̄T

]T 6= 0 , thus:
Ω∗d,α Υ∗d,α PαB̃α C̃TαL

T
αPα

? Jd,α 0 FTd,αL
T
αPα

? ? 0 B̃TαPα
? ? ? Πα

 < 0 (24)

This BMI is transformed into LMI by replacing Uα =
−PαLα, and using Schur complement formula for PTα Pα.
It follows:


Ωd,α Υd,α PαB̃α −C̃TαUTα Pα
? Jd,α 0 −FTd,αUTα 0

? ? 0 B̃TαPα 0
? ? ? Πα 0

? ? ? ? −1

2
I

 < 0 (25)

Ωd,α =PαÃα + UαC̃α + ÃTαPα+

C̃TαU
T
α + C̃Tα C̃α + 2ε2xĪN

T
x,αNx,αĪ

T

Υd,α =PαẼd,α + UαFd,α + C̃TαFd,α �
Remark 1. In this theorem, a MLF has been used. The
second term V2 has been added to ensure the feasibility of
the LMI (16). Doing that adds the Assumption 2 on the
stability of the system. We can consider that our interest
here focuses on stable systems, and we work only on the
observability and FD problems.

Theorem 3. For a given square n × n matrix Aα, if there
exits a symmetric matrix Pα > 0 and a positive scalar ξα
such that the following inequality holds:

ATαPα + PαAα − 2ξαPα < 0 (26)

Then all eigenvalues of Aα are on left plane of ξα.

Proof 3. (26) is a result of a classical Lyapunov function
for sufficient condition of stability.

The system ẋ = (Aα − ξαI)x is stable if there exist a

symmetric matrix Pα > 0 where V = xTPαx, V̇ < 0.

Thus:

(Aα − ξαI)TPα + Pα(Aα − ξαI) < 0 (27)

which is equivalent to (26).
�

Remark 2. The rise time propertie of the system is the
time that takes to reach 90% of the steady state, it is
approximated in the first order system to:

trise,α =
2.2

ξα
(28)

This shows the strong connection between the dominant
pole region (ξα) and the time specification.

4. PI ROBUST FAULT DETECTION OBSERVER
DESIGN

The multi-objectives of the observer are: (a) robustness
against uncertainties, (b) robustness and perturbation
rejection, (c) sensitivity toward faults and (d) a correct
time response for fault detection. In order to meet all
these constraint, the developed design in this section can
be adopted.

Whilst the raise time constant is predefined and is in-
versely proportional to ξα, the coefficient γα has to be
minimized. This consists in solving a set of LMIs as an
optimization problem.

These LMIs are :

PαÃα + ÃTαPα + UαC̃α + C̃TαU
T
α − 2ξαPα < 0 (29)

Pα > 0 (30)

and the same LMI in (24).

The gain filter is L̄α = −P−1
α Uα.

Using Matlab optimization tools such YALMIP or Se-
DuMi, the set of LMIs can then be solved minimizing γ2

α.



Symbol Variable Value Unit

v longitudinal velocity - [m/s]

uL steering angle - [rad]

β side slip angle - [rad]

ψ̇ yaw rate - [rad/s]

γL lateral acceleration - [m/s2]

m Mass of the vehicle (+2 passengers) 1417 [kg]

Iz yaw moment of inertia 1808 [kg.m]

cf front corners stiffness 41654 [N/rad]

cr rear corners stiffness 56862 [N/rad]

lf distance form CoG to front axle 1.12 [m]

lr distance form CoG to rear axle 1.46 [m]

Table I. Notations and vehicle parameters

The objectives (a) and (b) are guaranteed by LMIs (??)
and (30). The objective (c) is resolved by the integral term
of the PI observer: when stable, it will converges to the
correct value of the fault. The objective (d) is guaranteed
as well by LMIs (29) and (30), it derives from Theorem 3,
where BMIs are transformed into LMI as in final steps of
the Proof 1.

Finally, the designed observer can be put in the following
form:


[

˙̂x
˙̂
f

]
=

[
Aα − LP,αCα Ef,α
−LI,αCα 0

] [
x̂

f̂

]
+

[
Bα − LP,αDα LP,α
−LI,αDα LI,α

] [
u
y

] (31)

5. EXAMPLE

5.1 Bicycle switched model

Consider the problem of the FD in the lateral control of a
vehicle.

The bicycle-model is widely used as representation of the
system Mammar and Koenig (2002). Though, this model
is non-linear since it has 1

v and 1
v2 terms in it:

[
β̇(t)

ψ̈(t)

]
=

 −
cr + cf
mv(t)

crlr − cf lf
mv2(t)

− 1

crlr − cf lf
Iz

−
crl

2
r + cf l

2
f

Izv(t)

[β(t)

ψ̇(t)

]

+


cf
mv
crlf
Iz

uL(t) +

 1

mv
lw
Iz

Fw(t) (32)

y =

[
cr + cf
m

cf lf − crlr
m

] [
β(t)

ψ̇(t)

]
+
cf
m
uL(t) (33)

The measured output is the lateral acceleration γL, the
entry command is the steering angle uL, the sates are the
side slip angle β and the yaw rate ψ̇, and we consider the
wind force as a perturbation signal Fw.

In this approach, the system is linearized around multiple
points vα as shown in dashed curve of figure 3. It is
calculated as the integer part of the output of the division:
v(t)
δ . vα is the switching signal.

Using a Taylor expansion in the neighborhood of vα:
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1

v
|v=vα =

1

vα
− 1

v2
α

(v − vα) +O(
1

v2
) (34)

1

v2
|v=vα =

1

v2
α

− 2

v3
α

(v − vα) +O(
1

v3
) (35)

Then

A = A0 +
1

vα
A1 +

1

v2
α

A2︸ ︷︷ ︸
Aα

+ (− 1

v2
α

A1 −
2

v3
α

A2)︸ ︷︷ ︸
Nx,α

(v − vα)︸ ︷︷ ︸
∆x,α

(36)
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5.2 Simulation scenario

Experimental data have been taken from a ”Renaul
Scenic” car, provided by the french laboratory MIPS.
In this example, we consider the scenario of the evasive
manoeuvre test more commonly known as the moose test.

Figure 1 shows the measured steering angle for this sce-
nario. The avoidance occurs between t = 18 to t = 24s.

On figure 2, a comparison between the measured data
and the simulated switched bicycle model for lateral ac-
celeration validates the switched model, it can be used
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then for the observer design. Both the longitudinal velocity
(continuous blue) and the operating points (dashed red)
are plot on figure 3. As one can observe, δ = 10 km/h. As
these tests were done up to 100 km/h, 10 observers are
calculated. The uncertainties of ±5 km/h guarantee the
continuity of the switched observers.

5.3 Simulation Results

The fault considered in this application is an actuator
fault, that occurs on the actuator. The uncertain switched
state space representation in this case becomes :

{
ẋ = (Aα + ∆x,αNx,α)x

+Bα(u+ f) + Ed,αd
y = Cx+D(u+ f)

(37)

Applying the set of LMIs detailed in section 4, a robust
proportional integral fault observer can be designed, meet-
ing the desired objectives.

For a fault that occurs between t = 21 and t = 24s, we
can see on figure 4 the fault estimation by the switched
observer. The estimated singal rises within 1s.

In the non-faulty case, the estimated signal is very low,
but non-zero. This is due to the uncertainties, but also to
the parameters variation and the sensors calibration in the
vehicle. These parameters can never be accurately known,
the design of the oberver is robust to these though.

6. CONCLUSION AND FURTHER WORK

The technique presented in this paper provides a frame-
work for generating a class of robust fault detection ob-
servers.

Indeed, we have analyzed the problem of fault detection
using proportional integral observer. We showed that the
H∞ PI observer structure formulated using LMIs makes it
possible to decouple the disturbances while estimating the
states and faults with satisfactory convergence properties.

Several time- and frequency-domain specifications have
been expressed as LMI constraints on the observers state-
space matrices. These analysis are then used for multi-
objective synthesis purposes. A compromise of these ob-
jectives is proposed as a criterion to minimize. A LMIs
feasibility problem is formulated. It is then solved as opti-
mization problem by using efficient LMI solver. A partical
example with field data was given to illustrate and validate
this approach.

In future work, this design can be extended to a class
of non-linear Lipschitz sytem, were the same idea of
boundedness can be used.
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