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H−/H∞ robust fault detection observer
for uncertain switched systems∗

Ahmad Farhat, Damien Koenig

Abstract—This paper addresses a method for robust fault
detection (RFD) by maximizing the fault to residual sensitivity.
It uses the newly developed H− index properties and mini-
mizing the well known H∞ norm for worst case uncertainties
and disturbance attenuation . These objectives are coupled to
a transient response specification expressed by eigen region
assignment formulation. The 3-objective robust fault detection
problem is formulated as LMI feasibility problem in which a
cost function is minimized subject to LMI constraints.

Keywords : Residual generation, robust fault detection, un-
certain switched systems, H− index, H∞ norm, LMI.

I. INTRODUCTION

Modern systems (vehicles, aircrafts...) are increasingly
equipped with new mechanisms to improve safety. These new
systems have often active parts using data from sensors. How-
ever, in case of malfunction of a sensor, the consequences
can be dramatic. Early detection and diagnosis of process
faults can help avoid abnormal event progression and improve
reliability and safety issues [1].

Among numerous fault detection techniques (FD), model
based design are one popular strategy that includes observer
based approach, parity-space approach [2], eigenstructure
assignment approach, parameter identification based methods
[3]. The idea is to compute a residual signal by comparing
the mathematical model of the plant and use the relations
among several measured variables to extract information on
possible changes caused by faults [4].

In practical applications, the residuals are corrupted by
unknown inputs such as noises, disturbances, and uncer-
tainties in the system model. Hence, the main objective of
FD methods is to generate stable robust residuals that are
insensitive to these noise and uncertainties, while sensitive
to faults [5], [6].

Recent work on the H− “norm” have been studied and
various definition have been introduced [7]–[10]. It is the
minimum “non-zero”singular value taken either at ω = 0
[11], over a finite frequency range [ω, ω], or over all fre-
quency range [0,∞] [9].

The specifications and objectives under consideration in-
clude H∞ performance, H− performance and time domain
constraints. The motivations for using this mixed perfor-
mances are as follows:
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• The H∞ performance is useful to ensure the residual
robustness to model uncertainties and disturbances.

• The H− performance is convenient to express the resid-
ual sensitivity toward faults.

• The time domain constraint that is expressed by pole
region assignment is useful to tune the transient response
[12]–[14].

In this paper, an observer based filter is designed with
the mixed H−/H∞/eigenvalue assignment objectives. The
desired observer is computed by solving a set of LMIs. A
compromise between fault sensitivity, unknown input rejec-
tion, uncertainty robustness and eigen region assignment is
optimized via a convex optimization algorithm.

The outline of this paper is as follows. After the Introduc-
tion, problem formulation is given in Section II. In section
III, preliminaries for the synthesis of H∞ observer, H− fault
detector. Robust fault detection observer scheme is given in
Section IV using additive filter design. A min/max criterion
is used to solve an optimization problem set by the LMIs.
The above results are illustrated by a numerical example in
Section V. Finally, Section VI shows the concluding remarks
and the possible future work.

Notations: The notation used in this paper is standard.
XT is the transposed of matrix X , the star symbol (?)
in a symmetric matrix denotes the transposed block in the
symmetric position. The notation P > (<)0 means P is real
symmetric positive (negative) definite matrix. 0 and I denote
zeros and identity matrix of appropriate dimensions.

II. PROBLEM FORMULATION

Consider the state space representation of the linear time
uncertain switched system :

ẋ(t) = Āα(t)x(t) +Bα(t)u(t)
+Ed,α(t)d(t) + Ef,α(t)f(t)

y(t) = Cα(t)x(t) +Dα(t)u(t)
+Fd,α(t)d(t) + Ff,α(t)f(t)

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the measurement
output vector, u ∈ Rm is the input vector, d ∈ Rnd is the
disturbance vector, f ∈ Rnf is the vector of faults to be
detected, α(t) is the switching signal, it is assumed known
and measured.

Model uncertainties can be represented in different forms,
in this study additive form is considered:

Āα(t) = Aα(t) + ∆x,α(t)Nx,α(t) (2)



The matrices Aα, Bα, Ed,α, Ef,α, Cα, Dα, Fd,α and Ff,α
are the nominal LTI system matrices, they are known and in
appropriate dimensions. ∆x,α is the state uncertainty matrix
that is bounded ‖∆x,α‖2 ≤ εx,α, Nx,α define the directions
of these uncertainties.

In the following the subscript t is omitted without confu-
sion for typing simplifications. ẋ = (Aα + ∆x,αNx,α)x+Bαu

+Ed,αd+ Ef,αf
y = Cαx+Dαu+ Fd,αd+ Ff,αf

(3)

Introducing local variable χ, the system can be put in the
form: ẋ = Aαx+Bαu+ Ed,αd+ Ef,αf + χ

χ = ∆x,αNx,αx
y = Cαx+Dαu+ Fd,αd+ Ff,αf

(4)

The switched identity observer used by the residual gen-
erator is: 

˙̂x = Aαx̂+Bαu+ Lα(y − ŷ)
ŷ = Cαx̂+Dαu
rα = y − ŷ

(5)

Define the state error as x̃ = x− x̂. Then:

˙̂x = Aαx̂+Bαu+ LαCαx̃

+LαFd,αd+ LαFf,αf (6)
˙̃x = Aαx+ χ+Bαu+ Ed,αd+ Ef,αf

−Aαx̂−Bαu− LαCαx̃
−LαFd,αd− LαFf,αf

= (Aα − LαCα)x̃+ (Ed,α − LαFd,α)d

+(Ef,α − LαFf,α)f + χ (7)
rα = Cαx̃+ Fd,αd+ Ff,αf (8)

Using the formulation in (4), it yields:
˙̃x = A∗αx̃+ E∗d,αd+ E∗f,αf + χ

χ = ∆x,αNx,αx
rα = Cαx̃+ Fd,αd+ Ff,αf

(9)

with A∗α = Aα − LαCα, E∗i,α = Ei,α − LαFi,α, i ∈ {f, d}.
Let the sensitivity functions of fault and disturbance to the

residual be:

Trfα(s) = Cα(sI −A∗α)−1E∗f,α + Ff,α (10)

Trdα(s) = Cα(sI −A∗α)−1E∗d,α + Fd,α (11)

The objective of the H−/H∞ switched FD observer is
resumed by the following conditions:

‖Trdα‖∞ < γα (12)
‖Trfα‖− > βα (13)

The problem is formulated as following: Find the matrix
Lα that maximize βα and minimize γα such that the switched
FD observer is stable. The optimization criterion used in this
paper is to maximize β2

α − γ2
α.

Assumption 1: In this study the pair (Aα, Cα) is assumed
observable, or without loss of generality is detectable. It is a
standard assumption for all fault detection problems.

III. PRELIMINARIES

Lemma 1: For any matrices X and Y with appropriate
dimensions, the following statement holds:

XTY + Y TX < XTX + Y TY (14)

Theorem 1: For a given uncertain switched system with
faults as defined in (3), if there exits a symmetric matrix
Pα > 0 and positive scalars εx,α and γα, such that the
following inequality holds:

Ωd,α Υd,α PαBα −CTαUTα Pα
? Jd,α 0 −FTd,αUTα 0

? ? 0 BTαPα 0
? ? ? Πα 0
? ? ? ? − 1

2I

 < 0 (15)

where

Ωd,α =PαAα + UαCα +ATαPα+

CTαU
T
α + CTαCα + 2ε2xN

T
x,αNx,α,

Υd,α =PαEd,α + UαFd,α + CTαFd,α,

Jd,α =FTd,αFd,α − γ2
αI,

Πα =ATαPα + PαAα + 2ε2xN
T
x,αNx,α + CTαCα

Then a robust fault detection observer can be designed
where the gain filter L = −P−1

α Uα
Proof 1: The followings are the constraints for a general

robust fault detection observer design:
- If there existe Pα > 0, the sufficient stability condi-

tion considering the candidate Multiple Lyapunov Function
(MLF):

Vα = x̃TPαx̃+ x̂TPαx̂ (16a)

V̇α < 0 (16b)

- For a positive scalar γα, the H∞ disturbance rejection
condition (11) is formulated as:

‖rα|f=0‖2 < γα ‖d‖2 (16c)

- The boundedness properties of the uncertainties are:

χTχ = xTNT
x,α∆T

x,α∆x,αNx,αx

< ε2xTNT
x,αNx,αx (16d)

Using Lemma 1, we can write:

xTNT
x,αNx,αx =(x̃+ x̂)TNT

x,αNx,α(x̃+ x̂)

=x̃TNT
x,αNx,αx̃+ x̂TNT

x,αNx,αx̂

+ x̃TNT
x,αNx,αx̂+ x̂TNT

x,αNx,αx̃

<x̃TNT
x,αNx,αx̃+ x̂TNT

x,αNx,αx̂

+ x̃TNT
x,αNx,αx̃+ x̂TNT

x,αNx,αx̂

=2x̃TNT
x,αNx,αx̃+ 2x̂TNT

x,αNx,αx̂ (17)

Combining the equations (16a) - (16c) yields to:

V̇α + rTα rα − γ2
αd

T d < 0 (18)

Let Vα = V1,α+V2,α; V1,α = x̃TPαx̃ and V2,α = x̂TPαx̂.



Then using the properties (16g) and (17), the general form
of the MLF derivatives are:

V̇1,α =(A∗αx̃+ E∗d,αd+ E∗f,αf + χ)TPαx̃

+ x̃TPα(A∗αx̃+ E∗d,αd+ E∗f,αf + χ)

=x̃T (PαA
∗
α +A∗Tα Pα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (Ed,αd+ E∗f,αf)TPαx̃+ x̃TPαχ+ χTPαx̃

<x̃T (PαA
∗
α +A∗αPα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (E∗d,αd+ E∗f,αf)TPαx̃+ x̃TPαP
T
α x̃+ χTχ

<x̃T (PαA
∗
α +A∗αPα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (E∗d,αd+ E∗f,αf)TPαx̃+ x̃TP 2
αx̃+ ε2xx

TNT
x Nxx

<x̃T (PαA
∗
α +A∗αPα)x̃+ x̃TPα(E∗d,αd+ E∗f,αf)

+ (E∗d,αd+ E∗f,αf)TPαx̃+ x̃TP 2
αx̃

+ ε2x(2x̃TNT
x,αNx,αx̃+ 2x̂TNT

x,αNx,αx̂)

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α)x̃

+ x̃TPαE
∗
d,αd+ dTE∗Td,αPαx̃

+ x̃TPαE
∗
f,αf + fTE∗Tf,αPαx̃

+ 2ε2xx̂
TNT

x,αNx,αx̂ (19)

V̇2,α = ˙̂xTPαx̂+ x̂TPα ˙̂x

=(Aαx̂+Bαu+ LαCαx̃+ LαFd,αd

+ LαFf,αf)TPαx̂+ x̂TPα(Aαx̂+Bαu

+ LαCαx̃+ LαFd,αd+ LαFf,αf)

=x̂T (ATαPα + PαAα)x̂+ x̂TPαBαu+ uTBTαPαx̂

+ x̂TPαLαCαx̃+ x̃TCTαL
T
αPαx̂+ x̂TPαLαFd,αd

+ dTFTd,αL
T
αPαx̂+ x̂TPαLαFf,αf

+ fTFTf,αL
T
αPαx̂ (20)

In the fault free case, the inequalities (18)-(20) yield to:

V̇α|f=0 + rTα rα − γ2
αd

T d

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α)x̃

+ x̃TPαE
∗
d,αd+ dTE∗Td,αPαx̃+ 2ε2xx̂

TNT
x,αNx,αx̂

+ x̂T (ATαPα + PαAα)x̂+ x̂TPαBαu

+ uTBTαPαx̂+ x̂TPαLαCαx̃+ x̃TCTαL
T
αPαx̂

+ x̃TCTαFd,αd+ dTFTd,αCαx̃+ dTFTd,αFd,αd

+ x̂TPαLαFd,αd+ dTFTd,αL
T
αPαx̂

+ x̃TCTαCαx̃− γ2
αd

T d

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α + CTαCα)x̃

+ x̃T (PαE
∗
d,α + CTαFd,α)d+ dT (E∗Td,αPα + FTd,αCα)x̃

+ x̂T (ATαPα + PαAα + 2ε2xN
T
x,αNx,α)x̂+ x̂TPαBαu

+ uTBTαPαx̂+ x̂TPαLαCαx̃+ x̃TCTαL
T
αPαx̂

+ x̂TPαLαFd,αd+ dTFTd,αL
T
αPαx̂

+ dT (FTd,αFd,α − γ2
αI)d = Γα|f=0 < 0 (21)

Solving the set of inequalities Γα|f=0 < 0 guarantees the
solution for (18).

In the quadratic form:


x̃
d
u
x̂


T 

Ω∗d,α Υ∗d,α PαBα CTαL
T
αPα

? Jd,α 0 FTd,αL
T
αPα

? ? 0 BTαPα
? ? ? Πα



x̃
d
u
x̂

 < 0

(22)

where

Ω∗d,α = PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α + CTαCα,

Υ∗d,α = PαE
∗
d,α + CTαFd,α,

Jd,α = FTd,αFd,α − γ2
αI,

Πα = ATαPα + PαAα + 2ε2xN
T
x,αNx,α + CTαCα

This inequality holds ∀
[
x̃T dT uT x̂T

]T 6= 0 , thus:
Ω∗d,α Υ∗d,α PαBα CTαL

T
αPα

? J∗d,α 0 FTd,αL
T
αPα

? ? 0 BTαPα
? ? ? Πα

 < 0 (23)

This BMI is transformed into LMI by replacing Uα =
−PαLα, and using Schur complement formula for PTα Pα. It
follows:

Ωd,α Υd,α PαBα −CTαUTα Pα
? Jd,α 0 −FTd,αUTα 0

? ? 0 BTαPα 0
? ? ? Πα 0
? ? ? ? − 1

2I

 < 0 (24)

Ωd,α =PαAα + UαCα +ATαPα+

CTαU
T
α + CTαCα + 2ε2xN

T
x,αNx,α

Υd,α =PαEd,α + UαFd,α + CTαFd,α �

Remark 1: The x̂TPαx̂ term has been added to the MLF
in (16a), in order to ensure the feasibility of the LMI (15). In
fact, without this term, the diagonal term Πα would be equal
to 2ε2xN

T
x,αNx,α which is positive, that leads to an infeasible

LMI.

Theorem 2: For a given uncertain switched system with
faults as defined in (3), if there exits a symmetric matrix
Pα > 0 and positive scalars εx,α and βα, such that the
following inequality holds:

Ωf,α Υf,α PαBα −CTαUTα Pα
? Jf,α 0 FTf,αU

T
α 0

? ? 0 BTαPα 0
? ? ? Πα 0
? ? ? ? − 1

2I

 < 0 (25)

where

Ωf,α =PαAα + UαCα +ATαPα+

CTαU
T
α − CTαCα + 2ε2xN

T
x,αNx,α,

Υf,α =PαEf,α + UαFf,α + CTαFf,α,

Jd,α =− FTf,αFf,α + β2
αI,

Πα =ATαPα + PαAα + 2ε2xN
T
x,αNx,α + CTαCα



Then a robust fault detection observer can be designed where
the gain filter Lα = −P−1

α Uα. The residual to fault sensitivty
is at least βα.

Proof 2: The proof of this theorem is very similar to
Theorem 1, with some some terms and sign differences.

The followings are the constraints for a general robust fault
detection observer design:

- For βα > 0, the fault sensitivity condition (10) or the
H− index, is formulated as:

‖rα|d=0‖2 > βα ‖f‖2 (26)

- The stability and the boundedness properties of the
uncertainties are the same in Theorem 1.

The inequaltity to solve is:

V̇α|d=0 − rTα rα + β2
αf

T f < 0 (27)

In the disturbance free case, the inequalities (19)-(20) and
(27) yield to:

V̇α|f=0 − rTα rα + β2
αf

T f

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α)x̃

+ x̃TPαE
∗
f,αf + fTE∗Tf,αPαx̃+ 2ε2xx̂

TNT
x,αNx,αx̂

+ x̂T (ATαPα + PαAα)x̂+ x̂TPαBαu

+ uTBTαPαx̂+ x̂TPαLαCαx̃+ x̃TCTαL
T
αPαx̂

− x̃TCTαFf,αf − fTFTf,αCαx̃− fTFTf,αFf,αf
− x̂TPαLαFf,αf − fTFTf,αLTαPαx̂
− x̃TCTαCαx̃+ β2

αf
T f

<x̃T (PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α − CTαCα)x̃

+ x̃T (PαE
∗
f,α − CTαFf,α)f + fT (E∗Tf,αPα − FTf,αCα)x̃

+ x̂T (ATαPα + PαAα + 2ε2xN
T
x,αNx,α)x̂+ x̂TPαBαu

+ uTBTαPαx̂+ x̂TPαLαCαx̃+ x̃TCTαL
T
αPαx̂

− x̂TPαLαFf,αf − fTFTf,αLTαPαx̂
+ fT (−FTf,αFf,α + β2

αI)f = Γα|d=0 < 0 (28)

Solving the set of inequalities Γα|d=0 < 0 guarantees the
solution for (27). In the quadratic form:


x̃
f
u
x̂


T 

Ω∗f,α Υ∗f,α PαBα CTαL
T
αPα

? Jf,α 0 −FTf,αLTαPα
? ? 0 BTαPα
? ? ? Πα



x̃
f
u
x̂

 < 0

(29)

where

Ω∗f,α = PαA
∗
α +A∗αPα + 2P 2

α + 2ε2xN
T
x,αNx,α − CTαCα,

Υ∗f,α = PαE
∗
f,α − CTαFf,α,

Jf,α = −FTf,αFf,α + β2
αI,

Πα = ATαPα + PαAα + 2ε2xN
T
x,αNx,α + CTαCα

This inequality holds ∀
[
x̃T fT uT x̂T

]T 6= 0 , thus:
Ω∗f,α Υ∗f,α PαBα CTαL

T
αPα

? J∗f,α 0 −FTf,αLTαPα
? ? 0 BTαPα
? ? ? Πα

 < 0 (30)

This BMI is transformed into LMI by replacing Uα =
−PαLα, and using Schur complement formula for PTα Pα. It
follows:

Ωf,α Υf,α PαBα −CTαUTα Pα
? Jf,α 0 FTf,αU

T
α 0

? ? 0 BTαPα 0
? ? ? Πα 0
? ? ? ? − 1

2I

 < 0 (31)

Ωf,α =PαAα + UαCα +ATαPα+

CTαU
T
α − CTαCα + 2ε2xN

T
x,αNx,α

Υf,α =PαEf,α + UαFf,α − CTαFf,α �

Remark 2: As it has been demonstrated in [9], Pα in
the LMI for the H− observer is not required to be sign
definite, and this condition does not ensure the stability of the
observer. However, joint H−/H∞ observer is stable since it
is guaranteed by Theorem 1: Pα is the same matrix in the
LMI formulation, its sign definitiveness is thus imposed.

Theorem 3: For a given square n× n matrix Aα, if there
exits a symmetric matrix Pα > 0 and a positive scalar ξα
such that the following inequality holds:

ATαPα + PαAα − 2ξαPα < 0 (32)

Then all eigenvalues of Aα are on left plane of ξα.
Proof 3: (32) is a result of a classical Lyapunov function

for sufficient condition of stability.
The system ẋ = (Aα − ξαI)x is stable if there exist a

symmetric matrix Pα > 0 where V = xTPαx, V̇ < 0.
Thus:

(Aα − ξαI)TPα + Pα(Aα − ξαI) < 0 (33)

which is equivalent to (32).
�

IV. ROBUST FAULT DETECTION OBSERVER DESIGN

The 3-objectives of the observer are: (a) robustness against
perturbation and uncertainties, (b) sensitivity toward faults
and (c) a correct time response for fault detection. In order to
meet all these constraint, the developed design in this section
can be adopted.

Whilst the raise time constant is predefined and is inversely
proportional to ξα, the coefficients γα and βα have to be
minimized/maximized respectively. This consists in solving
a set of LMIs as an optimization problem where the criterion
to minimize is γ2

α − β2
α.



These LMIs are:
Ωd,α Υd,α PαBα −CTαUTα Pα
? Jd,α 0 −FTd,αUTα 0

? ? 0 BTαPα 0
? ? ? Πα 0
? ? ? ? − 1

2I

 < 0 (34)


Ωf,α Υf,α PαBα −CTαUTα Pα
? Jf,α 0 FTf,αU

T
α 0

? ? 0 BTαPα 0
? ? ? Πα 0
? ? ? ? − 1

2I

 < 0 (35)

PαAα +ATαPα + UαCα + CTαU
T
α − 2ξαPα < 0 (36)

Pα > 0 (37)

with

Ωd,α = PαAα + UαCα +ATαPα + CTαU
T
α + CTαCα

Ωf,α = PαAα + UαCα +ATαPα + CTαU
T
α − CTαCα

Υd,α = PαEd,α + UαFd,α + CTαFd,α

Υf,α = PαEf,α + UαFf,α − CTαFf,α
Jd,α = FTd,αFd,α − γ2

αI

Jf,α = −FTf,αFf,α + β2
αI

Πα = ATαPα + PαAα + 2ε2xN
T
x,αNx,α + CTαCα

The gain filter is Lα = −P−1
α Uα.

Using Matlab optimization tools such YALMIP or Se-
DuMi, the set of LMIs is then solved with the γ2

α − β2
α

criterion minimization.
The designed observer from (5) can be finally put in the

following form:
˙̂x = (Aα − LαCα)x̂+

[
(Bα − LαDα) Lα

] [u
y

]
r = −Cαx̂+

[
−Dα I

] [u
y

]
(38)

To improve the stability and the switching rule, we have
considered a weighting function between two successive
switched observers. it has the form:

rα = (1− p)rα + (p)rα+1 (39)

where p ∈ [0, 1].

V. EXAMPLE

Consider the problem of the FD in the lateral control of a
vehicle. Some experimental data have been taked from a real
”Renaul Scenic”, provided by the french laboratory MIPS.

The widely used bicycle-model is a good representation of
the system [15]. However, this model is non-linear since it
has 1

v and 1
v2 terms in it:
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Fig. 1. Longitudinal velocity [km/h] and switching rule

0 20 40 60 80 100 120
−10

−5

0

5
Laterel Acceleration [m/s²]

Fig. 2. Lateral acceleration [m/s2]

[
β̇(t)

ψ̈(t)

]
=

 − cr+cf
mv(t)

crlr−cf lf
mv2(t) − 1

crlr−cf lf
Iz

− crl
2
r+cf l

2
f

Izv(t)

[β(t)

ψ̇(t)

]

+

[
cf
m
crlf
Iz

]
uL(t) +

[
1
m
lw
Iz

]
Fw(t) (40)

y =
[
cr+cf
m

cf lf−crlr
m

] [β(t)

ψ̇(t)

]
+

cf
muL(t) (41)

The measured output is the lateral acceleration γL, the
entry command is the steering angle uL, the sates are the
side slip angle β and the yaw rate ψ̇, and we consider the
wind force as an unknown perturbation signal Fw.

In this approach, the system is linearized around multiple
points vα as shown in dashed curve of figure 1. The switching
signal α(t) is calculated as the integer part of the output of
the division: v(t)

δ . vα is defined as vα = δα(t).
Using a Taylor expansion around the points vα:

1

v
|v=vα =

1

vα
− 1

v2
α

(v − vα) +O(
1

v2
) (42)

1

v2
|v=vα =

1

v2
α

− 2

v3
α

(v − vα) +O(
1

v3
) (43)

Then

A = A0 +
1

vα
A1 +

1

v2
α

A2︸ ︷︷ ︸
Aα

+ (− 1

v2
A1 −

2

v3
α

A2)︸ ︷︷ ︸
Nx,α

(v − vα)︸ ︷︷ ︸
∆x,α

(44)

The fault considered in this application is an actuator
fault, that occurs on the actuator. The switched state space
representation in this case becomes :
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 ẋ = (Aα + ∆x,αNx,α)x
+Bα(u+ f) + Ed,αd

y = Cx+D(u+ f)
(45)

Applying the LMIs detailed in section IV, a robust fault
detection observer can be designed, meeting the 3-objectives
detailed before.

The switching ponderation coefficient p in (39) should
meet the following constraints:

pα|v=vα = 0 and pα|v=vα+1 = 1

Then a suitable p is calculated in this case as follow:

pα =
1
vα
− 1

v
1
vα
− 1

vα+1

= (1− vα
v

)(α+ 1),

For v ∈ [vα, vα+1] and α ∈ {1, 2, 3, .., N}
The result of such observer is given in figure 4. For a fault

that occurs between t = 23 and t = 28 s, the residuals raises
alarming a fault detection. The dashed red curves is for the
residual without the weighting, and the full lined blue curve
is with the weighting coefficient.

VI. CONCLUSION AND FURTHER WORK

The technique presented in this paper provides a frame-
work for generating a class of robust fault detection ob-
servers.

Several time- and frequency-domain specifications have
been expressed as LMI constraints on the observers state-
space matrices. These analysis are then used for multi-
objective synthesis purposes. A compromise of these objec-
tives is proposed as a criterion to minimize. It is formulated
an LMIs feasibility problem. The solution of the optimization
problem can be found by using efficient LMI solver. An
example is given to validate this approch.

In future work, this design will be applied to critical situ-
ation detection and sensor faults in lateral vehicle dynamics.
The ideas presented here can be generalized for just proper
and strictly proper systems, where the same algorithms can
be applied to the augmented system.
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