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Surface Salinity in 
the North Atlantic Subtropical Gyre 

During the STRASSE/SPURS Summer 2012 Cruise

ABSTRACT. We investigated a 100 × 100 km high-salinity region of the 
North Atlantic subtropical gyre during the Sub-Tropical Atlantic Surface 
Salinity Experiment/Salinity Processes in the Upper-ocean Regional Study 
(STRASSE/SPURS) cruise from August 21, 2012, to September 9, 2012. Results 
showed great variability in sea surface salinity (SSS; over 0.3 psu) in the mesoscale, 
over 7 cm of total evaporation, and little diapycnal mixing below 36 m depth, the 
deepest mixed layers encountered. Strong currents in the southwestern part of 
the domain, and the penetration of freshwater, suggest that advection contributed 
greatly to salinity evolution. However, it was further observed that a smaller 
cyclonic structure tucked between the high SSS band and the strongest currents 
contributed to the transport of high SSS water along a narrow front. Cross-frontal 
transport by mixing is also a possible cause of summertime reduction of SSS. The 
observed structure was also responsible for significant southward salt transport 
over more than 200 km.
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Lee, 2005, or Hosegood et al., 2013)?
The French STRASSE (Sub-Tropical 

Atlantic Surface Salinity Experiment) 
cruise investigated the spatial distri-
bution of surface salinity over 20 days 
during the summer of 2012 (August 21–
September 9) in a small area of the North 
Atlantic subtropical gyre during the 
Salinity Processes in the Upper-ocean 
Regional Study (SPURS). The goal of 
STRASSE was to answer three questions:
• Is there evidence of salinity struc-

tures resulting from lateral stirring 
by eddies?

• What is the coherence between tem-
perature and salinity surface structures, 
and are there any subsurface structures 
that mirror the surface structures?

• What are the smallest filament scales 
and what is the dissipation process 
of the smallest structures? Are they 
related to cross-frontal processes or do 
they involve air-sea fluxes?
Mid-August sea surface salinity 

(SSS) maps (Figure  1a,b) derived from 
Aquarius (Lagerloef et  al., 2012; Yueh 
et al., 2014) and Soil Moisture and Ocean 
Salinity (SMOS) (Boutin et al., 2012; Font 
et al., 2013) data show a salty band around 
and to the east of an anticyclonic struc-
ture centered near 25.5°N, 36.3°W (A1 in 
Figure 1). The SMOS product (Figure 1c) 
also suggests that the water in the core of 
A1 is rather fresh and is fed by water from 
further south. Some of the structures with 
largest SSS near 25°–26°N are found both 
in SMOS and Aquarius-derived products, 
although details differ between the two, 
with the Aquarius product presenting less 
spatial variability, but the data are proba-
bly also less noisy (Hernandez et al., 2014; 
Yueh et al., 2014). 

The possibility of encountering sur-
face salinity filaments in this region is 
also explored with semi-Lagrangian 
and Lyapunov exponent tools (d’Ovidio 
et  al., 2009), based on a salinity field 
advected in mesoscale currents derived 

by Ssalto/Duacs altimetry processing. 
Tests done on large-scale SSS maps with 
the In Situ Analysis System (ISAS) for 
August 2012 (Gaillard, 2012) show some 
features that are fairly similar to those in 
the satellite-derived maps (Figure 1c). In 
longer simulations, the very large pool of 
freshwater near 27.5°N, 36°W extended 
further south; filaments reached the 
vicinity of the STRASSE box near 26°N, 
35°W by late August and were associated 
with development of a saltier band to the 
west of it that was oriented northwest- 
southeast. The simulations were sup-
ported by a 25 km wide salty structure 
observed by MN Toucan near 26.2°N, 
35.6°W on August 15. Thus, both the 
quasi-Lagrangian tests and these satellite 
products indicate salt structures that have 
the potential for frontal development in 
the region near 26°N, 35°–36°W.

Based on this information, we selected 
a slightly north-south elongated area 
from 25.5°–26.5°N and 35°–36°W for our 
study. We deployed autonomous instru-
ments during an initial 14-hour criss-
cross transect and conducted a hydro-
graphic survey. These operations were 
followed by three three-day stations that 
tracked drifter clusters in order to inves-
tigate frontal structures near large surface 
salinity filaments.

The area near 26°N, 35.5°W received 
little rain during the surveys. For two days 
during the in situ survey period, we mea-
sured strong vertical haline stratification 
of up to 0.1 psu in the top 2 m of the water 
column caused by evaporation during 
very weak winds (Asher et  al., 2014). 
Otherwise, the winds were weak to mod-
erate, not exceeding 10 m s–1. Large daily 
insulation (except on August 27) regu-
larly induced a strong daily cycle in tem-
perature stratification and vertical mixing 
that was investigated by Sutherland et al. 
(2014). During those days, instrumented 
wave riders measured a small daily SSS 
cycle of 0.01 psu (Reverdin et al., 2013). 

INTRODUCTION
During boreal summer, there are mod-
erate to weak winds, a seasonal sur-
face salinity maximum, and large 
near-surface stratification at the center 
of the North Atlantic subtropical gyre 
(Boyer and Levitus, 2002; de Boyer-
Montégut et al., 2004). Mesoscale struc-
tures such as eddies in this region are 
expected to contribute to lateral mixing 
in the surface salinity maximum region. 
Kolodziejczyk et al. (2014a) investigated 
surface temperature and salinity and 
suggest that salinity features dominate 
surface density spatial variability during 
boreal summer, with typical amplitudes 
of the order of 0.1 psu at scales smaller 
than 200 km. There was weak correlation 
between temperature and salinity vari-
ability in this region and during this sea-
son. Kolodziejczyk et  al. (2014b) indi-
cated that summer 2012 conditions in 
the salinity maximum were influenced 
by anomalously salty subsurface waters 
that originated farther to the northeast 
at the end of the previous winter and by 
locally salty surface waters.

Horizontal stirring of a tracer by meso-
scale eddies is associated with a cascade of 
variance toward smallest horizontal scales 
(Capet et al., 2008). Thus, stirring would 
contribute to an increase over time in 
horizontal spatial variability of the tracer 
and a decrease in spatial scales during 
summer, a season characterized by shal-
low mixed layers and fairly regular atmo-
spheric forcing, as well as weak eddy activ-
ity. On the other hand, other processes 
associated with fronts, vertical mixing 
or transports, air-sea fluxes, and mixed-
layer processes could limit this transfer of 
variance through horizontal stirring. We 
need to investigate which processes are 
active. In particular, are they similar to 
what was found in areas of higher meso-
scale activity/energy (Mahadevan and 
Tandon, 2006)? Does wind play a role in 
cross-frontal transport (e.g., Thomas and 
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INSTRUMENTATION
Air-sea fluxes were estimated by com-
bining data from the different meteoro-
logical packages on R/V Thalassa with 
ship-mast winds that were corrected by 
comparing those data with nearby wind 
measurements recorded during deploy-
ments of the autonomous instrumented 
platform Ocarina (Bourras et  al., 2014). 
Comparison of humidity measurements 
from three instruments indicated abso-
lute accuracy of corrected relative humid-
ity on the order of 1%. An additional 
error—possibly of a similar magnitude—
is caused by uncertainty in the equiv-
alent height of the humidity measure-
ments due to flow distortions by the ship. 
Evaporation, latent and sensible heat, and 
wind stress were then estimated using the 
COARE2.5b package (Fairall et al., 1996).

The mesoscale coverage combined 
spatial surveys within the domain 
25.5°–26.5°N, 35°–36°W and Lagrangian 
time series. R/V Thalassa largely provided 
the spatial coverage, either by conducting 
conductivity-temperature-depth (CTD) 
casts or by towing an undulating Scanfish 
MKII (product of GMI, Denmark) vehi-
cle with Sea-Bird CTD sensors from the 
surface to 100 m, as well as by taking con-
tinuous temperature and salinity (T/S) 
and other online water measurements 

for water pumped at 3.5 m depth. Two 
shallow gliders were also deployed on 
August 21 (until early October) and on 
August 22 (for five days). Those data were 
corrected based on nearby CTD casts and 
with resulting uncertainties in salinity of 
less than 0.01 psu, except in the presence 
of large vertical temperature gradients. 
In addition, an array of GPS-tracked or 
Argos-tracked drifters drogued at 15 m 
depth was deployed to measure either just 
temperature (10 drifters) or temperature 
and salinity (15 drifters) to contribute to 
the mesoscale sampling. A few additional 
T/S profiles were collected from two ded-
icated Argo floats along with surface T/S 
measurements from an autonomous sail-
ing vessel during three days, and one 
surface T/S section was provided by the 
thermosalinograph onboard MN Toucan, 
which crossed the area on August 28.

At the beginning of each long station 
(three days duration), at least five Surface 
Velocity Program (SVP) drifters drogued 
at 15 m depth were deployed to measure 
temperature and salinity (SVPS), most 
of them along with a Surpact wave rider 
(Reverdin et al., 2013). The drifters were 
initially deployed within a 1 km radius. 
During daytime, the ship remained close 
to the drifters and deployed other plat-
forms (the Air-Sea Interaction Profiler 

[ASIP], Trefle [a drifter drogued at 50 m], 
and Ocarina). Trefle measured sea state 
and recorded current profiles at 1  m 
depth and at 1 min resolution from 3 m 
down to about 100  m depth. Positions 
of Trefle and the SVP drifters differed at 
times, in particular, during Station 3, due 
to vertical shear of horizontal currents 
associated particularly with near- inertial 
oscillations. The autonomous profiler 
ASIP (Ward et  al., 2014) was also regu-
larly deployed for durations of one to two 
days (Sutherland et  al., 2014). It mea-
sured T/S and recorded turbulence pro-
files (from shear probes) from near the 
surface to about 60 m. At night, the ship 
conducted spatial Scanfish CTD surveys 
within 10 km of the drifters. 

Drifter velocities usually showed large 
near-inertial oscillations, which were fil-
tered by a 26 h running average. 

TIME SERIES 
The in situ data were gridded and then 
interpolated to estimate an average 
time series of sea surface temperature 
(SST) and SSS in the STRASSE domain; 
we removed an estimated daily cycle 
so that the daily data represent morn-
ing conditions (Figure  2a). We esti-
mated daily wind stress and evapora-
tion (latent heat flux) from the ship 
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FIGURE 1. Mesoscale fields in the subtropical North Atlantic by mid-August. Sea surface salinity (SSS) field on August 15, 2012, from (a) Aquarius 
level-3 (V3cap) analyses (Yueh et al., 2014) and (b) 10-day averaged gridded Soil Moisture and Ocean Salinity (SMOS) data (Hernandez et al., 2014). 
Ssalto/Duacs altimetric currents are overlaid. (c) Simulated SSS on August 20 derived from 15-day advection of the In Situ Analysis System (ISAS) in the 
August 2012 SSS field (Gaillard, 2012) by the Ssalto/Duacs current product. The box of the Sub-Tropical Atlantic Surface Salinity Experiment (STRASSE) 
survey is plotted in all panels; anticyclone A1 is indicated in (a).
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meteorological data (Figure 2b). SST was 
found to have little spatial variability in 
the domain (2σ = 0.26°C), and there was 
a decrease until August 30, with indica-
tions of a slight increase afterward until 
September 6 or 7. This observation coin-
cided with the period of relatively weak 
wind stress that followed higher wind 
stress from August 23 to September 1. 
Average SSS showed little variability, just 
a slight decrease of 0.04 psu, which was 
not significant as tested by different ways 
of filling data gaps in the mesoscale cover-
age that became large after September 2. 
In comparison, the spatial variability was 
much larger (2σ = 0.15 psu). The large 
temporal variability in surface density is 
thus constrained by changes in SST, but 
the spatial standard deviation is domi-
nated by the contribution of SSS (as seen 
also in historical summer T/S data within 
this region; Kolodziejczyk et al., 2104a). 

Evaporation was moderate and cor-
related to wind stress, although the large 
evaporation increase at the end is also 
due to the arrival of drier air (Benetti 
et al., 2014; Figure 2b). Satellite imagery 
showed little precipitation in the region, 
and the ship experienced only one major 
shower with possibly 2 mm total rain-
fall, not a major contribution to the total 
freshwater budget. Interestingly, the esti-
mated freshwater flux to the atmosphere 
would lead to a 0.07 psu increase during 
the 19-day period, assuming it is distrib-
uted over 36 m, which corresponds to 
the largest mixed-layer depths (MLDs; 
Sutherland et al., 2014).

This difference between the observed 
change in SSS (Figure  2a) and the 
expected increase due to surface fresh-
water forcing is quite large. Four pro-
cesses could contribute to this difference: 
entrainment of fresher water at the base 
of the mixed layer, turbulent mixing and 
double diffusive salt transport with the 
water below, or lateral/vertical advection. 

The first contribution requires knowl-
edge of the MLD, which was estimated 
from each vertical profile based on a den-
sity criterion (referenced to 10 m) and 
excluding afternoon and early nighttime 

data. The spatial coverage is not suffi-
cient to follow the mesoscale variabil-
ity of this parameter, particularly after 
August 28. MLDs increased through the 
study period, specifically until August 28, 
except for temporary decreases after days 
of weak wind stress (Figure 2b). 

The profiles on August 22 indicated 
a large T/S stratification in the top 36 m 
layer resulting from four days of weak 
wind and high insolation. In the next six 
days, until August 28, the MLD deep-
ened, implying entrainment of colder 
and fresher deeper water. The esti-
mated decrease in SSS is of the order of 
–0.020 psu until August 28. There is no 

indication of later decrease by entrain-
ment of deeper water. The ASIP deploy-
ments (Sutherland et  al., 2014) indi-
cate turbulent fluxes on the order of 
0.1 × 10–6 psu m s–1 at 35–40  m depth, 
thus inducing a decrease on the order 
of 0.005 psu in 19 days, with a possible 
uncertainty of a factor of two. Overall, 
entrainment of deeper waters during 
mixed-layer deepening and turbulent 
mixing could lead to a 0.025 psu decrease 
over the 36 m, compared to the 0.07 psu 
increase due to evaporation and the 
observed uncertain 0.04 decrease in SSS. 
This leaves a 0.085 psu change related 
to other processes. 
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Double diffusion is a function of the 
density ratio (ratio of the stabilizing den-
sity gradient due to salinity to the desta-
bilizing density gradient due to tempera-
ture). Fingering-favorable diffusion will 
take place when there is a large decrease 
in salinity with depth compared to tem-
perature, which has been found to be 
a source of downward salt transport 
in the North Atlantic subtropical gyre 
(St. Laurent and Schmitt, 1999). Figure 3 

presents T/S diagrams from the 21 CTD 
casts collected during the mesoscale ship 
survey (i.e., August 22–25). Interestingly, 
almost half of the profiles (10) show a 
large S/T slope in the 30–50  m depth 
layer that may be prone to double diffu-
sive mixing (with density ratios reaching 
less than 2 in one part of the profile and 
occasionally to as low as 1.5). Double dif-
fusion would enhance vertical mixing of 
salt, a contribution that would be missed 

by the ASIP shear microstructure probes. 
However, according to St. Laurent and 
Schmitt (1999), double diffusion should 
not increase salinity diffusion by more 
than a factor of two, even for these pro-
files, and thus should not contribute 
greatly to the overall SSS budget during 
the survey. Therefore, there is a great need 
for advection of freshwater to contrib-
ute to the overall salinity budget (on the 
order of 0.08 psu decrease over 19 days). 

We were not able to quantify the con-
tribution of advection precisely because 
of a lack of data along the domain edges 
past late August, but there is casual evi-
dence that the horizontal displacement 
of the mesoscale structures would have 
the right magnitude to close the budget. 
In particular, freshwater penetrated the 
southwestern part of the study area in 
late August and spread further east in the 
next 10 days. There is also indication of 
a reduction of the area of high SSS in the 
central part of the domain. Such changes 
are compatible with the expected impact 
of horizontal advective eddy fluxes on SSS 
in this region (Gordon and Giulivi, 2014).

We next present the mesoscale distri-
butions and then discuss dedicated inves-
tigations near the edge of a freshwater 
pool. We were particularly wary of verti-
cal advection as a source of variability in 
SSS distribution.

SPATIAL VARIABILITY 
Mesoscale Survey
Mesoscale horizontal variability is best 
portrayed during part of the dedicated 
ship survey between August 23 and 25 
(Figure  4). This time period is not too 
long compared to the time scale of the 
evolution of the mesoscale features, 
which we thus consider as quasi- synoptic. 
Because the MLD increased during those 
days, we removed some resulting changes 
in SST and SSS based on the time series 
shown in Figure  2a (and the associated 
spatially averaged daily cycle). SSS is 
well structured with a major northwest 
to southeast high-salinity band crossing 
the domain. This band is not completely 
homogeneous, however, because there is 

FIGURE 3. Θ-S diagrams of CTD casts from the August 22–25, 2012, mesoscale survey. The black 
lines correspond to individual profiles, and the dashed lines correspond to iso-σΘ lines. In the left 
panel, color indicates depth; in the right panel, color indicates the vertical density ratio Rv (ratio of 
the contribution of salinity over the contribution of temperature to the density variation over 4 m 
with a sign change; black dots are for negative Rv).

FIGURE 4. STRASSE mesoscale SST on left panel, and SSS on right panel, August 23–25, 2012. 
Daily variations were removed as well as possible longer trends due to cooling and mixed-layer 
depth deepening. The arrows correspond to daily Surface Velocity Program drifter trajecto-
ries. Estimates of Ekman drifts have not been removed, as mixed-layer depth is rather shallow 
during this period.
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a secondary high-SSS band to the south of 
it. SST is less structured. There is a sugges-
tion of anticorrelation of SST with SSS in 
the northeast, but positive correlation in 
the southwest (i.e., the correlation is over-
all not significant). The drifter velocities 
show southeastward drifts in the south-
western part of the domain, with the 
largest velocities (15 to 20 cm s–1) in the 
region of transition between lower SSS in 
the southwest corner and the SSS maxi-
mum. Much weaker speeds were found 
northeast of it, a situation that persisted 
throughout the 19-day survey. At zero 
order, the currents are parallel to the SSS 
structures, and it is not apparent what 
the contribution of mesoscale horizontal 
advection to the SSS distribution would 
be. Based on the model by Rio (2012), 
this also holds with removal of the Ekman 
component from the drifter trajectories, 
as verified by direct comparison of drifter 
and acoustic Doppler current profiler 
(ADCP) velocities.

The numerical quasi-Lagrangian 
experiments suggested that the meso-
scale SSS pattern resulted from stirring by 
eddies in a shear region to the northeast 
of an anticyclonic eddy (A1 in Figure 1), 
with penetration of low- salinity water 
from the northeast and possibly also from 
the southwest. The isotopic composition 
of the fresher waters in the two regions 
was markedly different, which suggests 
different origins for these two fresher 
water masses. At the mesoscales of the 
Lagrangian experiments, the currents are 
also nearly aligned with the structures 
(not shown). 

Interestingly, a smaller-scale disrup-
tion in this pattern is revealed by drifter 
D1 (deployed near the high SSS band at 
26.2°N, 35.7°W on August 28 at 0 GMT), 
which drifted to the south-southwest as 
shown in Figure 4 (velocity on the order 
of 5 cm s–1). Its advection is orthogonal 
to the SSS maximum band and to the 
other drifter velocities in this band at the 
time (weak southeast direction). A sec-
ond drifter deployed in this high-SSS 
band was also entrained in this structure 
(drifter D2, deployed near 26°N, 35.5°W 

and, after drifting south-southwest, 
located at 25.8°N, 35.5°W by August 29). 
Finally, a third drifter, D3, which did not 
measure SSS, was also clearly near this 
structure and drifted south-southwest to 
about 25.6°N, 35.25°W by September 5. 
Together, these three drifters (Figure 5a) 
indicate that the structure moves from the 
north-northwest to the south-southeast 
to the east of anticyclone A1 shown in 
Figure 4, with a speed of 8.0 cm s–1. The 
trajectories of D1 and D2 are cyclonic 
loops (Figure  5a), suggesting that they 
remain trapped in the core of this struc-
ture. D2 is very likely closest to the core, 
at least before September 15. It loops 
four times at a nearly 12-day period, 
and retains its very salty initial value 

close to 37.77 psu until September 19 
at 24.6°N (and close to 37.75 psu most 
of the time until September 27 by 
24.15°N). D1 retained its high salinity 
reading (larger than 37.75 psu) until 
September 23 at 24.26°N (and at times 
until September 29 further south). D3 is 
more on the outskirts of the structure and 
seems less trapped in it.

A comparison with the other drifter 
trajectories suggests that the cyclonic 
structure has a horizontal scale smaller 
than 50 km (thus less than what can be 
resolved in current altimetric products). 
During the week after August 22, there is 
an apparent rotation of the high-velocity 
core band, which becomes oriented more 
north-south. This band could be partially 
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influenced by the cyclonic structure and 
also by changes in the direction of the 
Ekman drift. We assessed the velocity 
pattern associated with this structure by 
combining all drifter velocity data during 
the cruise in a reference frame centered 
near the middle of the salinity structure, 
assuming a constant displacement of the 
structure to the south-southeast (160° 
from the north) at 8.0 cm s–1. The spatial 
pattern is best seen in relative velocities 
after removing the displacement veloc-
ity (Figure 5b). Similar results are found 
when we remove or retain the estimated 
Ekman component. This composite 
vision, assuming stationarity of the struc-
ture, suggests that the maximum per-
turbation velocity is 25 km from its cen-
ter, which is close to the edge of the high 
SSS region. It is not symmetric with a 
faster decrease to the northwest or south-
west, and for D2 corresponds to a relative 

velocity of 12 cm s–1. This velocity is large 
enough to significantly modify the mean 
circulation in this region (top panel on 
Figure 5b), and perhaps a good part of the 
velocity core seen in Figure 4 is trapped in 
the cyclonic structure. There is also a sug-
gestion of confluence upstream of the dis-
turbance (in particular, when adding the 
short trajectories of the drifters deployed 
during long station 2). 

The Front Surveys
It took three to five days for salinity drift-
ers D1 and D2 to be transported from 
the high-SSS band to the southwest 
close to the front, as they were entrained 
in the cyclonic structure. This advec-
tion of high-salinity surface water from 
the central high-salinity region closer to 
the velocity core around anticyclone A1 
contributed to the large horizontal gra-
dients observed at submesoscales. We 

investigated this region of larger gradi-
ents during two of the four long stations. 

During long station 2, the drifter clus-
ter was placed in a high-salinity pool 
(i.e.,  37.75 psu). There was an indica-
tion of very low SSS to its west- southwest 
(37.46 psu according to the glider data) 
and high SSS further east (according to 
drifter D2 located to its southeast), sug-
gesting a confluent flow associated with 
the structure described above. One salin-
ity drifter was deployed the evening of 
August 30, and the remaining drifters 
in that cluster were deployed a day later. 
The drifter cluster traveled mostly south-
ward and remained associated with large 
salinities in the structure’s surface core 
(Figure  6) where most of the drifters, 
autonomous vehicles, and profilers were 
deployed. During the first two nights, the 
full extent of the front located to the west 
of the drifters was not fully sampled. It 
appears that this front became sharper in 
time until at least September 2. 

During the night surveys of 
September 1–2, a salinity contrast of 
0.20 psu over 5 km was observed—even 
after averaging the Scanfish CTD data 
over the whole night; note that the aver-
aging was done in a zonal frame relative 
to the instantaneous “cluster” position to 
compensate for inertial displacements. 
The largest horizontal SSS contrast found 
was of the order of 0.3 psu and extended 
over as little as 10 km. This local range of 
SSS variations is as large as that observed 
during the whole 100 km × 100 km 
mesoscale survey from August 23–25. 
Furthermore, the SSS minimum is found 
just west of the front. There are some indi-
cations of slightly smaller salinities east of 
the drifting cluster, which then increase 
10 km farther east (as also observed by 
drifter D2 with S = 37.76 psu). The average 
cross-cluster velocity at 24 m depth from 
the shipboard ADCP suggests largest 
meridional velocity (V) near the cluster 
(average of 16.5 cm s–1, with V increasing 
toward the end of the survey), with veloc-
ities weaker by 5 cm s–1 on either side (on 
average at a distance of 3–12 km). The 
mean surface T, S, and density averaged 
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over all nights of the long station indicate 
maximum temperature in the core and a 
less symmetric salinity profile (Figure 6). 
SST and SSS variations led to a ramp up 
in density (change in σ of 0.1 kg m–3 over 
less than 15 km), suggesting maximum 
geostrophic near-surface thermal wind 
near the cluster (coherent with the largest 
meridional velocities).

These horizontal T/S and density con-
trasts are also seen at other levels down to 
40 m depth (Figure 7), with no horizontal 
density gradient below 40 m and a strong 
change in horizontal T/S structure below 
that depth. Below 60 m depth, the salinity 
pattern is opposite to that observed near 
the surface. In between, there is a salin-
ity maximum at 40 m depth west of the 
front, interrupted close to the minimum 
SSS 10 km west of the front. Because of 
that and nearly constant MLD across the 
front, the vertical density gradient tends 
to be less near 40 m depth east of the front 
than west of the front, and the S/T slope 
in a T/S diagram is maximum beneath 
the maximum SSS; the few individual 
CTD T/S profiles during long stations 2 
and 3 were recorded either near the core 
of the current with some in the front and 
one in the minimum SSS patch, and their 
maximum vertical S/T slope was nearly 
as large as the largest one found during 
the survey, but the density ratio remained 
larger than 2 (not shown), thus not favor-
able for salt fingering. 

Little vertical shear in the meridional 
velocity was indicated from shipboard 

ADCP and Trefle data, which suggests 
that the average geostrophic increase 
of southward velocity toward the sur-
face (3 cm s–1 averaged between the sur-
face and 30 m relative to 40 m depth) 
was partially compensated by northward 
Ekman flow (the average wind, although 
variable during this station, was to the 
west-southwest). The inertial oscillations 
through the top 80 m of the water col-
umn exhibited only little shear. However, 
the zonal velocity component showed 
greater shear, and the average flow was 
clearly westward relative to the Trefle (or 
drifter) velocity in the top 15 m, averag-
ing 3.3 cm s–1. This results from daytime 
weak stratification in the near-surface 
layer, which suggests greater shear during 
the afternoon. The shear is partially com-
pensated by eastward velocity anomalies 
(of the order of 1 cm s–1) in the deeper 
part of the nighttime mixed layer, peak-
ing at its base near 30 m depth. Although 
mixed-layer salinity was weakly stratified 
in the high- salinity core, the weak salin-
ity stratification contributed to significant 
cross-frontal transport, with horizon-
tal daytime relative displacements of the 
top 15 m relative to the lower 15 m reach-
ing 2 km over six hours (i.e., 20% of the 
total front extent). During the night of 
September 2–3, the drifters approached 
the front (and some were within the 
front). Salinity increased to the west of 
the front, and we decided to interrupt sta-
tion 2 after three and a half days.

After recovering the drifters, a new 

deployment (long station 3) was done 
within the front 34 km to the north. 
A difference with long station 2 was 
that the surface front remained broad 
throughout the 2.5 days of survey, which 
is consistent with a deployment posi-
tion further upstream from the cyclonic 
structure, and also with the fact that the 
saltiest inflow was further to the east. 
Thus, horizontal gradients were dimin-
ished (i.e.,  0.2 psu over 15 km) and the 
total salinity contrast was also less pro-
nounced at the surface. Otherwise, the 
vertical structure was rather similar, with 
a fresh (salty) surface (deep) vein to the 
west of the front and maximum current 
slightly to the east in the salty surface 
layer (based on the drifter and ADCP 
data). Contrary to long station 2, when 
starting in the morning of September 1, 
salinity decreased by 0.02 psu per day, 
but the drifter salinity time series of 
long station 3 showed no decrease. These 
observations could, in part, result from 
vertical mixing/diffusion contribut-
ing to the drifters’ SSS measurements; 
these processes would contribute to 
an increase of surface salinity as would 
be expected during this third deploy-
ment and not a decrease as observed 
during long station 2. Also, during long 
station 3, the drifters stayed near the cen-
ter of the front throughout the three-
day survey, whereas during long sta-
tion 2, they drifted from the west of the 
front in the salty water closer to the front 
edge and near the deployment area. This 

FIGURE 7. Average September 1–2 nighttime Scanfish CTD section at the center of the drifter cluster. (left panel) Salinity. (middle panel) Temperature. 
(right panel), σΘ ; dots are a composite zonal profile of mixed-layer depth, with fewer data at the eastern end. 
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needs further analysis, but suggests a 
contribution of cross-frontal transports, 
as discussed above. 

DISCUSSION AND CONCLUSIONS 
Ssalto/Duacs altimetric current fields 
indicate an anticyclonic structure, (A1 in 
Figure 1b, centered near 25.5°N, 36.2°W 
at the beginning) close to a salinity max-
imum region. Quasi-Lagrangian tests 
showed that stirring by eddies could 
result in large spatial SSS variability. Thus, 
this region was chosen for the STRASSE 
cruise survey. What was not foreseen was 
the smaller-scale cyclone that was found 
to the east of anticyclone A1 between 
the high-velocity rim and the maximum 
salinity band. The drifts associated with 
this perturbation brought some of the 
water of the high SSS band further south-
west near higher velocities. What caused 
this perturbation and when it developed 
is not known. It contributed to a sharp-
ening of the SSS front and intensified sur-
face currents, as suggested by comparison 
of long stations 2 and 3. This front is asso-
ciated with a horizontal density gradient 
(salinity dominated) in the mixed layer, 
and thus could be the site of baroclinic 
instability and associated horizontal/ 
vertical secondary circulations, but this 
was not witnessed during our surveys, 
based on Scanfish CTD data and defor-
mation of the drifter cluster. 

Nevertheless, we found that the wind-
driven circulation within this upper layer 
could contribute to noticeable cross- 
frontal mixing, even with the prevailing 
dominant cross-frontal wind. This was 
related to daytime surface flow from high 
to low density, with deeper return flow 
from low to high density, which would 
favor mixing during the following night. 
We found no evidence of a mean or inter-
mittent penetration of salty waters into 
the pycnocline across the front during 
our surveys, possibly because we never 
encountered down-front wind situations 
(Hosegood et al., 2013). However, the two 
long stations near the front showed the 
presence of a salty layer under the fresher 
water to the west of the tongue, which, 

although separated by freshwater along 
that isopycnal from the surface water fur-
ther east, must also originate from sub-
duction of the high SSS in this region.

Interestingly, during the 19 days sur-
veyed, average SSS in the STRASSE 
mesoscale area decreased, despite a con-
tribution from evaporation/precipitation, 
which would result in a 0.07 psu increase 
in SSS during this period. The observed 
decrease was associated with MLD deep-
ening, weak vertical mixing in the upper 
thermocline, and double diffusive finger-
ing, but we are still far from closing the 
salinity budget. We have no precise esti-
mate of horizontal advection as surface 
conditions changed noticeably during the 
19-day survey, with penetration of fresh 
surface waters in the southwestern part of 
the high-salinity region. It is quite possi-
ble that this term has the right magnitude 
to largely close the budget. Unfortunately, 
uncertainties in the Aquarius and SMOS 
SSS fields are too large to provide reason-
able estimates of that term on the less-
than-100-km scales that were investigated 
during STRASSE. It was also interesting 
to observe a small cyclone carrying some 
high-salinity water more than 200 km 
farther to the south in about one month. 
Such structures are not properly resolved 
in altimetric maps. 

The contribution of vertical pro-
cesses to the evolution of SSS could not 
be assessed during the STRASSE cruise. 
As mentioned above, subduction of salty 
waters near the salinity (density) front 
could have contributed to subsurface 
transport of salty water during the period 
of slight deepening of the mixed layer, 
but that was not observed later on. We 
also found almost no relation between 
the T/S fields below 40 m depth and 
those near the surface, which suggests 
that deeper vertical mixing (as common 
in late fall/early winter) would strongly 
reorganize the pattern of SSS variability 
in this region. 
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