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Abstract—In this paper, we present a compact broadside
superdirective antenna array based on a planar parasitic su-
perdirective unit-element. The array is designed for 905MHz
frequency band, its dimensions are 200 × 54 × 24mm3(0.6λ ×
0.16λ × 0.07λ), and it presents a directivity of 9.2dBi and
radiation efficiency of 8.3%. Integrating the initial parasitic array
in a PCB of 110 × 70mm2, the array total dimensions are
200 × 110 × 70mm3(0.58λ × 0.32λ × 0.2λ), and it presents a
directivity of 9.8dBi and radiation efficiency of 64%.

Keywords—ESA, compact, end-fire, broadside, superdirectivity,
parasitic element

I. INTRODUCTION

Electrically Small Antennas (ESAs) are very attractive
for emerging multi-band wireless technologies. These an-
tennas have narrow bandwidths, low efficiencies and quasi-
omnidirectional radiation patterns. However, for some RF
pointing devices, in addiction to compactness, high directivities
are required. In such a case, superdirective ESAs, where
the array elements are put very closely together, may be an
acceptable solution.
Since the pioneer works of I. Uzkov [1] and of E. N. Gilbert
and S. P. Morgan [2], an important research was done on su-
perdirective arrays [3]-[9]. Early works were mainly about the
design of wire-antenna arrays [3]-[4]. A three-element fully-
driven monopole-based array was presented in [3]. O’Donnell
and Yaghjian showed that, in wire-type arrays, the parasitic
(shorted) array presents approximately the same directivity as
the fully-driven one [4]. Furthermore, Yaghjian et al. showed
that in this type of arrays not only superdirectivity is feasible
but also supergain [5]. An important chapter summarizing early
works on superdirective arrays is presented in [6]. Recently,
multiple planar parasitic superdirective ESAs were presented
[7]-[9]. In this paper, we propose using such arrays as unit-
elements to design compact classical 3D broadside arrays. 1

II. SIMULATIONS AND RESULTS

In [11] we presented a two-element parasitic superdirective
array with an inter-element distance of 0.1λ and total dimen-
sions of 54 × 24mm2. It presents a simulated (HFSS [12])
maximum total directivity of 7dBi and radiation efficiency
of 7.1%. The Half-Power Beamwidth (HPBW) in horizontal
and vertical planes (XOY and YOZ) are respectively 110o

and 80o and the Front to Back Ratio (FBR) is equal to 9dB.
Two elements of this array are stacked with an inter-element

1This work was done with the funding of the French National Research
Agency as part of the project "SOCRATE" and the support of the "Images et
Reseaux" cluster of Brittany region, France.

distance of 200mm(0.6λ) to design a 3D broadside array.
Fig. 1(a) shows the array geometry and dimensions in mm,
where elements 1 and 3 are excited with equal power, while
elements 2 and 4 are loaded with a capacitor of 5.1pF (refer
to [11] for more details on the loads calculation method). The
antenna simulated 3D total directivity radiation pattern given
in Fig. 1(b) reveals a directive pattern with a maximum total
directivity of 9.2dBi toward the broadside direction (Yo). The
HPBW in horizontal and vertical planes are now respectively
110◦ and 45◦, FBR is 8.6dB and Side Lobe Level (SLL) is
−13dBi. Furthermore, Fig. 1(c) shows that antenna’s broad-
side total directivity (D(θ=90o,ϕ=270o)) is maximal around the
resonance frequency of 905MHz (since the two elements are
identical we are only showing the reflection coefficient of one
of them). Finally, the antenna presents a simulated radiation
efficiency of 8.3%. Comparing with the initial end-fire array, it
can be noticed that the total directivity is increased by 2.2dB,
the horizontal HPBW is the same, while the vertical one is
divided by 1.8. As for antenna’s FBR and radiation efficiency,
they are approximately the same as the initial end-fire’s ones.
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Fig. 1. Broadside array geometry and simulated parameters. (a) Geometry and
dimensions, (b) 3D total directivity radiation pattern, and (c) input reflection
coefficient magnitude and end-fire total directivity.

The initial end-fire array was integrated in a PCB with total
dimensions of 110 × 70mm2 and optimized for operating at



866MHz frequency band. The integration in the PCB was
done via a study similar to the one presented in [14]. This
antenna presents a superdirective pattern with a maximum
total directivity of 7.2dBi. The HPBW in horizontal and
vertical planes are respectively 74◦ and 110◦, and the FBR
is 8.4dB. The antenna has a radiation efficiency of 62%.
Again, two elements of this array are stacked with an inter-
element distance of 200mm to form a 3D broadside array as
shown in Fig. 2(a). Elements 2 and 4 are excited with equal
power, while elements 1 and 3 are loaded with an inductor of
4.35nH . As it can be seen from the antenna simulated 3D total
directivity radiation pattern given in Fig. 2(b), the antenna is
superdirective with a maximum total directivity of 9.8dBi. The
HPBW in horizontal and vertical planes are respectively 76◦

and 45◦, FBR is 8.4dB and SLL is −10.6dBi. Fig. 2(c) shows
that antenna’s broadside total directivity (D(θ=90o,ϕ=90o)) is
also maximal around the resonance frequency of 866MHz.
Finally, the antenna presents a simulated radiation efficiency
of 64%. Comparing with the initial end-fire array, it can be
noticed that the total directivity is increased by 2.6dB. The
horizontal HPBW is almost the same, while the vertical one is
divided by 2.4. As for antenna’s FBR and radiation efficiency,
they are approximately the same as the initial end-fire’s ones.
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Fig. 2. Broadside array on a PCB geometry and simulated parameters. (a)
Geometry and dimensions, (b) 3D total directivity radiation pattern, and (c)
input reflection coefficient magnitude and end-fire total directivity.

III. DISTANCE EFFECT

To study the effect of the distance (d) on the array
performance, we vary this distance in the PCB integrated
array from 0.01λ to λ while monitoring antenna’s input
reflection coefficient, total directivity and radiation efficiency.
Fig. 3(a) shows the array simulated input reflection coefficient
magnitude in dB as a function of the distance. The figure

shows that for d = 0.01λ the array resonance frequency is
shifted to 969MHz. This is due to the high mutual coupling
that appears as a decrease in the array electrical length. As
the distance increases the array resonance frequency decreases
to converge to the one of the unit-elements. Fig. 3(b) shows
the array simulated maximum total directivity and radiation
efficiency as a function of the distance. The figure shows that
for very small distances, the antenna’s efficiency is maximal
and as the distance increases the efficiency decreases. This is
mainly due to the the lost of superdirectivity for very small
distances (superdirectivity is achieved by current opposition
on the two elements which reduces the antenna efficiency).
Fig. 4 shows the array simulated 2D total directivity radiation
patterns at the design frequency (866MHz) as a function of
the distance. The figure shows that for very small distances,
the array directive pattern is lost and the array has a quasi-
omnidirectional radiation pattern. This is also due to the high
coupling effect that makes the applied loads unsuitable for
having directive unit-elements. As the distance increases, the
achieved directivity increases till 0.8λ when it starts decreasing
again. Furthermore, as expected, for distances greater than
0.5λ side lobes appear in the vertical plane and as the distance
increases SLL also increases.
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Fig. 3. Broadside array on a PCB simulated parameters as a function of the
distance. (a) input reflection coefficient magnitude, and (b) maximum total
directivity and radiation efficiency.
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Fig. 4. Broadside array on a PCB simulated 2D total directivity radiation
patterns as a function of the distance. (a) Horizontal plane and (b) vertical
plane.

IV. RESULTS VALIDATION VIA MEASUREMENTS

In [13], it was shown that the measured parameters of the
end-fire array on a PCB are in a good agreement with the
simulated ones. Fig. 5(a) shows a photograph of the fabricated



prototype of the broadside array on a PCB and Fig. 5(b)
shows its measured input reflection coefficient magnitude. The
measured resonance frequency is 896MHz (a frequency shift
of 3.5%). This shift is probably due to the UFL cable effect,
the dispersion of the commercial SMD loads, and the modi-
fications in the antenna geometry for fixing the two elements
together. The higher losses in measurements can be attributed
to the losses in the UFL cable and the SMA connections.
The measured radiation efficiency in a reverberation chamber
[15] is about 60.5% (Fig. 5(c)). The antenna far-field radiation
pattern was measured in SATIMO stargate (SG 32) near-
field measurement system. The measured 3D and 2D total
directivity radiation patterns at the resonance frequency are
given in Fig. 5(d) and Fig. 6. The measured pattern in the main-
beam direction is in acceptable agreement with the simulated
one. A considerable divergence is noticed in the backward
direction. This divergence may be due to the feeding system,
and the measuring system and environment. The measured
directivity is about 8.6dBi and the HPBW in horizontal and
vertical planes are respectively 56◦ and 84◦.
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Fig. 5. Broadside array on a PCB prototype and measured parameters. (a)
Fabricated prototype, (b) input reflection coefficient magnitude, (c) efficiency
and (d) 3D total directivity radiation pattern.

V. CONCLUSION

In this paper, we presented a compact broadside array based
on a planar parasitic superdirective unit-element. The array
dimensions were 0.6λ×0.16λ×0.07λ, and it presented a total
directivity of 9.2dBi. Integrating the unit-elements in a PCB of
110×70mm2, the array dimensions were 0.58λ×0.32λ×0.2λ,
and it presented a total directivity of 9.8dBi and radiation
efficiency of 64%. By using a 2 × 2 superdirective elements,
a broadside array of 0.58λ × 0.58λ × 0.2λ presenting a total
directivity of 11.4dBi and radiation efficiency of 72.3% can
be achieved.
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Fig. 6. Broadside array on a PCB measure 2D total directivity radiation
patterns. (a) Horizontal plane and (b) vertical plane.
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