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Dielectric properties
Spark Plasma Sintering (SPS) is an efficient technique to produce highly densified ferroelectric dielectric
composites with good control of the interfaces and microstructures. We present an effective approach
based on precursor preparation to produce BaTiO3/MgO with adjustable hardness for the inclusions.
The influence of their rigidity on the sintering composites was investigated and the possibility of
being able to tailor the permittivity simply by changing the morphology of the MgO inclusions was
demonstrated.
During the last decades considerable efforts have been made
regarding the synthesis and production of structural and functional
nanocomposites. These materials have been widely explored for
many technological applications because they exhibit enhanced
mechanical, magnetic, optical, or catalytic properties which cannot
be achieved with single materials [1]. In the field of electronics and
telecommunications, many research programs have focused on
nanocomposites composed of Ba1�xSrxTiO3 (BST) matrix with
x = 0 to 1 in which metallic [2,3], polymer [4,5], and ceramic inclu
sions were added [6,7]. In these works, three issues systematically
recur: (i) avoiding interdiffusion and controlling the interfaces;
(ii) optimizing inclusion morphology and the sintering behavior
of two different materials; (iii) managing the synergy of the final
properties.

In these papers focus is given on the preparation of composites
mixing ferroelectric phase (BST) and low losses dielectric material
(MgO, MgAl2O4, or Mg2TiO4) [6,8,9] leading to multi materials
with an adjustable permittivity value and tunability [10,11]. For
these ceramic/ceramic composites (BST/ceramic), many interdiffu
sion problems were encountered when conventional solid state
methods were used leading to modifications of the structural prop
erties and a shift of the Curie temperature [6,11 14]. To prevent
these issues, the preparation step is decisive and Spark Plasma
Sintering (SPS) thanks to the fast kinetics it allows, is efficient in
preventing chemical reaction between the two phases and yields
highly densified composites at lower temperatures and much
shorter holding times compared to conventional sintering [15,16].

As seen in previous works, the pressure used during SPS is a
determining parameter which can lead in some cases to a
microstructure anisotropy due to inclusion deformation perpen
dicularly to the stress applied [17]. Some authors have already
published on the in situ texturation of lamellar or acicular com
pounds via this uniaxial pressure leading to oriented or anisotropic
microstructures [18,19] but to the best of our knowledge there are
no examples of controlling inclusion shape in composites by SPS.
Here, we propose to study the impact of MgO inclusion morphol
ogy on the sintering of composites and on their properties. Two
types of dielectric inclusions are mixed with the BaTiO3 (BT)
matrix: (i) powder from atomization with nanosized grains largely
agglomerated in pseudospherical granules of a few tens of
microns; (ii) same powder from atomization thermally treated at
high temperature in order to increase the mechanical resistance
of the granules. Accurate control of both precursor preparation
and sintering processes provides the advantage of the pressure



applied during SPS to deform the inclusions (or not) and thus to
tune the dielectric properties of the composites.

In the present study, microstructural and dielectric characteris
tics are compared for pure BaTiO3 and three dimensional random
composites made of BaTiO3 and a small amount of MgO (4 wt%).
BT particles (mean diameter close to 300 nm) were purchased from
(Sakai Chemical Industry Co., Japan). MgO powders (97%) were
supplied by Merck (Darmstadt, Germany) and are made of spheroi
dal spray dried soft granules (�30 lm) (Fig. 1A). Each of them is
composed of nanometric elementary crystallites. MgO granules
(4 wt%) were dispersed in a BT matrix, and a mixing step was per
formed by hand in an agate mortar as described in [17] (BT/MgO).
MgO granules were also annealed individually in an inductive
furnace at 1600 �C for 2 h (Fig. 1B) and blended with BT powders
as well (BT/MgO1600). The strategy was to obtain a set of ‘‘rigid”
individual MgO granules. The change in morphology compared to
non annealed granules lies mainly in the growth of the elementary
particles (from 100 nm to 2 lm) associated with the shrinkage of
the aggregates (�20 lm), clearly observed on FESEM micrographs
(Field Emission SEM, JEOL 6700F). To investigate the initial internal
microstructure (i.e. BT + MgO powders), 3D imaging by syn
chrotron X ray Computed Micro Tomography (XCMT) were used.
The European Synchrotron Radiation Facility (ESRF, Grenoble,
France) provides beamlines dedicated to 3D imaging [20,21].
Experiments were performed at the ID 19 beamline, in ‘‘Pink
Beam” conditions [22,23]. The energy was equal to 37 keV and
the pixel size was set to 0.28 lm. The field of view was
573 � 573 lm. In order to investigate, in 3D, the initial microstruc
ture, mixed powders were consolidated by PMMA [17].
3D imaging of non annealed MgO reveals the complex porous
structure of the granules (Fig. 1C). Pores, at least the largest (pore
size > 500 nm), appear to be mainly located on the shell of the
Fig. 1. MgO granules observed by SEM and XCMT. (a) SEM image of MgO granules sor
Multiple cross-section images of the initial microstructure of BT–MgO composite obtaine
granules annealed at 1600 �C. Particles were loaded into glass capillary tubes.
granule, and their volume fraction can range from 7% to 15%,
depending on the granules. A smaller kind of porosity (<500 nm)
can be observed as well, reflecting local variations of the dark gray
levels inside the granules. MgO annealed at 1600 �C was not
imaged within the BT matrix, but simply loaded onto glass capil
lary tubes (Fig. 1D). The global porosity was also calculated, with
an average value of 19%. Annealed MgO granules appear to be
highly densified right to the core of the granule. Compared to ini
tial powders nano porosities tended to disappear to the benefit of
well defined micro porosities.

All samples were sintered using a Dr. Sinter 2080 SPS apparatus
(SPS Syntex Inc., Japan) of the Plateforme Nationale de Frittage Flash
located at the Université de Toulouse III Paul Sabatier. The mixed
BT and MgO powders were loaded onto an 8 mm inner diameter
graphite die. The temperature was automatically raised to 600 �C
over a period of 3 min and then, monitored and regulated by an
optical pyrometer. A heating rate (100 �C/min) was used to reach
the final temperature (1100 �C). Uniaxial pressure (50 MPa) was
applied during the heating. Pure BT ceramic was sintered in the
same conditions. After sintering, all the ceramics were reoxidized
during post treatment performed in air at 800 �C for 10 h in order
to reduce the concentration of oxygen vacancies originating from
the low oxygen partial pressure applied during the SPS process,
and to remove carbon contamination and release residual strain.

Microstructure and morphology analysis of the composites
were recorded using the FESEM on the polished surface (Fig. 2).
First of all, ceramics present very high density and only a few pores
are visible on these pictures. Experimental densities measured by
Archimedes’ method on BT and BT/MgO ceramics were similar
and higher than 99%. For BT/MgO1600, the density was lower
(95%) due to residual porosity observed in MgO inclusions
(Fig. 2D). The disk shaped inclusions revealed as MgO by energy
ted at �30 lm diameter. (b) SEM image of MgO granules annealed at 1600 �C. (c)
d by XCMT. MgO are in dark gray levels and the BT matrix is in light gray. (d) MgO





Fig. 4. Dielectric permittivity vs temperature of BT (blue), BT/MgO (green) and
BT/MgO1600 (red) composites sintered by SPS. All data were obtained at 10 kHz.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
[27,29]. This results from the shrinkage incompatibilities between
the matrix and the inclusions during densification and leads to a
decrease of densification rates [30]. Nevertheless, in our case,
despite their rigidity, the inclusions do not seem to impact the sin
tering kinetics, possibly due to the small quantity of MgO (4 wt%)
and/or the small size of BaTiO3 grains, which allows rearrangement
and the densification near the inclusions. Even with hard spheres
of 15 lm, no pores were observed in the matrix (Fig. 2B).

On the other hand, for the BT/MgO composite, the onset of den
sification occurred at lower temperatures compared to pure BT
ceramic (�100 �C for 4 wt% of MgO). This tendency is confirmed
when the MgO content is increased (up to 30 wt%) as shown in
the inset Fig. 3. The more MgO is added into the composite, the ear
lier the densification occurs. Thus, the deformation of the inclu
sions accelerates the sintering rates in the early stages of the SPS
process. As previously mentioned, such behavior is unusual for
the sintering of composites with inclusions (usually rigid and
chemically inert). Here, the inclusions can be considered inert
because no interdiffusion or reaction occurs between the two
phases as pointed out above (Fig. 2). Furthermore, no interaction
was observed for the ‘‘hard” inclusions; MgO does not play the role
of a sintering aid. The start of shrinkage at lower temperatures is
due to the grain rearrangement by sliding and/or shearing at the
matrix/inclusion interfaces. This reorganization is favored by the
uniaxial pressure used during SPS process, which leads to the col
lapse and the orientation of inclusions perpendicularly to the load
applied and to the microstructural anisotropy. Moreover, this
deformation favors the sintering of inclusions. This is supported
by the MgO grain growth observed at a sintering temperature as
low as 1100 �C. These results can be compared to the work of
Yoon et al. who prepared BaTiO3 Cu composites by SPS [3]. In their
work, the copper ductility at low temperature (�400 �C) associated
to the applied pressure led to the acceleration of sintering during
matrix rearrangement. They also observed the deformation of Cu
particles in the BT phase perpendicularly to the pressure.

Dielectric measurements were performed using a Wayne Kerr
component analyzer 6425 in the temperature and frequency
ranges 200 500 K and 100 Hz 100 kHz respectively. Gold elec
trodes were deposited on two parallel faces of the ceramic. The real
part of the permittivity derived from the capacitance was
measured directly. The Curie temperature occurring at 398 K for
pure BT did not shift when MgO was added to the ferroelectric
matrix (whatever the inclusion shape) confirming both the absence
of interdiffusion and the quality of the interfaces between the two
components. As expected, the dielectric phase lowered the permit
tivity values compared to BT (Fig. 4). A reliable comparison of the
permittivity values can be made as all the ceramics have compara
ble densities (>97%). It can be noted that the geometry of the inclu
sions has a strong impact not only on the effective permittivity of
the composite but also on the overall dielectric behavior at the
different phase transitions. The dielectric response of the compos
ite with flattened inclusions exhibits a broad permittivity peak in
the vicinity of the cubic tetragonal transition. The permittivity
was lowered compared to BT free of dielectric inclusions over the
entire temperature range investigated. Such a decrease associated
with the broadening of the dielectric anomaly leads to a significant
thermal stabilization of permittivity. When the ferroelectric matrix
contained spheroidal inclusions, a more classic dielectric behavior
was restored with, in particular, permittivity values at the
orthorhombic tetragonal transition much lower than at TC. The
dielectric anomaly was sharp similar to that of BT. The most
striking result lies in the possibility to tune the overall dielectric
behavior of BT/MgO composites simply by changing the microge
ometry of the inclusions. Deeper investigations are required to
understand the link between the inclusion deformation and the
resulting matrix properties.
We demonstrated that SPS sintering is a suitable technique for
obtaining fully dense BT/MgO composites whatever the mechani
cal properties of the dielectric inclusions. A reliable comparison
of composites with similar density, quality of interfaces and phase
content was thus possible. The adjustable parameter here was the
morphology of the inclusions, which can be controlled either by
prior annealing to obtain hard inclusions or by sintering pressure
to deform the initially soft MgO inclusions. The first noticeable
effect is the densification gain from the deformation of the soft
inclusions during the early stages of sintering. The second note
worthy result is the possibility to adjust the permittivity simply
by changing the morphology of the MgO inclusions. We have
demonstrated here that controlling the mechanical properties
and geometry of the inclusions within a functional matrix opens
new insights for the control of both sintering and the resulting
properties.
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