
HAL Id: hal-01233563
https://hal.science/hal-01233563

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative project scheduling with controllable
processing times: a game theory framework

Cyril Briand, Jean-Charles Billaut

To cite this version:
Cyril Briand, Jean-Charles Billaut. Cooperative project scheduling with controllable processing times:
a game theory framework. 16th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep 2011, Toulouse, France. 7p., �10.1109/ETFA.2011.6059081�. �hal-01233563�

https://hal.science/hal-01233563
https://hal.archives-ouvertes.fr


Cooperative project scheduling with controllable processing times: a game
theory framework

Cyril Briand 1,2 and Jean-Charles Billaut1,2,3
1 LAAS-CNRS ; Universit́e de Toulouse ; 7, avenue du Colonel Roche,

F-31077 Toulouse Cedex 4, France.
2 Universit́e de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ;

F-31077 Toulouse Cedex 4, France
3 Universite Francois Rabelais Tours ; Laboratoire d’Informatique ;

64 avenue Jean Portalis, F-37200 Tours, France.
{cyril.briand, jean-charles.billaut}@laas.fr

Abstract

This paper considers a project-scheduling environment
assuming that the activities of the project network are dis-
tributed among a set of actors (or agents). Activity dura-
tions are modeled as time intervals and are assumed con-
trollable, meaning that every actor is allowed to shorten
the duration of some activities by adding extra-money. For
performing the project, actors have to collaborate with
each other intending to satisfy the desired project dura-
tion, defined by the project customer as a time interval.
In this work, every actor’s payoff corresponds to a fixed
percentage of the total customer’s payment, which itself
depends on the ability of the actors to achieve the project
in time, provided daily penalty costs are applied in case
of tardiness. This problem can be modeled as a game,
where players (actors) have to select a strategy (a dura-
tion vector for their activities) intending to maximize their
profit. In this paper, the focus is put on the modeling of
this project game, and on the connections between vari-
ous decision problems, arising either in decision or game
theory. We also study the particular case where each ac-
tivity is assigned to one specific agent.

1. Introduction

Many large-size projects are cooperative in the sense
that they involve a set of actors (or organizations), each
one being in charge of the execution of a part of a project.
Actors have their own decisional autonomy, their specific
competencies and have to collaborate together for supply-
ing a product or a service to a customer. In such a con-
text, project management becomes challenging since each
actor is willing to collaborate with the others, but his out-
come not only depends on his own decision strategies, but
also on those of his partners [12].

The customer’s payment is usually due by the end of

the project (even if payments on account can be planned
at various phases of the project execution). Its amount
generally depends on the ability of the whole set of ac-
tors to fulfill a set of quality and efficiency requirements.
In this paper, we assume that the customer’s payment is
shared among the actors accordingly to collective agree-
ment that have been contracted during the design phase of
the actors’ network [6].

Such a framework appears in many realistic business
context such that building trade [18], supply chain net-
works [10], or automotive industries [19]. Sometimes, a
consortium of actors is collectively built up for facilitat-
ing the project operations, the customer relationship, as
well as the actors’ cost/profit sharing. Actually, actor’s
payoffs can depend on several agent’s parameters, more
or less objective, such as the place of each actor inside the
project network, the agent’s financial effort put into exe-
cuting the project, the agent’s economic or politic weight.
The situation can be also very different depending on the
consortium power. In aeronautics for instance, the con-
sortium often plays both a financial, politic and economic
role. It has a great decision power and can impose many
constraints on the way actors have to work and interact to-
gether. In other context, such as the one of supply chain
management, the decisional autonomy of actors can be
much more strong, and the consortium just aims at putting
some directions to promote efficient interaction rules and
eventually favor fair cooperative behaviors.

For defining delivery and payment modalities, cus-
tomer and actors negotiate together, possibly via the con-
sortium. Here again the economic and politic power of
each entities plays a major role in the decision-making
process. Usually a fixed price is defined for the product
or the service, together with penalties and/or rewards [11]
that mostly depend on the ability of the actors to deliver
the service or the product, in compliance with the initial
requirements, at the right moment and the right place.

The framework depicted here can also be viewed as



a particular project game where players, corresponding
to actors, play together for performing a project. Their
strategies correspond to the various possibilities they have
for carrying out their activities. Their outcome depends
on their collective ability to fulfill the customer’s require-
ments. They play simultaneously and, given their strategy
choices, the customer’s payment can be determined in a
deterministic way, as well as the agent’s payoff. This link
with game theory will be further expanded in the paper.

In the scope of this paper, the project is composed by
a set of interdependent activities submitted to precedence
relations and distributed among actors. Actors can control
the activities durations: they are allowed to reduce the ac-
tivity processing time by devoting additional resources to
the activity, typically at a higher cost. In this setting, the
actor’s strategy is defined by the duration vector the actor
chooses for his activities. Knowing every actor strategy, a
simple longest path algorithm gives the completion times
of the project, from which the customer’s payment can be
deduced. We assume that the agent’s payoff is a fixed por-
tion of this total payment.

The rest of the paper is organized as follows: Section 2
gives some insights into works connected to the scope of
this paper. Sections 3 and 4 define formally the problem
and propose a graphical model. Section 5 discusses some
interesting decision or optimization problems. Section 6
analyzes the links with game theory and attached concepts
thoroughly. The last section is devoted to the special case,
where each activity is assigned to a specific agent. In that
case, we show how stable actor’s strategies can be charac-
terized.

2. Literature review

This section aims at stressing the various connections
of this work with some other existing research areas. First,
in the field of project scheduling, many textbooks on
production/operations management present the so-called
crashing algorithm which is used in the Critical Path
Method. Crashing refers to shortening the duration of an
activity by devoting additional resources to the activity,
typically at a higher cost. For each activity that can be
crashed, a time/cost tradeoff function is specified , which
is usually linear or piecewise linear. The overall objec-
tive is to determine the time/cost trade-off curve which
specifies, for any possible total project duration, the min-
imum incurred crashing cost. From an algorithmic point
of view, given a project duration upper-bound, the prob-
lem of determining the activity durations that minimize
the crashing cost is equivalent to a minimum cost flow
problem [16, 21], which can be solved in polynomial time.
The literature is rich of papers that consider equivalent
problem assuming more complex activity time/cost func-
tions,e.g., convex, discrete, that make the problem harder
to solve [14]. As far as we know, multi-actor context has
never been considered in any of these papers (the crash-
ing costs being always supported by a unique decision-

maker).

An important branch of the industrial engineering lit-
erature focuses on Supply-Chain Management (SCM),
which precisely studies planning or scheduling problems
arising up in organizations composed of several decision
makers, members of the same supply-chain network, each
with his own decisional autonomy, all being involved in a
common production process. In this kind of organization,
decision-maker can have different role, such as supplier,
customer or subcontractor. The literature is rich of papers
that propose approaches for enhancing the communica-
tion, the coordination and the cooperation among actors.
In such works, a crucial element is the confidential as-
pect of the data handled by each actor: only a restricted
set of information is shared amongst them. This set often
contains the minimum amount of information needed to
coordinate the actors. If we consider the case of a cus-
tomer/supplier relationship, a commonly used coordina-
tion mode is the one in which actors exchange proposi-
tions and counter-propositions related to the completion
times of their tasks, this negotiation being conducted as
long as a compromise satisfying every agent is not found.
In order to avoid frequent modifications of the planned de-
cisions, agents can exchange intervals (instead of instant
times), these intervals becoming more and more precise
as the decision time is getting close to the execution of the
tasks [10, 22, 5].

Other seminal works in the field of production schedul-
ing focus on multi-agent scheduling paying attention in
the multi-objective nature of the problem (brought by the
agent concept). Most of these works propose central-
ized mathematical solving approach or exact algorithm
for finding solutions that optimize the agent’s objective.
This kind of multi-agent scheduling problematic was in-
troduced in the works of Agnetis, Mirchandani, Paccia-
relli and Pacifici [1, 2] in which the authors consider a job
shop problem where two agents, each being in charge of a
set of jobs, are competing for the use of resources (the ma-
chines) while both trying to optimize their own objective
function (the difference between both objective functions
beingε-constrained). Several articles [3, 7, 8] focus on the
case of multi-agent single machine problems with two or
more competing agents and provide exact methods along
some results on complexity, considering various criteria
such as the makespan, the algebraic lateness or the average
number of tardy tasks. Some other works are concerned
about multi-agent scheduling in the field of the computing
grid. In this case, each agent is associated to a comput-
ing cluster and negotiate with the others on which tasks
it should undertake, these tasks possibly being affected to
other agents (see [20] for a recent approach).

In scheduling, the concept of agent is also at the very
heart of distributed solving methods, especially those
based on the Multi-Agent Systems paradigm (MAS) [13].
In the field of job shop scheduling, heuristic approaches,
based on MASs, have been put forward [23] in order to
generate feasible schedules: the agents, with associated



tasks, negotiate their processing intervals with resources
agents, a supervisor agent taking care of potential con-
flicts. Moreover, we can find MAS based approaches in
multi-project scheduling [9, 15] where agents, associated
to the projects, share the resources and are guided by a
manager agent. For a more thorough description of exist-
ing MAS approaches in planing and scheduling of manu-
facturing systems, the reader should refer to the survey by
Shen, Wang and Hao [24].

In the field of cooperative game theory, some authors
consider the project scheduling environment for exhibit
some particular games. Most of them take an interest
in the problem of sharing rewards and penalties between
agents, assuming that activities can be disrupted or can
last shorter than expected [11]. In multi-agent scheduling,
several authors also consider the connection between the
optimization of one global objective function, also called
social objective, and game theory. Important concepts,
linked to the non cooperative game theory, has been de-
fined such as theprice of anarchy[17] (ratio between
the worst Nash equilibrium and the optimal value of the
global objective function) or theprice of stability[4] (ratio
between the best Nash equilibrium and the optimal value
of the global objective function).

In this paper, the focus is on multi-agent project-
scheduling, which can be viewed as a special field of
multi-agent scheduling, where resource constraints are
not considered explicitly. Like in CPM method, the as-
sumption that activity processing times are controllable
is made, so that a time/cost tradeoff has to be achieved.
The project-customer payment depends on the time per-
formance of the agents since daily penalties are applied in
case of lateness. The problem is to characterize the strate-
gies that are of interest for the agents.

From the best of our knowledge, it is the first time such
a problem is studied in these terms. This paper proposes
a formal model and stresses some decision problems con-
nected both with decision and game theories.

3. Problem statement

The project is composed by a setT = {0, . . . , n +
1} of activities (or tasks), that are shared among a set
A = {A0, . . . , Am+1} of agents. Classically, activities
are linked together by a setP of precedence constraints:
(i, j) ∈ P means thati precedesj. The set of activities
assigned to the activity-agentAu is denotedTu. By con-
vention,0 andn + 1 are dummy activities representing
the beginning and the end of the project, respectively. We
assume that they are assigned to two fictitious agentsA0

andAm+1, such thatT0 = {0} andTm+1 = {n+ 1}. A0

andAm+1 can be viewed as the project launcher and the
project customer, respectively. In the sequel of this paper,
we consider that the project-customer agent defines a de-
livery interval for the project, further refers to as[D,D].
In a similar way, the project-launcher agent could choose
a release date interval[R,R] for the project. In this work,

it is assumed w.l.o.g. thatR = R = 0.
To each activityi is associated a minimum and a max-

imum processing time denoted byp
i

andpi, respectively.
Any agentAu has to choose, for all his activitiesi ∈ Tu,
a durationpi belonging to[p

i
, pi]. In this work,pi is seen

as a continuous variable. It is assumed that compressing
the duration of activityi by one unit generates an extra-
costei. Therefore, any agentAu has to pay a fixed cost
ku =

∑
i∈Tu

κi corresponding to the execution of his ac-
tivities at their maximum duration, plus an extra compres-
sion cost equal to

∑
i∈Tu

(pi−pi)×ei. We further refer to
asγu(Pu) the total cost paid byAu for performing her ac-
tivities, Pu being the processing time vector correspond-
ing to the activitiesi ∈ Tu, i.e.:

γu(Pu) = ku +
∑

i∈Tu

(pi − pi)× ei.

The project customer is assumed to pay a given amount
at the project delivery, from which daily penalties are de-
ducted in case of tardiness. Then, if project ends at timeD
and if [D,D] is the initial contracted delivery interval, the
customer paysK −max(0, D −D)× π, K andπ being
the initial arranged payment and the penalty cost per time
unit, respectively. LetΠ(D) refers to this quantity.

A last assumption concerns the agents’ payoff. We as-
sume that the agents have agreed an arrangement for shar-
ing the customer’s payment (at a more strategic decision
level), such that the payoff of AgentAu is a fixed propor-
tionwu of the total payment. Therefore, the profit of agent
Au can be expressed as:

Zu(Pu, D) = wu ×Π(D)− γu(Pu).

In this paper, it is assumed that the agents are selfish
and want to maximize their self profit.

4. Problem modeling

Such a project environment can be modeled by a col-
ored graphG = (V,A,C, φ, l) in which:

- V = T is the set of vertices and corresponds to the
set of activities (including the two dummy activities);

- A = P ∪ {(n + 1, 0)} is the set of arcs that de-
picts the precedence constraints, the supplementary
arc(n+1, 0) being added for convenience reason, as
discussed below;

- C = {0, . . . ,m + 1} is the set of colors, each one
being specific to an agent;

- φ is an application associating each vertex (activity)
i ∈ V with a color (agent)c ∈ C, such thatφ(i) = u
if and only if i ∈ Tu;

- l is an application associating each arc(i, j) ∈ A
with a lengthpi ∈ [p

i
, pi].



Figure 1. A multi-agent project scheduling
example

The graph of Figure 1 depicts an example with five
agents: black agents correspond to fictitious agentsA0

andA4, activity agents areA1, A2 andA3 whose asso-
ciated colors are white, light gray and dark gray, respec-
tively. There are seven activities that are allocated to the
agents such thatT0 = {0}, T1 = {1}, T2 = {2, 3},
T3 = {4, 5} andT4 = {6}.

As indicated by the legend of the figure, the duration
interval of each taski, as well as its fixed cost and crash-
ing cost(ki, ei), are given at the top and the bottom of
each vertex, respectively. In the case of activityn + 1,
allocated to agentAm+1, things are a bit different: the
duration interval is[−D,−D] since the length of the arc
(n + 1, 0) has to be negative for avoiding positive length
circuits inG. In the example, Activity 6 belonging toA4

has a processing interval equals to [-22 -18]. Moreover,
the pair(ki, ei) at the bottom of the activityn+1 is set to
(K,π) (the fixed price and the daily penalty cost, respec-
tively). In the example,K = 270 andπ = 45.

As said before, each activity agent has to choose a
strategy,i.e., a duration vectorPu for his tasks, provided
that each vector componentpi of Pu belongs to[p

i
, pi].

Graphically, the durationpi of every activity is reported on
the arcs outgoing fromi and are referred to as the length of
the arc. It is not hard to see that, once these duration vec-
tors set, a simply longest-path algorithm allows to know
the smallest project completion timeD. Consequently the
total crashing cost and the penalty cost can be calculated,
as well as the agents’ payoffwu × Π(D). Note that for
matter of clarity, the length of the arc(n + 1, 0) is set to
−D (so that the longest circuit inG has a length equals to
0).

We define the agents’ strategyS as the concatenation of
the individual strategiesPu, i.e., S = (P1, . . . , Pm). The
strategyS induces the project completion time denoted as
D(S). A strategyS has to be bothtime-consistentand
cost-consistent.

A time-consistentstrategyS is such that the duration
vectors chosen by the activity agents involve a total project
durationD(S) that belongs to the interval[D,D]. Let
STC be the set of time-consistent strategies.

To any strategyS, we can associate a profit vector
Z(S) = (Z1(P1, D(S)), . . . , Zm(Pm, D(S)). A strategy
S is cost-consistentif and only if the total compression
costγu(Pu) paid by every activity agentAu does not ex-
ceed its payoffwu × Π(D(S)), that is if every agent’s
profit vectorZu(Pu, D(S)) is positive. LetSCC be the
set of cost-consistent strategies.

For illustration, considering the problem of Figure 1,
let us discuss the strategyS = (9, 7, 4, 9, 13), which
leads to the project completionD(S) = 22. This strat-
egy can be modeled graphically as displayed in Figure 2
(every arc is labeled with the duration of its source activ-
ity). We assume that the revenue is equally shared among
agents (i.e., wu = 1

3
). This strategy is time consistent

(since22 ∈ [18, 22]) and leads to the total revenue90
(the agent’s payoff equals30), but it is not cost-consistent
sinceZ(S) = (−5,−10,−10).

Figure 2. A cost-inconsistent agents’ strat-
egy

We further referS = STC ∩ SCC to as the set of valid
strategies,i.e., the strategies being both time-consistent
and cost-consistent. We also denote byS(D) the set of
strategiesS ∈ S such thatD(S) = D.

5. Some relevant decision problems

Among the relevant decision problems that can arise
in such a multi-agent scheduling context, the first trivial
one is to know if there exist any valid strategy? In other
words, isS empty? Actually, answering this question is
easy since we only need to solve the following linear pro-
gram. The variables areci, pi, andΠ the completion time
of activity i, its duration and the customer’s payment, re-
spectively.

min cn+1

s.t
cj ≥ ci + pj , ∀(i, j) ∈ P (1)

wu ×Π− γu(Pu) ≥ 0, ∀Au ∈ A (2)

Π ≤ K − (cn+1 −D)× π (3)

ci ≥ 0, cn+1 ≤ D, pi ≥ p
i
,Π ≤ K



This program aims at minimizingD = cn+1. Con-
straint (1) ensures that precedence constraints are satis-
fied. Constraint (2) imposes that any solution has to be
cost-consistent, whereΠ corresponds to the customer’s
payment. Constraint (3) establishes the relation between
the variablescn+1 andΠ.

Clearly,S is empty if and only if the previous program
is infeasible. In the other case, we can get the best project
durationDmin that can be achieved by the agents. Let
us highlight that this solution is also the one that ensures
the maximum value of the overall revenueΠ (which has
to be distinguished from the agent’s profit). If we move
back to our example assuming that the revenue is equally
shared among agents (i.e., wu = 1

3
), the optimum value

is Dmin = 18, which is obtained with the strategyS =
(6, 6, 4, 8, 12) depicted in Figure 3, withΠ = 270 and
Z(S) = (25, 0, 40).

Figure 3. A valid strategy minimizing D

Now we can also solve the next linear program that
aims at finding the less costing strategy for the whole set
of agents (it is actually a compression cost problem that
can be solved in polynomial time [16]). Constraints (1)-
(3) are unchanged. Then, assuming the program feasi-
bility (or equivalently the non-emptiness ofS), we also
get the maximum valueDmax that is reachable (hence the
minimum value ofΠ). Indeed, since increasingD implies
the reduction of the compression cost, there cannot exist
any other valid strategy having aD greater thanDmax.
For our example withwu = 1

3
, a less costing strategy

is S = (8, 7, 4, 9, 13) displayed in Figure 4, which gives
Dmax = 21, Π = 225 andZ(S) = (0, 5, 5).

min
∑

Au∈A
(γu(Pu))

s.t
ci − cj − pi ≥ 0, ∀(j, i) ∈ P (1)

wu ×Π− γu(Pu) ≥ 0, ∀Au ∈ A (2)

Π ≤ K − (cn+1 −D)× π (3)

ci ≥ 0, cn+1 ≤ D,P ≥ P ,Π ≤ K

Clearly, if S is not empty thenD ≤ Dmin ≤ Dmax ≤
D, which gives an interesting knowledge of the best and
worst temporal performance that the agents could achieve,
respecting the cost-consistency constraints.

Figure 4. A valid strategy maximizing D

Beyond these problems, an other significant one is to
determine the set of strategiesS∗ that are Pareto opti-
mal for the problem of maximizingZ(S), for all S ∈ S.
Indeed, determining all the non-dominated strategies is
a multi-objective problem that allow to characterize all
the strategies that are non-dominated. A strategy vector
S is a Pareto-optimal solution, if for each agentAu, it
does not exist any alternate strategy vectorS′ such that
Z(S′) ≥ Z(S). Among the Pareto-optimal solutions, one
can distinguish the solutions that maximize the profit of
one agent. These solutions can be obtained by using the
previous linear program, simply replacing the objective
function bymaxZu. LetZmax

u refers to as the maximum
profit ofAu.

For our example, a manual enumeration of the solu-
tion allows to determine three Pareto optimal strategies
S∗ = {S∗

1 = (6, 7, 4, 8, 13), S∗
2 = (7, 7, 4, 8, 12), S∗

3 =
(6, 6, 4, 8, 12)}. The corresponding profit vector are
Z(S∗

1 ) = (10, 35, 30), Z(S∗
2 ) = (20, 35, 25) and

Z(S∗
3 ) = (25, 0, 40) leading to the project durations

D(S∗
1 ) = D(S∗

2 ) = 19 andD(S∗
3 ) = 18, respectively.

SoZmax
1 = 25, Zmax

2 = 35 andZmax
3 = 40,

6. The price of cooperation

In this section, a game theory point of view is taken.
Indeed, another problem that makes sense is to determine
the setSNE of Nash-equilibrium strategies, if there any.
Before defining what a Nash equilibrium is in our context,
let us introduce the notationS−u to refer as the strategies
played by the(m−1) agents but notAu. A strategy vector
is said to be a Nash equilibrium if for all agentsAu and
each alternate strategyP ′

u, we have:

Zu(Pu, S−u) ≥ Zu(P
′
u, S−u) (4)

Equation (4) expresses that no agentAu can change
his chosen duration vector fromPu toP ′

u and thereby im-
prove his profit, assuming that all other agents keep their
own strategies unchanged. We remark that in the context
of this work, an agent strategy move, as defined above,
can lead either to shorten the project makespan or, in the



contrary, to its increase it. For instance, if we move back
to our example, we observe that the Pareto optimum strat-
egyS∗

3 is not a Nash equilibrium sinceZ2(S
∗
3 ) < Z2(S

∗
2 ),

the strategyS∗
3 only differing fromS∗

2 by the choices of
A2 (i.e., P2 = (6, 4) andP ′

2 = (7, 4)). Hence, there is
no reason forA2 to accept to shorten the duration of the
project from 19 to 18 since it decreases his profit. Actu-
ally for our example, there are only two strategies which
are both Nash equilibria and Pareto optimum:S∗

1 andS∗
2 ,

both having the project durationD = 19. Of course, the
strategies belonging toSNE are all of interest for at least
one agent and it is not possible to say which one will be
preferred at the end.

An interesting problem is to determine the Nash equi-
libria that induce a minimal project duration. The com-
plexity of this problem will be discussed during the con-
ference. Nonetheless, it can be stated that it exists a par-
ticular project durationDNE, with Dmin ≤ DNE ≤ Dmax,
so that any strategyS with D(S) < DNE cannot be a
Nash equilibrium. By illustration in our example, we have
DNE = 19 which is obtained for the Pareto strategiesS∗

1

andS∗
2 . DNE can be viewed as a threshold which can-

not be crossed due to the selfishness of agents (none agent
wants to reduce its profit for increasing the profit of other
ones). Therefore the ratio:

max
S∈SNE Zu(S)

Zmax
u

measures for every agentAu the minimum distance
between the maximum agent’s profit in the set of Nash-
equilibrium strategies, and his best profit. It expresses in
one sense the price of the cooperation.

7. The special case Tu = {u}

In this section, we consider the special case where each
agent manages exactly one activity (i.e., n = m). In this
case, we show how the valueDNE can be easily computed
and how the setSNE of Nash-equilibria can be character-
ized. We highlight that, since the notions of activity and
agent are equivalent in this section, the indexu is system-
atically used instead ofi in the sequel.

Let us recall that reducing the project duration by one
time unit increases the collective revenue by the valueπ
exactly (the daily penalty). Moreover, the exact profit part
of every agentAu on this amount iswu × π. SinceAu

only manages a single activityu, this quantity has to be
compared with the unitary crashing costeu of u. Then the
setA of agents can be divided into two subsetsA+ and
A−, with A = A+ ∪ A−:

- every agentAu, such thateu < wu × π, is put inside
A+ since shortening the activityu by one unit of time
is always of interest forAu, provided it also shortens
the project duration by one unit (the profit,wu×π−
eu is positive) ;

- every agentAu, such thateu ≥ wu × π, is put in-
sideA− since it is systematically uninteresting for
Au to crash the duration of his activity as his profit
can never increase.

Now, let us consider the particular extreme strategyŜ
where agents belonging toA+ has set their activity du-
ration pu to p

u
, while those ofA− has keep the activity

durations to their maximum value (i.e., pu = pu). Then
it is easy to see that the length of the longest path inG
for this strategŷS actually equalsDNE. Indeed the project
duration cannot be shortened without crashing one activ-
ity of A− , that is without reducing the profit of one agent.
We assume here that theDNE value is time consistenti.e.,
DNE ∈ [D,D]

Let CŜ refers the set of agents belonging to the critical
path inG under strategŷS. We also refer toLu,v(S) as the
length of the longest path fromu to v in G under strategy
S, and toLmax(u, v) as the length of the longest path from
u to v under the strategy where each agent set theirpu to
pu for all u.

Then any strategyS such that:

- pu = p
u

if Au in A+ ∩ CŜ ,

- pu = pu if Au in A−,

- pu is chosen in [p
u
, pu] such that L0,u(S) +

Lu,n+1(S) = min(DNE, Lmax
0,u + Lmax

u,n+1) else,i.e.,

if Au ∈ A+ andAu /∈ CŜ ,

is a Nash equilibrium. We highlight that the third con-
dition only ensures that the longest path traversing every
Au has a length that never exceeds(DNE, nor its maxi-
mum valuei.e., Lmax

0,u + Lmax
u,n+1).

Concluding remarks

This paper presents a new game theory framework for
multi-agent project scheduling problem, which can be
used to cope with numerous cooperation situations that
occur in real industrial contexts (supply-chain manage-
ment, huge project management, etc.). We particularly
propose a decision model and stress the connections be-
tween Pareto-optimum strategies and Nash-equilibrium
ones. The last section also shows how to characterize the
best Nash-equilibrium strategies in the case where each
activity is managed by a specific agent. Further works
are ongoing to characterize Nash-equilibria in the general
case or to consider more complex profit sharing functions,
as well as discrete activity duration strategies.
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