Cyril Briand 
email: cyril.briand@laas.fr
  
Jean-Charles Billaut 
email: jean-charles.billaut@laas.fr
  
Cooperative project scheduling with controllable processing times: a game theory framework

This paper considers a project-scheduling environment assuming that the activities of the project network are distributed among a set of actors (or agents). Activity durations are modeled as time intervals and are assumed controllable, meaning that every actor is allowed to shorten the duration of some activities by adding extra-money. For performing the project, actors have to collaborate with each other intending to satisfy the desired project duration, defined by the project customer as a time interval. In this work, every actor's payoff corresponds to a fixed percentage of the total customer's payment, which itself depends on the ability of the actors to achieve the project in time, provided daily penalty costs are applied in case of tardiness. This problem can be modeled as a game, where players (actors) have to select a strategy (a duration vector for their activities) intending to maximize their profit. In this paper, the focus is put on the modeling of this project game, and on the connections between various decision problems, arising either in decision or game theory. We also study the particular case where each activity is assigned to one specific agent.

Introduction

Many large-size projects are cooperative in the sense that they involve a set of actors (or organizations), each one being in charge of the execution of a part of a project. Actors have their own decisional autonomy, their specific competencies and have to collaborate together for supplying a product or a service to a customer. In such a context, project management becomes challenging since each actor is willing to collaborate with the others, but his outcome not only depends on his own decision strategies, but also on those of his partners [START_REF] Evaristo | A typology of project management: emergence and evolution of new forms[END_REF]. The customer's payment is usually due by the end of the project (even if payments on account can be planned at various phases of the project execution). Its amount generally depends on the ability of the whole set of actors to fulfill a set of quality and efficiency requirements.

In this paper, we assume that the customer's payment is shared among the actors accordingly to collective agreement that have been contracted during the design phase of the actors' network [START_REF] Cachon | Supply chain coordination with revenue-sharing contracts: Strengths and limitations[END_REF].

Such a framework appears in many realistic business context such that building trade [START_REF] Leufkens | Learning to collaborate in multi-organizational projects[END_REF], supply chain networks [START_REF] Dudek | Negotiation-based collaborative planning between supply chains partners[END_REF], or automotive industries [START_REF] Diaz | Evaluation of cooperative planning in supply chains : an empirical approach of the european automotive industry[END_REF]. Sometimes, a consortium of actors is collectively built up for facilitating the project operations, the customer relationship, as well as the actors' cost/profit sharing. Actually, actor's payoffs can depend on several agent's parameters, more or less objective, such as the place of each actor inside the project network, the agent's financial effort put into executing the project, the agent's economic or politic weight. The situation can be also very different depending on the consortium power. In aeronautics for instance, the consortium often plays both a financial, politic and economic role. It has a great decision power and can impose many constraints on the way actors have to work and interact together. In other context, such as the one of supply chain management, the decisional autonomy of actors can be much more strong, and the consortium just aims at putting some directions to promote efficient interaction rules and eventually favor fair cooperative behaviors.

For defining delivery and payment modalities, customer and actors negotiate together, possibly via the consortium. Here again the economic and politic power of each entities plays a major role in the decision-making process. Usually a fixed price is defined for the product or the service, together with penalties and/or rewards [START_REF] Fernandez | A game theoretical approach to sharing penalties and rewards in projects[END_REF] that mostly depend on the ability of the actors to deliver the service or the product, in compliance with the initial requirements, at the right moment and the right place.

The framework depicted here can also be viewed as a particular project game where players, corresponding to actors, play together for performing a project. Their strategies correspond to the various possibilities they have for carrying out their activities. Their outcome depends on their collective ability to fulfill the customer's requirements. They play simultaneously and, given their strategy choices, the customer's payment can be determined in a deterministic way, as well as the agent's payoff. This link with game theory will be further expanded in the paper.

In the scope of this paper, the project is composed by a set of interdependent activities submitted to precedence relations and distributed among actors. Actors can control the activities durations: they are allowed to reduce the activity processing time by devoting additional resources to the activity, typically at a higher cost. In this setting, the actor's strategy is defined by the duration vector the actor chooses for his activities. Knowing every actor strategy, a simple longest path algorithm gives the completion times of the project, from which the customer's payment can be deduced. We assume that the agent's payoff is a fixed portion of this total payment.

The rest of the paper is organized as follows: Section 2 gives some insights into works connected to the scope of this paper. Sections 3 and 4 define formally the problem and propose a graphical model. Section 5 discusses some interesting decision or optimization problems. Section 6 analyzes the links with game theory and attached concepts thoroughly. The last section is devoted to the special case, where each activity is assigned to a specific agent. In that case, we show how stable actor's strategies can be characterized.

Literature review

This section aims at stressing the various connections of this work with some other existing research areas. First, in the field of project scheduling, many textbooks on production/operations management present the so-called crashing algorithm which is used in the Critical Path Method. Crashing refers to shortening the duration of an activity by devoting additional resources to the activity, typically at a higher cost. For each activity that can be crashed, a time/cost tradeoff function is specified , which is usually linear or piecewise linear. The overall objective is to determine the time/cost trade-off curve which specifies, for any possible total project duration, the minimum incurred crashing cost. From an algorithmic point of view, given a project duration upper-bound, the problem of determining the activity durations that minimize the crashing cost is equivalent to a minimum cost flow problem [START_REF] Kamburowski | On the minimum cost project schedule[END_REF][START_REF] Phillips | Solving the project time/cost tradeoff problem using the minimal cut concept[END_REF], which can be solved in polynomial time. The literature is rich of papers that consider equivalent problem assuming more complex activity time/cost functions, e.g., convex, discrete, that make the problem harder to solve [START_REF] Foldes | Pert and crashing revisited: Mathematical generalizations[END_REF]. As far as we know, multi-actor context has never been considered in any of these papers (the crashing costs being always supported by a unique decision-maker).

An important branch of the industrial engineering literature focuses on Supply-Chain Management (SCM), which precisely studies planning or scheduling problems arising up in organizations composed of several decision makers, members of the same supply-chain network, each with his own decisional autonomy, all being involved in a common production process. In this kind of organization, decision-maker can have different role, such as supplier, customer or subcontractor. The literature is rich of papers that propose approaches for enhancing the communication, the coordination and the cooperation among actors. In such works, a crucial element is the confidential aspect of the data handled by each actor: only a restricted set of information is shared amongst them. This set often contains the minimum amount of information needed to coordinate the actors. If we consider the case of a customer/supplier relationship, a commonly used coordination mode is the one in which actors exchange propositions and counter-propositions related to the completion times of their tasks, this negotiation being conducted as long as a compromise satisfying every agent is not found. In order to avoid frequent modifications of the planned decisions, agents can exchange intervals (instead of instant times), these intervals becoming more and more precise as the decision time is getting close to the execution of the tasks [START_REF] Dudek | Negotiation-based collaborative planning between supply chains partners[END_REF][START_REF] Portmann | A window time negotiation approach at the scheduling level inside supply chains[END_REF][START_REF] Briand | A cooperative approach for job shop scheduling under uncertainties[END_REF].

Other seminal works in the field of production scheduling focus on multi-agent scheduling paying attention in the multi-objective nature of the problem (brought by the agent concept). Most of these works propose centralized mathematical solving approach or exact algorithm for finding solutions that optimize the agent's objective. This kind of multi-agent scheduling problematic was introduced in the works of Agnetis, Mirchandani, Pacciarelli and Pacifici [START_REF] Agnetis | Nondominated schedules for a job-shop with two competing users[END_REF][START_REF] Agnetis | Scheduling problems with two competing agents[END_REF] in which the authors consider a job shop problem where two agents, each being in charge of a set of jobs, are competing for the use of resources (the machines) while both trying to optimize their own objective function (the difference between both objective functions being -constrained). Several articles [START_REF] Agnetis | A lagrangian approach to single-machine scheduling problems with two competing agents[END_REF][START_REF] Cheng | Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs[END_REF][START_REF] Cheng | Multi-agent scheduling on a single machine with max-form criteria[END_REF] focus on the case of multi-agent single machine problems with two or more competing agents and provide exact methods along some results on complexity, considering various criteria such as the makespan, the algebraic lateness or the average number of tardy tasks. Some other works are concerned about multi-agent scheduling in the field of the computing grid. In this case, each agent is associated to a computing cluster and negotiate with the others on which tasks it should undertake, these tasks possibly being affected to other agents (see [START_REF] Pascual | Cooperation in multi-organization scheduling[END_REF] for a recent approach).

In scheduling, the concept of agent is also at the very heart of distributed solving methods, especially those based on the Multi-Agent Systems paradigm (MAS) [START_REF] Ferber | Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence[END_REF]. In the field of job shop scheduling, heuristic approaches, based on MASs, have been put forward [START_REF] Saad | Performance evaluation of contract net-based heterarchical scheduling for flexible manufacturing systems[END_REF] in order to generate feasible schedules: the agents, with associated tasks, negotiate their processing intervals with resources agents, a supervisor agent taking care of potential conflicts. Moreover, we can find MAS based approaches in multi-project scheduling [START_REF] Confessore | A marketbased multi-agent system model for decentralized multiproject scheduling[END_REF][START_REF] Homberger | A multi-agent system for the decentralized resource-constrained multi-project scheduling problem[END_REF] where agents, associated to the projects, share the resources and are guided by a manager agent. For a more thorough description of existing MAS approaches in planing and scheduling of manufacturing systems, the reader should refer to the survey by Shen, Wang and Hao [START_REF] Shen | Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey[END_REF].

In the field of cooperative game theory, some authors consider the project scheduling environment for exhibit some particular games. Most of them take an interest in the problem of sharing rewards and penalties between agents, assuming that activities can be disrupted or can last shorter than expected [START_REF] Fernandez | A game theoretical approach to sharing penalties and rewards in projects[END_REF]. In multi-agent scheduling, several authors also consider the connection between the optimization of one global objective function, also called social objective, and game theory. Important concepts, linked to the non cooperative game theory, has been defined such as the price of anarchy [START_REF] Koutsoupias | Worst-case equilibria[END_REF] (ratio between the worst Nash equilibrium and the optimal value of the global objective function) or the price of stability [START_REF] Angel | The price of approximate stability for scheduling tasks on two links[END_REF] (ratio between the best Nash equilibrium and the optimal value of the global objective function).

In this paper, the focus is on multi-agent projectscheduling, which can be viewed as a special field of multi-agent scheduling, where resource constraints are not considered explicitly. Like in CPM method, the assumption that activity processing times are controllable is made, so that a time/cost tradeoff has to be achieved. The project-customer payment depends on the time performance of the agents since daily penalties are applied in case of lateness. The problem is to characterize the strategies that are of interest for the agents.

From the best of our knowledge, it is the first time such a problem is studied in these terms. This paper proposes a formal model and stresses some decision problems connected both with decision and game theories.

Problem statement

The project is composed by a set T = {0, . . . , n + 1} of activities (or tasks), that are shared among a set A = {A 0 , . . . , A m+1 } of agents. Classically, activities are linked together by a set P of precedence constraints: (i, j) ∈ P means that i precedes j. The set of activities assigned to the activity-agent A u is denoted T u . By convention, 0 and n + 1 are dummy activities representing the beginning and the end of the project, respectively. We assume that they are assigned to two fictitious agents A 0 and A m+1 , such that T 0 = {0} and T m+1 = {n + 1}. A 0 and A m+1 can be viewed as the project launcher and the project customer, respectively. In the sequel of this paper, we consider that the project-customer agent defines a delivery interval for the project, further refers to as [D, D]. In a similar way, the project-launcher agent could choose a release date interval [R, R] for the project. In this work, it is assumed w.l.o.g. that R = R = 0.

To each activity i is associated a minimum and a maximum processing time denoted by p i and p i , respectively. Any agent A u has to choose, for all his activities i ∈ T u , a duration p i belonging to [p i , p i ]. In this work, p i is seen as a continuous variable. It is assumed that compressing the duration of activity i by one unit generates an extracost e i . Therefore, any agent A u has to pay a fixed cost k u = i∈Tu κ i corresponding to the execution of his activities at their maximum duration, plus an extra compression cost equal to i∈Tu (p i -p i ) × e i . We further refer to as γ u (P u ) the total cost paid by A u performing her activities, P u being the processing time vector corresponding to the activities i ∈ T u , i.e.:

γ u (P u ) = k u + i∈Tu (p i -p i ) × e i .
The project customer is assumed to pay a given amount at the project delivery, from which daily penalties are deducted in case of tardiness. Then, if project ends at time D and if [D, D] is the initial contracted delivery interval, the customer pays K -max(0, D -D) × π, K and π being the initial arranged payment and the penalty cost per time unit, respectively. Let Π(D) refers to this quantity.

A last assumption concerns the agents' payoff. We assume that the agents have agreed an arrangement for sharing the customer's payment (at a more strategic decision level), such that the payoff of Agent A u is a fixed proportion w u of the total payment. Therefore, the profit of agent A u can be expressed as:

Z u (P u , D) = w u × Π(D) -γ u (P u ).
In this paper, it is assumed that the agents are selfish and want to maximize their self profit.

Problem modeling

Such a project environment can be modeled by a colored graph G = (V, A, C, φ, l) in which:

-V = T is the set of vertices and corresponds to the set of activities (including the two dummy activities);

-A = P ∪ {(n + 1, 0)} is the set of arcs that depicts the precedence constraints, the supplementary arc (n + 1, 0) being added for convenience reason, as discussed below;

-C = {0, . . . , m + 1} is the set of colors, each one being specific to an agent; -φ is an application associating each vertex (activity) i ∈ V with a color (agent) c ∈ C, such that φ(i) = u if and only if i ∈ T u ;

l is an application associating each arc (i, j) ∈ A with a length p i ∈ [p i , p i ].

Figure 1. A multi-agent project scheduling example

The graph of Figure 1 depicts an example with five agents: black agents correspond to fictitious agents A 0 and A 4 , activity agents are A 1 , A 2 and A 3 whose associated colors are white, light gray and dark gray, respectively. There are seven activities that are allocated to the agents such that T 0 = {0}, T 1 = {1}, T 2 = {2, 3}, T 3 = {4, 5} and T 4 = {6}.

As indicated by the legend of the figure, the duration interval of each task i, as well as its fixed cost and crashing cost (k i , e i ), are given at the top and the bottom of each vertex, respectively. In the case of activity n + 1, allocated to agent A m+1 , things are a bit different: the duration interval is [-D, -D] since the length of the arc (n + 1, 0) has to be negative for avoiding positive length circuits in G. In the example, Activity 6 belonging to A 4 has a processing interval equals to [-22 -18]. Moreover, the pair (k i , e i ) at the bottom of the activity n + 1 is set to (K, π) (the fixed price and the daily penalty cost, respectively). In the example, K = 270 and π = 45.

As said before, each activity agent has to choose a strategy, i.e., a duration vector P u for his tasks, provided that each vector component p i of P u belongs to [p i , p i ]. Graphically, the duration p i of every activity is reported on the arcs outgoing from i and are referred to as the length of the arc. It is not hard to see that, once these duration vectors set, a simply longest-path algorithm allows to know the smallest project completion time D. Consequently the total crashing cost and the penalty cost can be calculated, as well as the agents' payoff w u × Π(D). Note that for matter of clarity, the length of the arc (n + 1, 0) is set to -D (so that the longest circuit in G has a length equals to 0).

We define the agents' strategy S as the concatenation of the individual strategies P u , i.e., S = (P 1 , . . . , P m ). The strategy S induces the project completion time denoted as D(S). A strategy S has to be both time-consistent and cost-consistent.

A time-consistent strategy S is such that the duration vectors chosen by the activity agents involve a total project duration D(S) that belongs to the interval [D, D]. Let S T C be the set of time-consistent strategies.

To any strategy S, we can associate a profit vector Z(S) = (Z 1 (P 1 , D(S)), . . . , Z m (P m , D(S)). A strategy S is cost-consistent if and only if the total compression cost γ u (P u ) paid by every activity agent A u does not exceed its payoff w u × Π(D(S)), that is if every agent's profit vector Z u (P u , D(S)) is positive. Let S CC be the set of cost-consistent strategies.

For illustration, considering the problem of Figure 1, let us discuss the strategy S = (9, 7, 4, 9, 13), which leads to the project completion D(S) = 22. This strategy can be modeled graphically as displayed in Figure 2 (every arc is labeled with the duration of its source activity). We assume that the revenue is equally shared among agents (i.e., w u = 1

3 ). This strategy is time consistent (since 22 ∈ [START_REF] Leufkens | Learning to collaborate in multi-organizational projects[END_REF][START_REF] Portmann | A window time negotiation approach at the scheduling level inside supply chains[END_REF]) and leads to the total revenue 90 (the agent's payoff equals 30), but it is not cost-consistent since Z(S) = (-5, -10, -10).

Figure 2. A cost-inconsistent agents' strategy

We further refer S = S T C ∩ S CC to as the set of valid strategies, i.e., the strategies being both time-consistent and cost-consistent. We also denote by S(D) the set of strategies S ∈ S such that D(S) = D.

Some relevant decision problems

Among the relevant decision problems that can arise in such a multi-agent scheduling context, the first trivial one is to know if there exist any valid strategy? In other words, is S empty? Actually, answering this question is easy since we only need to solve the following linear program. The variables are c , p i , and Π the completion time of activity i, duration and the customer's payment, respectively.

min c n+1 s.t c j ≥ c i + p j , ∀(i, j) ∈ P (1) w u × Π -γ u (P u ) ≥ 0, ∀A u ∈ A (2) Π ≤ K -(c n+1 -D) × π (3) c i ≥ 0, c n+1 ≤ D, p i ≥ p i , Π ≤ K
This program aims at minimizing D = c n+1 . Constraint [START_REF] Agnetis | Nondominated schedules for a job-shop with two competing users[END_REF] ensures that precedence constraints are satisfied. Constraint [START_REF] Agnetis | Scheduling problems with two competing agents[END_REF] imposes that any solution has to be cost-consistent, where Π corresponds to the customer's payment. Constraint (3) establishes the relation between the variables c n+1 and Π.

Clearly, S is empty if and only if the previous program is infeasible. In the other case, we can get the best project duration D min that can be achieved by the agents. Let us highlight that this solution is also the one that ensures the maximum value of the overall revenue Π (which has to be distinguished from the agent's profit). If we move back to our example assuming that the revenue is equally shared among agents (i.e., w u = 1

3 ), the optimum value is D min = 18, which is obtained with the strategy S = (6, 6, 4, 8, 12) depicted in Figure 3, with Π = 270 and Z(S) = (25, 0, 40).

Figure 3. A valid strategy minimizing D

Now we can also solve the next linear program that aims at finding the less costing strategy for the whole set of agents (it is actually a compression cost problem that can be solved in polynomial time [START_REF] Kamburowski | On the minimum cost project schedule[END_REF]). Constraints (1)-(3) are unchanged. Then, assuming the program feasibility (or equivalently the non-emptiness of S), we also get the maximum value D max that is reachable (hence the minimum value of Π). Indeed, since increasing D implies the reduction of the compression cost, there cannot exist any other valid strategy having a D greater than D max . For our example with w u = 1 3 , a less costing strategy is S = (8, 7, 4, 9, 13) displayed in Figure 4, which gives D max = 21, Π = 225 and Z(S) = (0, 5, 5).

min Au∈A (γ u (P u )) s.t c i -c j -p i ≥ 0, ∀(j, i) ∈ P (1) w u × Π -γ u (P u ) ≥ 0, ∀A u ∈ A (2) Π ≤ K -(c n+1 -D) × π (3) c i ≥ 0, c n+1 ≤ D, P ≥ P , Π ≤ K
Clearly, if S is not empty then D ≤ D min ≤ D max ≤ D, which gives an interesting knowledge of the best and worst temporal performance that the agents could achieve, respecting the cost-consistency constraints. Beyond these problems, an other significant one is to determine the set of strategies S * that are Pareto optimal for the problem of maximizing Z(S), for all S ∈ S. Indeed, determining all the non-dominated strategies is a multi-objective problem that allow to characterize all the strategies that are non-dominated. A strategy vector S is a Pareto-optimal solution, if for each agent A u , it does not exist any alternate strategy vector S such that Z(S ) ≥ Z(S). Among the Pareto-optimal solutions, one can distinguish the solutions that maximize the profit of one agent. These solutions can be obtained by using the previous linear program, simply replacing the objective function by max Z u . Let Z max u refers to as the maximum profit of A u .

For our example, a manual enumeration of the solution allows to determine three Pareto optimal strategies S * = {S 

The price of cooperation

In this section, a game theory point of view is taken. Indeed, another problem that makes sense is to determine the set S NE of Nash-equilibrium strategies, if there any. Before defining what a Nash equilibrium is in our context, let us introduce the notation S to refer as the strategies played by the (m-1) agents but not A u . A strategy vector is said to be a Nash equilibrium if for all agents A u and each alternate strategy P u , we have:

Z u (P u , S -u ) ≥ Z u (P u , S -u ) (4) 
Equation ( 4) expresses that no agent A u can change his chosen duration vector from P u to P u and thereby improve his profit, assuming that all other agents keep their own strategies unchanged. We remark that in the context of this work, an agent strategy move, as defined above, can lead either to shorten the project makespan or, in the contrary, to its increase it. For instance, if we move back to our example, we observe that the Pareto optimum strategy S * 3 is not a Nash equilibrium since Z 2 (S * 3 ) < Z 2 (S * 2 ), the strategy S * 3 only differing from S * 2 by the choices of A 2 (i.e., P 2 = (6, 4) and P 2 = (7, 4)). Hence, there is no reason for A 2 to accept to shorten the duration of the project from 19 to 18 since it decreases his profit. Actually for our example, there are only two strategies which are both Nash equilibria and Pareto optimum: S * 1 and S * 2 , both having the project duration D = 19. Of course, the strategies belonging to S NE are all of interest for at least one agent and it is not possible to say which one will be preferred at the end.

An interesting problem is to determine the Nash equilibria that induce a minimal project duration. The complexity of this problem will be discussed during the conference. Nonetheless, it can be stated that it exists a particular project duration D NE , with D min ≤ D NE ≤ D max , so that any strategy S with D(S) < D NE cannot be a Nash equilibrium. By illustration in our example, we have D NE = 19 which is obtained for the Pareto strategies S * 1 and S * 2 . D NE can be viewed as a threshold which cannot be crossed due to the selfishness of agents (none agent wants to reduce its profit for increasing the profit of other ones). Therefore the ratio:

max S∈S NE Z u (S)
Z max u measures for every agent A u the minimum distance between the maximum agent's profit in the set of Nashequilibrium strategies, and his best profit. It expresses in one sense the price of the cooperation.

The special case T u = {u}

In this section, we consider the special case where each agent manages exactly one activity (i.e., n = m). In this case, we show how the value D NE can be easily computed and how the set S NE of Nash-equilibria can be characterized. We highlight that, since the notions of activity and agent are equivalent in this section, the index u is systematically used instead of i in the sequel.

Let us recall that reducing the project duration by one time unit increases the collective revenue by the value π exactly (the daily penalty). Moreover, the exact profit part of every agent A u on this amount is w u × π. Since A u only manages a single activity u, this quantity has to be compared with the unitary crashing cost e u of u. Then the set A of agents can be divided into two subsets A + and A -, with A = A + ∪ A -:

-every agent A u , such that e u < w u × π, is put inside A + since shortening the activity u by one unit of time is always of interest for A u , provided it also shortens the project duration by one unit (the profit, w u × πe u is positive) ; -every agent A u , such that e u ≥ w u × π, is put inside A -since it is systematically uninteresting for A u to crash the duration of his activity as his profit can never increase. Now, let us consider the particular extreme strategy Ŝ where agents belonging to A + has set their activity duration p u to p u , while those of A -has keep the activity durations to their maximum value (i.e., p u = p u ). Then it is easy to see that the length of the longest path in G for this strategy Ŝ actually equals D NE . Indeed the project duration cannot be shortened without crashing one activity of A -, that is without reducing the profit of one agent.

We assume here that the D NE value is time consistent i.e.,

D NE ∈ [D, D]
Let C Ŝ refers the set of agents belonging to the critical path in G under strategy Ŝ. We also refer to L u,v (S) as the length of the longest path from u to v in G under strategy S, and to L max (u, v) as the length of the longest path from u to v under the strategy where each agent set their p u to p u for all u.

Then any strategy S such that:

-

p u = p u if A u in A + ∩ C Ŝ , -p u = p u if A u in A -,
p u is chosen in [p u , p u ] such that L 0,u (S) + L u,n+1 (S) = min(D NE , L max 0,u + L max u,n+1 ) else, i.e., if A u ∈ A + and A u / ∈ C Ŝ , is a Nash equilibrium. We highlight that the third condition only ensures that the longest path traversing every A u has a length that never exceeds (D NE , nor its maximum value i.e., L max 0,u + L max u,n+1 ).

Concluding remarks

This paper presents a new game theory framework for multi-agent project scheduling problem, which can be used to cope with numerous cooperation situations that occur in real industrial contexts (supply-chain management, huge project management, etc.). We particularly propose a decision model and stress the connections between Pareto-optimum strategies and Nash-equilibrium ones. The last section also shows how to characterize the best Nash-equilibrium strategies in the case where each activity is managed by a specific agent. Further works are ongoing to characterize Nash-equilibria in the general case or to consider more complex profit sharing functions, as well as discrete activity duration strategies.
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 11 [START_REF] Cachon | Supply chain coordination with revenue-sharing contracts: Strengths and limitations[END_REF][START_REF] Cheng | Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs[END_REF][START_REF] Angel | The price of approximate stability for scheduling tasks on two links[END_REF][START_REF] Cheng | Multi-agent scheduling on a single machine with max-form criteria[END_REF][START_REF] Ferber | Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence[END_REF], S * 2 = (7, 7, 4, 8, 12), S * 3 = (6, 6, 4, 8, 12)}. The corresponding profit vector are Z(S * 1 ) = (10, 35, 30), Z(S * 2 ) = (20, 35, 25) and Z(S * 3 ) = (25, 0, 40) leading to the project durations D(S * 1 ) = D(S * 2 ) = 19 and D(S * 3 ) = 18, respectively. So Z
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