
HAL Id: hal-01233561
https://hal.science/hal-01233561v1

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of all rho-approximated sequences for
some scheduling problems
Jean-Charles Billaut, Pierre Lopez

To cite this version:
Jean-Charles Billaut, Pierre Lopez. Characterization of all rho-approximated sequences for some
scheduling problems. 16th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep 2011, Toulouse, France. 6p. �hal-01233561�

https://hal.science/hal-01233561v1
https://hal.archives-ouvertes.fr

Characterization of all ρ-approximated sequences for some scheduling
problems

Jean-Charles BILLAUT1,2

1 Université François-Rabelais Tours
Laboratoire d’Informatique

64 avenue Jean Portalis, 37200 Tours, France
jean-charles.billaut@univ-tours.fr

Pierre LOPEZ
2 CNRS ; LAAS ; 7 avenue du colonel Roche, 31077 Toulouse, France

Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; LAAS ; 31077 Toulouse, France
lopez@laas.fr

Abstract

Some scheduling problems present the peculiarity to
be solvable in polynomial time and to have a huge num-
ber of optimal solutions. In the disturbed environment of
a production manufacturing system, where the forecasted
schedule is going to change because of unexpected events
or uncertainties, it can be interesting not only to know one
or several optimal sequences, but the characteristics of
‘good’ sequences. In this paper, we focus on the charac-
terization of all theρ-approximated sequences, which are
solutions of a scheduling problem with a performance not
worse than a given distance from the value of the optimal
solution.

With the support of the lattice of permutations, we de-
fine the characteristics of the optimal sequences for some
particular scheduling problems. We present a method
which is able, for some specific scheduling problems,
to give the characteristics of all theρ-approximated se-
quences. A computational experience is carried out to
evaluate the performance of the proposed method.

1. Introduction

The context of production manufacturing systems is a
disturbed environment, mainly for two reasons: the uncer-
tainty of the data and the occurrence of unexpected events.
It happens frequently that the schedule, which was fore-
casted, becomes quickly infeasible. This is the reason why
several dynamic or real-time approaches, that are able to
react in real time to the disturbances, have been developed
during the two past decades [4, 12, 13, 14].

Among the possible dynamic approaches, some of
them are based on thecharacterizationof solutions [7, 8,
4, 2, 1]. Characterization means that several solutions are

implicitly proposed, without enumeration, instead of only
one, and a system is designed to exploit this flexibility for
reacting in real time. Generally, the set of solutions which
are characterized, satisfies some feasibility conditions like
the respect of due dates or a bounded tardiness.

We propose in this paper a totally new method, which is
able to give the characteristics of the exact set of optimal
or ρ-approximated solutions regarding a given criterion.
The characterization of solutions is rarely studied in liter-
ature while it can be inserted into a general method, which
can help, in real time, to take a scheduling decision among
those which guaranty to keep the quality of the solution.

The rest of the paper is organized as follows. Section
2 introduces the lattice of permutations associated with
some basic properties and their link to scheduling prob-
lems. In Section 3, the general solving method is pre-
sented and some new scheduling problems are identified.
Section 4 focuses on the modeling issue of the method by
using mixed integer linear programming. It is illustrated
by the application to some specific scheduling problems.
Section 5 presents the computational results.

2. The lattice of permutations

2.1 Definition
Let consider the set{1, 2, ..., n} of integers andSn the

group of all permutations on{1, 2, ..., n}. The members
of Sn can be represented by strings of integers. For exam-
ple if n = 4, σ = 4123 denotes a permutationσ where
σ(1) = 4, σ(2) = 1, σ(3) = 2, andσ(4) = 3. We define
index(i, σ) [11] as the position ofi in σ (index(3, σ) = 4
in the example). For more simplicity, we will notei ≺σ j
if “ i precedesj in σ”, or index(i, σ) < index(j, σ).

With the elements ofSn, we can build a graph where
there is an edge between two nodesσ andσ′ if ∃i and
j, i < j, such thatindex(j, σ) = index(i, σ) + 1 and

index(i, σ′) = index(j, σ′) + 1, i.e. i immediately pre-
cedesj in σ and j immediately precedesi in σ′. This
graph is a lattice: a partially ordered set of nodes in which
every two nodes have a least upper bound and a greatest
lower node. The lattice of permutations (also calledper-
mutohedron lattice[5]) is illustrated in Fig. 1 forn = 4.

3214 2341 2413 3142 1432 4123

2314 2143 3124 1342 1423

3241 2431 4213 3412 4132

3421 4231 4312

2134 1324 1243

1234

4321

= ? R

= ? ? ~� R

� w ^) ^ � ^ � ^

^ � ^ � U U U �)

~ ~?) ?	

R ?	

Figure 1. Lattice of permutations for n = 4

Notice that this graph, which containsn! nodes, is not
implemented in the proposed method.

In terms of scheduling problems, each node of this
graph corresponds to a sequence and a successor of se-
quenceσ is a sequenceσ′ where two consecutive jobs
have been interchanged. In the following we will talk
about ‘sequence’ instead of ‘permutation’.

2.2 Basic properties
This graph structure has already been studied in the lit-

erature and the properties that are indicated below are well
known [3, 11, 6].

The graph is a succession ofn(n − 1)/2 + 1 levels.
We say that sequence(n, n−1, ..., 1) is at level 0 and that
sequence(1, 2, ..., n) is at leveln(n − 1)/2, denoted by:

κ(n, n − 1, ..., 1) = 0, κ(1, 2, ..., n) =
n(n − 1)

2

We denote by

Γ(σ) = {(i, j)/i < j andi ≺σ j}

Property 1 [3]: For any sequenceσ at levelκ, the level of
sequenceσ is exactly the number of its inversions (trans-
position of two neighbors), i.e. the number of times we

havei ≺σ j with i < j:

κ(σ) = |Γ(σ)|

Illustration: For instance, let consider sequence
σ = (1, 2, 3, 4). We have 1≺σ2 and 1<2, 1≺σ3
and 1<3, 1≺σ4 and 1<4, 2≺σ3 and 2<3, 2≺σ4 and
2<4, 3≺σ4 and 3<4, and therefore, the level of sequence
(1, 2, 3, 4) is 6. For sequence(4, 1, 2, 3) we only have
1≺σ2 and 1<2, 1≺σ3 and 1<3, 2≺σ3 and 2<3 and
therefore the level of sequence(4, 1, 2, 3) is equal to 3.

Property 2 [3]: Let consider a sequenceσ at levelκ and
the setΓ(σ). Any predecessorπ of σ in the graph is such
that:

Γ(σ) ⊂ Γ(π)

Illustration: Let consider sequence(4, 1, 2, 3). We
have Γ(4, 1, 2, 3) = {(1, 2), (1, 3), (2, 3)}. We have
Γ(1, 4, 2, 3) = {(1, 4), (1, 2), (1, 3), (2, 3)}.

Property 3: Let consider a sequenceσ at level κ and
the setΓ(σ). Γ(σ) gives the characteristics of all the
predecessors ofσ and no other sequence satisfies these
characteristics.

Illustration: Let consider sequence(4, 1, 2, 3) and
Γ(4, 1, 2, 3) = {(1, 2), (1, 3), (2, 3)}. All the predeces-
sors of(4, 1, 2, 3) are such that1 ≺ 2 and1 ≺ 3 and
2 ≺ 3 (i.e. 1, 2, 3 are in this order and 4 can be put at any
position). All the other sequences inS4 do not satisfy this
set of constraints.

3. Method

The method giving the characteristics of the set of op-
timal sequences for some given problems is based on the
properties of the lattice of permutations. We suppose that
(1, 2, ..., n) is an optimal sequence and that a rule exists
for defining the relative position of two consecutive jobs.
Such rules exist actually for some scheduling problems
and ‘pairwise interchange’ arguments are used for prov-
ing the optimality of these sequences (see Section 4).

If we are able to find an optimal sequenceσ1 at a level
as small as possible in the graph, then by using a trivial
pairwise interchange argument, we can prove that all its
predecessors in the graph are also optimal sequences. And
there is no need to give the list of these predecessors, since
we know that they are characterized byΓ(σ1).

In order to characterize the complete set of optimal se-
quences, we have to search another sequenceσ2 with min-
imal level, that is not characterized byσ1. And we iterate
the search withσ3, etc., until no further sequence can be
found.

The general method works as follows:

1. Solve the scheduling problem with the fitted rule.

2. Renumber the jobs so that(1, 2, ..., n) is the optimal
sequence

3. Repeat

(a) Find the optimal sequenceσ with minimum
level by an algorithmA

(b) Deduce the characteristics of the predecessors
of σ

(c) Prevent these sequences from being obtained
again byA

4. Until no sequence can be found byA

5. Return the characteristics of all the sequences ob-
tained

Two new scheduling problems can be identified with
this approach:

• PB1: assuming that(1, 2, ..., n) is an optimal se-
quence, find an optimal sequence with minimum
level.

• PB2: assuming that(1, 2, ..., n) is an optimal se-
quence, find an optimal sequence with minimum
level which fulfills a set of constraints (find a se-
quence which is not already characterized).

The scheduling problems that we consider can be
solved in polynomial time by a trivial sorting algorithm.
However, the complexity of these new problems remains
open. The algorithmA which is used in this study is an
MIP solver.

4. Application to scheduling problems

This method can be used for solving several scheduling
problems, for which a sequencing rule exists for deciding
the order of two consecutive jobs. The notations are the
following. We consider a set ofn jobs to schedule, we
denote bypj , rj anddj the processing time, the release
date and the due date of jobj, respectively,1 ≤ j ≤
n. Cj denotes the completion time of jobj. The criteria
that will be used in the rest of the paper are the makespan
Cmax = max1≤j≤n Cj , the maximum latenessLmax =
max1≤j≤n(Cj − dj), and the total [weighted] completion
time

∑
[wj]Cj =

∑
1≤j≤n[wj]Cj .

The method works for some scheduling problems
like the 1||Lmax, the 1|rj |Cmax, the 1||

∑
[wj]Cj , the

F2||Cmax, theF2|Snsd|Cmax (whereSnsd stands for no-
sequence dependent setup times), etc. For all these prob-
lems, a sequencing rule allows finding an optimal solution
in polynomial time (O(n log n)).

In this paper, the method is developed for a single ma-
chine problem denoted by1||Lmax and for the classical
two-machine flowshop problem denoted byF2||Cmax. In
the1||Lmax problem, each job has a due date and the prob-
lem is to find a sequence so that the maximum lateness of

jobs is minimum. The problem is solved by the ruleear-
liest due date firstor Jackson’s rule [9], i.e. by sorting the
jobs in the non-decreasing order ofdj . In theF2||Cmax

problem, each job is composed by two operations. The
first operation is processed on the first machine denoted
by M1 and then the second operation is processed on the
second machine denoted byM2. The problem is solved to
optimality by the Johnson’s rule [10].

4.1 General model – First sequence
We present in this section two MIP models which allow

us to find the first sequence.

4.1.1 MIP1: positional variables

We definexj,k as a Boolean variable equal to 1 if jobj is
in positionk, 0 otherwise. We denote bynj,k a continuous
variable equal to the number of constraints obtained ifj is
in positionk in the sequence.

The objective is to minimize the level of the sequence
(see Property 1):

MIN
n∑

j=1

n∑

k=1

nj,k (1)

There is one job per position and one position per job:

n∑

j=1

xj,k = 1, ∀k ∈ {1, 2, ..., n} (2)

n∑

k=1

xj,k = 1, ∀j ∈ {1, 2, ..., n} (3)

Fix the variablesnj,k:

nj,k ≥

n∑

j′=j+1

n∑

k′=k+1

xj′,k′ − HV (1 − xj,k),

∀j ∈ {1, 2, ..., n− 1}, ∀k ∈ {1, 2, ..., n− 1} (4)

If j is in positionk, xj,k = 1 andnj,k is equal to the
number of times, a job with an index greater thanj is se-
quenced afterj (it corresponds to amountκ previously
defined). HV is a high value, which can be set for our
problem ton(n − 1)/2.

4.1.2 MIP2: relative position variables

We defineyi,j as a Boolean variable equal to 0 if jobi
precedes jobj and 1 otherwise. We also introduce contin-
uous variables:tj is the start time of jobj for the1||Lmax

problem, andtj,1 andtj,2 are the start times of jobj on
machineM1 and on machineM2, respectively, for the
F2||Cmax problem. In order to minimize the level of the
sequence, the objective to maximize is:

MAX
n∑

i=1

n∑

j=i+1

yi,j (5)

In addition, it is assumed that the Boolean variables
verify a kind of triangle inequality:

yi,k ≤ yi,j + yj,k, ∀i, j, k ∈ {1, ..., n}, i 6= j 6= k (6)

4.2 Application to 1||Lmax and F2||Cmax

The constraint ensuring that the sequence that is re-
turned is optimal, depends on the scheduling problem.
L∗

max andC∗
max are the optimal values of the maximum

lateness and the makespan, respectively.

4.2.1 MIP1

For the1||Lmax problem, we have:

k∑

ℓ=1

n∑

j=1

pjxj,ℓ −

n∑

j=1

djxj,k ≤ L∗
max,

∀k ∈ {1, 2, ..., n} (7)

For theF2||Cmax problem, we denote bypj,1 andpj,2

the processing time of jobj on machineM1 and on ma-
chineM2, respectively. We have:

ℓ∑

k=1

n∑

j=1

pj,1xj,k +

n∑

k=ℓ

n∑

j=1

pj,2xj,k ≤ C∗
max,

∀ℓ ∈ {1, 2, ..., n} (8)

4.2.2 MIP2

For the 1||Lmax problem, two sets of constraints are
needed for the expression of the disjunctive constraints:

tj ≥ ti + pi − HV yi,j , (9)

ti ≥ tj + pj − HV (1 − yi,j), (10)

(9) and(10), ∀i, j ∈ {1, ..., n}, i 6= j

Then, we have:

tj + pj − dj ≤ L∗
max, ∀j ∈ {1, ..., n} (11)

For theF2||Cmax problem, four sets of constraints are
needed for the expression of the disjunctive constraints:

tj,1 ≥ ti,1 + pi,1 − HV yi,j , (12)

ti,1 ≥ tj,1 + pj,1 − HV (1 − yi,j), (13)

tj,2 ≥ ti,2 + pi,2 − HV yi,j , (14)

ti,2 ≥ tj,2 + pj,2 − HV (1 − yi,j), (15)

(12)...(15), ∀i, j ∈ {1, ..., n}, i 6= j

Then, we have:

tj,2 + pj,2 ≤ C∗
max, ∀j ∈ {1, ..., n} (16)

4.3 General method – Other sequences
Suppose that the first sequence (σ1) with minimum

level has been obtained. From this sequence, we can de-
duce the predecessors in the lattice of permutations: the
sequences satisfying a set of precedence constraints of
type (a1 ≺ b1) and (a2 ≺ b2) and ... and (aν ≺ bν).

In order to obtain another sequence with minimum
level, which is not yet characterized, we introduce the
following constraints: (b1 ≺ a1) or (b2 ≺ a2) or ... or
(bν ≺ aν).

4.3.1 MIP1

The expression of these constraints is the following:

n∑

k=1

k × xb1,k ≤

n∑

k=1

k × xa1,k + HV (1 − z1,1) (17)

n∑

k=1

k × xb2,k ≤

n∑

k=1

k × xa2,k + HV (1 − z1,2) (18)
...

n∑

k=1

k × xbν ,k ≤

n∑

k=1

k × xaν ,k + HV (1 − z1,ν) (19)

ν∑

h=1

z1,h ≥ 1 (20)

with z1,h a Boolean variable equal to 1 if condition num-
berh holds,1 ≤ h ≤ ν. Constraint (17) ensures that the
position of jobb1 is smaller than the position of joba1,
i.e. b1 ≺ a1. Constraint (20) imposes that at least one
condition is satisfied, and thus that sequenceσ1 and its
predecessors cannot be obtained.

This iteration introducesν new Boolean variables and
ν + 1 constraints. The new sequence obtained is denoted
byσ2; the predecessors of this sequence are characterized,
new Boolean variablesz2,h and new constraints are intro-
duced, and the process iterates until no more sequence can
be found.

4.3.2 MIP2

The expression is the following:

ya1,b1 + ya2,b2 + ... + yaν ,bν
≥ 1 (21)

Each iteration only produces one additional constraint
and does not generate any additional variable.

4.4 Generalization toρ-approximated sequences
The procedure presented before allows us to charac-

terize the set of optimal sequences. It is possible to use
this method to characterize sub-optimal sequences, with a
guaranteed performance.

For a given objective performancef , we define aρ-
approximated sequence (ρ ∈ R

+) as a sequenceσ such
that:

f∗ ≤ f(σ) ≤ (1 + ρ) × f∗

if f∗ > 0, with f∗ the criterion value of the optimal se-
quence (ρ = 0 imposes thatσ is optimal), and

f∗ ≤ f(σ) ≤ (1 − ρ) × f∗

if f∗ < 0.
It is sufficient to replaceL∗

max in (7) andC∗
max in (8)

by (1 + ρ) × L∗
max (or (1 − ρ) × L∗

max if L∗
max < 0) and

(1 + ρ) × C∗
max, respectively.

5. Computational experiments

The size of model MIP1 for problems1||Lmax and
F2||Cmax are the same:n2 Boolean variables,n2 con-
tinuous variables, and3n + (n − 1)2 constraints for the
first iteration. At iterationk, the size is:n2 +

∑k

h=1
νh

Boolean variables,n2 continuous variables, and3n+(n−

1)2 +
∑k

h=1
(νh + 1) constraints, withνh in O(n2).

With model MIP2, we needn2 Boolean variables for
both problems andn or 2n continuous variables (for the
1||Lmax or theF2||Cmax, respectively), at any iteration.
The number of constraints is equal ton3 + 2n(n − 1) +
n + (k − 1) andn3 + 4n(n− 1) + 2n + (k − 1) for each
problem at iterationk, respectively.

Computational experiments were carried out to eval-
uate our propositions. Processing times have been ran-
domly generated in the interval[1, 100] and the due date
of job Jj have been generated in[pj , 1.2 ×

∑
pi]. The

tests were performed with CPLEX 12.1 on a PC clocked
at 2.26 GHz with 3.45 GB RAM. 30 instances have been
generated per value ofn. Four values have been consid-
ered forρ: ρ ∈ {0, 5%, 10%, 20%}.

The computation time has been limited to 600 seconds,
for finding the whole set of sequences for each instance.
The average values only concern the instances that have
been solved within the timeout.

The results are reported in Table 1 for the single ma-
chine problem and in Table 2 for the two-machine flow-
shop problem. The last columns (‘unslv’) indicate the
number of unsolved instances. First of all, we remark
that model MIP2 clearly outperforms model MIP1. This
is due to the size of the model, which increases quickly for
model MIP1 with the number of sequences found. How-
ever, even for the best MIP model, it is clear that CPLEX
is already out for small-scale problems. This is due to
the problems difficulty, which increases with the number
of constraints that are inserted in the model, and to the
important number of sequences that are needed to charac-
terize the total set ofρ-approximated sequences.

In Table 3, the average and maximum number of se-
quences needed to characterize the whole set of sequences
is reported (only for the instances solved within the time
limit). We can see that for small size problems, the
number of sequences needed to characterize all theρ-
approximated sequences can be already important (more
than 360 for 8 jobs in the case of the two-machine flow-
shop problem and more than 130 for 10 jobs in the case of

1||Lmax cpu (s) unslv
n ρ (%) MIP1 MIP2 MIP1 MIP2
6 0 0.36 0.18 0 0

5 0.37 0.16 0 0
10 0.45 0.18 0 0
20 0.57 0.26 0 0

8 0 2.55 0.69 0 0
5 2.70 0.81 0 0
10 10.34 0.78 0 0
20 18.09 0.80 0 0

10 0 60.25 26.33 11 1
5 64.82 37.69 10 1
10 115.95 20.14 14 2
20 84.09 25.89 17 2

Table 1. Computation times for the single
machine problem

F2||Cmax cpu (s) unslv
n ρ (%) MIP1 MIP2 MIP1 MIP2
6 0 0.30 0.75 0 0

5 1.36 0.87 0 0
10 2.24 1.18 0 0
20 3.85 1.23 0 0

8 0 111.65 27.95 3 0
5 212.11 84.76 20 0
10 235.52 108.09 25 1
20 50.89 59.78 18 0

Table 2. Computation times for the two-
machine flowshop problem

the single machine problem). This clearly limits the use of
CPLEX for solving this very difficult problem considering
larger instances.

1||Lmax F2||Cmax

n ρ (%) avg max avg max
6 0 2.30 7 3.40 11

5 2.37 7 7.67 20
10 2.47 7 10.50 23
20 2.90 11 12.27 32

8 0 4.97 16 28.50 96
5 5.27 16 79.97 224
10 6.37 19 109.83 227
20 6.67 21 78.97 362

10 0 22.24 104 – –
5 22.59 132 – –
10 22.36 85 – –
20 25.68 85 – –

Table 3. Average and maximum number of
sequences

It can be also noticed that, for a given number of jobs,
the results are not linked to the value ofρ, since the CPU
time and the number of unsolved problems remain stable.

It is also interesting to notice that there is no straight-
forward relation between the evolution of the number of
sequences, needed to characterize the whole set ofρ-
approximated solutions, and the value ofρ.

6. Conclusion

We have considered in this paper an original discrete
optimization problem, which consists in characterizing
the whole set ofρ-approximated sequences for some
scheduling problems. The problem of characterizing so-
lutions has not receive a great interest in the schedul-
ing literature, despite its theoretical and practical inter-
ests. The problems that can be treated by the proposed
method suppose that a sequencing rule exists for deciding
the best order of two consecutive jobs. The properties of
the lattice of permutations are used for the deduction of
the characteristics of the sequences. We search for theρ-
approximated sequence with minimum degree in the lat-
tice (maximum depth) and we iterate until no sequence
can be found. The problems complexity remains open.

Two linear programming models are proposed and
tested. In the first one, positional Boolean variables are
used whereas in the second one, sequencing Boolean vari-
ables are used. The computational experiments show
that some methods like dedicated branch-and-bound algo-
rithms may certainly have some chances to perform better
than MIP solvers.

A future research direction is to go further in the com-
plexity study of the problems and to succeed to prove
that they are NP-hard (what we guess). It then be worth

proposing new exact solving methods. To that aim, an ex-
act method including constraint programming techniques
dedicated to the SATISFIABILITY problem would cer-
tainly be very promising for this problem.

Acknowledgements
This work was supported by the ANR project no. 08-

BLAN-0331 named “ROBOCOOP”.

References

[1] C. Artigues, J.-C. Billaut, and C. Esswein. Maximization
of solution flexibility for robust shop scheduling.Euro-
pean Journal of Operational Research, 165(2):314–328,
2005.

[2] C. Artigues, F. Roubellat, and J.-C. Billaut. Characteriza-
tion of a set of schedules in a resource-constrained multi-
project scheduling problem with multiple modes.Interna-
tional Journal of Industrial Engineering: Theory Applica-
tions and Practice, 6(2):112–122, 1999.

[3] M. Bennett and G. Birkhoff. Two families of Newman
lattices.Algebra Universalis, 32(1):115–144, 1994.

[4] J.-C. Billaut and F. Roubellat. A new method for workshop
real time scheduling.International Journal of Production
Research, 34(6):1555–1579, 1996.

[5] V. Bowman. Permutation polyhedra.SIAM J. on Applied
Mathematics, 22(4):580–589, 1972.

[6] V. Duquenne and A. Cherfouh. On permutation lattices.
Mathematical Social Sciences, 27(1):73–89, 1994.

[7] J. Erschler, F. Roubellat, and J.-P. Vernhes. Finding
some essential characteristics of the feasible solutions for
a scheduling problem.Operations Research, 24(4):774–
783, 1976.

[8] P. Esquirol, M.-J. Huguet, and P. Lopez. Modelling and
managing disjunctions in scheduling problems.Journal of
Intelligent Manufacturing, 6(2):133–144, 1995.

[9] J. R. Jackson. Scheduling a production line to minimize
maximum tardiness.Management science research, 43,
1955.

[10] S. M. Johnson. Optimal two- and three-stage production
with setup times included.Naval Research Quarterly,
1:61–68, 1954.

[11] G. Markowsky. Permutation lattices revised.Mathemati-
cal Social Sciences, 27(1):59–72, 1994.

[12] I. Sabuncuoglu and M. Bayiz. Analysis of reactive
scheduling problems in a job shop environment.European
Journal of Operational Research, 126(3):567–586, 2000.

[13] I. Sabuncuoglu and O. Kizilisik. Reactive scheduling in a
dynamic and stochastic FMS environment.International
Journal of Production Research, 41(17):4211–4231, 2003.

[14] S. Van de Vonder, F. Ballestin, E. Demeulemeester,
and W. Herroelen. Heuristic procedures for reactive
project scheduling.Computers and Industrial Engineer-
ing, 52(1):11–28, 2007.

