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Abstract

Flood plain dynamic modelling remains a challenge because of the com-
plex multi-scale data, data uncertainties and the uncertain heterogeneous
flow measurements. Mathematical models based on the 2d shallow water
equations are generally suitable but wetting-drying processes can be driven
by small scale data features. The present study aims at deriving an accurate
and robust direct solver for dynamic wet-dry fronts and a variational inverse
method leading to sensitivity analyses and data assimilation processes. The
numerical schemes and algorithms are assessed on academic benchmarks rep-
resenting well some flood dynamic features and a real test case (Lèze river,
southwestern of France). Original sensitivity maps with respect to the (fric-
tion, topography) fields are performed and discussed. Furthermore, the iden-
tification of inflow discharges (time series) or roughness coefficients defined
by land covers (spatially distributed parameters) demonstrate the relevance
of the approach and the algorithm efficiency. Inverse computational methods
may contribute to breakthrough in flood plain modelling.

Keywords: 2D shallow water, flood plain, data assimilation, sensitivity,
adjoint, wet-dry front.

1. Introduction

Flood plain dynamic modelling is still an active research topic because of
the complex multi-scale data (e.g. the topography), data uncertainties (e.g.
inflow discharge) and the uncertain sparse heterogeneous flow measurements.
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The flow dynamic processes are quite well understood; generally the math-
ematical models based on the 2d shallow water equations are suitable (in
some circumstances the inertial can be neglected). Nevertheless the multi-
scale data features, hence the resulting multi-scale flow features, make the
modelling of flood plain dynamics a great challenge. Typically the wetting
- drying processes (whatever in rural or urban areas) can be greatly corre-
lated to small scale pathways (e.g. dykes, breaks in embankments). Then
the global flow dynamic can be driven by small scale data features.

Defining small scale computations require to consider the right physi-
cal processes (typically the 2d shallow-water equations, complete or not),
extremely high computational costs (High Performance Computing becomes
mandatory), more and better terrain data. DTM have greatly improved with
LIDAR in the 2000’s; their accuracy is higher and higher. Also since recently
Shuttle Radar Topography Mission (SRTM) provides rich DTM at large scale
(30m horizontal accuracy). In other respect, radar and photo images taken
during flood events are more and more common. Remote-sensed data from
space are richer and richer; for example the forthcoming data from ESA Sen-
tinel missions or NASA-CNES SWOT mission will make major progresses in
river observations and flood plain measurements.
To become reliable in real contexts and operational, distributed flow models
will be based on HPC, cocktails of heterogeneous multi-scale data and math-
ematical methods - algorithms combining all these information.
Data assimilation is a crucial key methodology widely used for the atmo-
sphere and oceans modelling. Sequential methods (Kalman like algorithms)
are efficient but since they require huge numbers of model runs, their uses
become prohibitive for spatially distributed models. Variational Data Assim-
ilation (VDA, also called 4D-var) based on the adjoint model, becomes the
right methodology to combine at best the mathematical model, data and the
flow measurements. VDA leads to model uncertainty reductions, parameter
identifications and the model calibration. Thus, elaborating adjoint-based
methods for 2d distributed models becomes a necessary step even if it may
be not sufficient to obtain reliable predictive flow models. Indeed, the terrain
data, remote-sensed data, the mathematical model and the computational
grid have to be consistent each other; the numerical consistency required
between all these information is not clear yet. Furthermore, an accurate
descriptive model may not necessarily means reliable predictive model. Typ-
ically if the right small scale data features have not been taken into account
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correctly in the mathematical model, the calibrated model (describing well
the available observations) may not be accurate for prediction.

Following the research directions and the modelling challenges mentioned
above, the present paper aims at elaborating an accurate and robust direct
solver for dynamic wet-dry fronts (feature potentially crucial in flood plain
context), next an adjoint-based variational inverse computational method
leading to sensitivity analyses and data assimilation. The forward model is
based on the 2d Shallow Water (SW) equations with friction term. (The iner-
tial term is taken into account; obviously it can be straightforwardly skipped
if useless). The 2d SW equations is suitable to model many types of shal-
low geophysical flows and waves propagation e.g. the atmosphere, oceans,
coastal flows, rivers and flood plains. As already mentioned, these geophys-
ical flows involve multi-scales data, multi-scale phenomena, badly known
topographies (at best well known but at a given scale), uncertain quantities
at open boundaries (e.g. inflow discharge), uncertain model parameters (e.g.
roughness coefficients). In the flood plain case, the flow dynamic involve
wet-dry fronts which are difficult to capture accurately, in particular since
topography are rapidly varying. To circumvent this mathematical and nu-
merical difficulty (the water depth tends to 0 which can make blow up the
equations and the numerical schemes), the classical technic adopted in the
literature is to introduce a numerical cut-off at the front in the momentum
equation, see e.g. [1] and references therein. Then the front velocity depends
fully on this unphysical regularisation (the numerical cut-off) hence distort-
ing the flood plain dynamics. The numerical solvers derived here do not
require any numerical regularisation at the front. To our best knowledge this
is new (in particular in presence of rapidly varying topography). In other
respect, a higher-order scheme (e.g. second order) can be very interesting in
a geophysical context since it makes easier a better consistency between the
data (typically the DTM given at a fixed scale) and the computational mesh.
In the present study, a first step consist to derive a couple of numerical
FV schemes, first order and second order, presenting the important feature
mentioned above; also these numerical schemes are assessed into details and
compared. The second step of the study consists to elaborate efficient compu-
tational inverse methods based on the adjoint method, providing sensitivities
maps, robust and affordable variational data assimilation processes.

Deriving FV schemes based on second order methods is quite classical
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(even if it remains very technical), but deriving an actual second order scheme
remains a challenge.The application of FV schemes to hydraulic problems has
started in the early eighties together with the development of these schemes
for aerodynamic applications, see e.g. [2] treating of SW equations with
bathymetry and friction. MUSCL technics comes after the pioneering work
[3]. First higher-order analysis has been written in [4] on structured meshes
and in [5] including for hydraulic applications. Recent reviews can be found
for example in [1, 6]. The present contribution aims at elaborating a set
of methods leading to an actual second order scheme, accurate in presence
of wet-dry front situations. The approximate Riemann solver chosen is the
HLL solver [7, 8] combined with an ad-hoc estimate of wave velocity [9].
A standard MUSCL technic (mono/multi-slope with corresponding limiters)
is combined with a well-balanced property treatment. The well-balanced
property (water at rest preserving) comes from the early work [10]. Many
technics exist in the literature; in the present study it has been observed that
the technics presented in [11, 12] provide a robust and accurate framework.
Concerning the time stepping, it has been observed that an implicit-explicit
Runge-Kutta (IMEX) scheme leads to an actual second order accuracy, while
a more standard Runge-Kutta scheme (order 2) for example does not.
To our best knowledge, the present numerical scheme combination leads to
a numerical solver presenting accuracy, stability and robustness features as
never published in the literature. The numerical schemes have been assessed
by performing classical test cases from the literature plus extra new ones
presenting crucial features of flood plain dynamics. Detailed comparisons
between the first order scheme and two second order versions are made, in-
cluding on the real test case considered (Lèze river, southwestern of France).

As already mentioned, the second step of the study aims at deriving sensi-
tivities maps and variational data assimilation processes based on the adjoint
model and an optimal control loop. Variational data assimilation (also called
4D-var) is widely employed for few geophysical flows, see e.g. [13] and refer-
ences therein. Given some measurements of the flow (typically time-series at
gauge stations and/or remote-sensed observations), sensitivity analyses and
data assimilation algorithms make possible to identify boundary conditions
(e.g. inflow discharge) and uncertain parameters (e.g. friction parameters),
hence reducing model uncertainties. Concerning 1d river flow models (Saint-
Venant’s equations), calibration and sensitivity analysis based both on the
variational approach and on filtering approaches, have been widely studied
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in the literature. On the contrary, for 2d SW models very few studies only
address sensitivity analyses and parameter identifications (friction parame-
ter, boundary conditions). One of the reason is the heavy task to derive the
adjoint model, next to make it run in reasonable CPU time and memory
storage. Let us cite [14] which treats of a 2d SW river model coupled with a
simplified sediment transport model; [15] analysing some capabilities of the
approach given some spatially distributed observations; [16] treating of the
assimilation of a flood plain image (post-treated SAR data) into the 2d flow
model; [17], [18] treating simultaneously the assimilation and the superimpo-
sition of 2d local - 1d global flow models (in academic configurations only);
[19], [20] treating of the assimilation of surface drifting particles (lagrangian
data) into the 2d flow model. All these studies are based on a first order cost
function minimisation algorithm (quasi-newton generally); the cost gradient
is computed by performing the adjoint model.
None of these studies are based on higher-order numerical schemes; further-
more if considering wet-dry front dynamics, the computations at the front
were classically regularised (by introducing a cut-off hence distorting the
front velocity) both in the direct model and in the adjoint model. Also, the
past studies considering flood plain flows did not address the sensitivity with
respect to the topography. The robustness, stability and high accuracy of
the whole model (direct model including wet-dry front dynamics plus the
adjoint equations) require the finest numerical analysis knowledges, and the
result may be crucial to obtain a reliable descriptive model, hence potentially
predictive.
Sensitivity analyses are rich information helping to set up any complex flow
model. In the present study, the sensitivity maps, based on the cost gradient
values, are performed with respect to the friction parameter and the topog-
raphy (spatially distributed coefficients). These maps can lead to a better
understanding of the complex interactions within the flood plain flow. The
VDA process (based on optimal control and minimisation) is performed to
identify the inflow discharge or friction coefficients defined by land covers.
Thus the inverse variational computational tools derived in the present study,
implemented into DassFlow (Data Assimilation for Free Surface Flows) soft-
ware, [21, 22, 23], may lead to a new generation of 2D shallow flow and flood
plain dynamics models.
From a technical point of view, the adjoint code is generated "automatically"
by using an automatic differentiation tool (Tapenade, [24]). To do so, the
direct source code must be prepared to be differentiated source-to-source;
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it is the case in DassFlow software. Next the forward MPI commands are
"reversed" by hand (or using an extra shell script). Also, some extra crucial
tricks make more affordable the adjoint code in terms of memory storage.
Based on the know-hows exposed here, the present computational inverse
method becomes affordable both in terms of CPU time and memory (on par-
allel architectures), including for quite large flood plains.

The capabilities of the algorithms derived here (sensitivity maps, identi-
fication parameters, model calibration, data assimilation) are illustrated on
a real test case: the Lèze river, southwestern of France. A cost function
measuring the discrepancy of the computed water elevations at two (virtual)
gauge stations (synthetic data with realistic noise amplitudes) is classically
defined. Then variational sensitivities analyses (sensitivity maps) are per-
formed with respect to: a) the Manning-Strickler friction coefficient locally
defined i.e. without any a-priori on land covers (one value per cell); b) the
topography elevation.
The sensitivity maps required one run of the direct model plus the adjoint
model, hence in terms of CPU times, it roughly costs (1+4) times a direct
simulation.

Next identification parameter experiments are performed. The identified
parameters are: a) the friction Manning-Strickler friction coefficients defined
by land covers (6 in this case); b) the inflow discharge Q

in

(t) at upstream
(open boundary).

Finally, let us point out that the algorithms elaborated here, and the
corresponding software, can be applied to any other flow modelled by the 2d
SW equations (e.g. tidal flows).

The paper is organised as follows. In Section 2, the direct mathematical
model and the FV schemes (1st and 2nd order) are presented, then assessed
on a benchmark representing well the difficulties encountered when modelling
flood plain dynamics. In Section 3, the inverse method (the adjoint-based
method, the resulting variational sensitivities and the data assimilation pro-
cess) is presented. The flood plain test case (Lèze river), based on a fine
topography and a historical-like inflow discharge is considered in Section 5,
both for direct numerical comparisons and inverse analysis (sensitivity anal-
yses and parameter identifications). Some perspectives are proposed in the
conclusion (Section 6). A first appendix present a second benchmark of the
forward solver, demonstrating the actual second order of the elaborated FV
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scheme. A second appendix presents the existing link between the cost func-
tion differential (the mathematical gradient) and an automatically derived
adjoint code. Next a speed-up curve demonstrate the good efficiency of the
whole MPI computational code (demonstrating in particular the efficiency of
the reverse transforms of the MPI commands introduced by hand).

2. The Direct Model

In this section, the direct (forward) model is briefly described. The equa-
tions are the classical 2D shallow-water equations with the Manning-Strickler
friction law. Few numerical schemes are developed, all based on finite vol-
ume methods. These technical combinations of different numerical methods
result in first order and second order schemes. All of the schemes are pos-
itive and respect water at rest (well-balanced property). More importantly
they remain stable in the presence of a dynamic wet/dry front without any
unphysical regularisation (a numerical cut-off at the wet-dry front) like it is
classically done in the literature, see e.g. [1] and references therein.
Theses schemes are obtained from original combinations of existing tech-
niques. Their accuracies and capabilities are assessed into details. The basic
principles of the schemes are presented below, while all details can be found
in [25].
Basically, the required ingredients to reach an actual second-order scheme,
stable without any regularisation at wet-dry front, are the following: a) an ad-
equate wave velocity in the HLLC approximate Riemann solver; b) a MUSCL
reconstruction; c) an implicit-explicit Runge-Kutta (IMEX) time scheme.

To our best knowledge, the present scheme accuracy and stability is un-
equaled in the literature, see e.g. [1, 26, 6] and references therein.
The present finite volume solver capabilities are demonstrated by performing
classical and original tests cases (one below and one in Appendix Appendix
A); many others are presented in [25].

7



2.1. The Mathematical model

The 2d Shallow Water equations including the Manning-Strickler friction
term read in their conservative form as follows:
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2.2. Numerical scheme assessments in presence of wet-dry fronts

The standard 2d SW model described above is numerically solved us-
ing finite volume schemes, first and second order. The basic scheme is the
standard HLLC approximate Riemann solver, see e.g. [1], but with the inter-
mediate wave speed introduced in [9]. (This choice turned out to be essential
to reach L1 stability without any regularisation). The well-balanced prop-
erty has been introduced by using two different methods: those presented
in [11, 12] (so-called wb-A in the figures) and those presented in [27, 28]
(so-called wb-E in the figures). The second order accuracy is obtained by
combining a MUSCL reconstruction and an implicit-explicit Runge-Kutta
(IMEX) time scheme, [29].

This combination of these quite technical but standard methods, leads to
an actual second-order accuracy, well-balanced, positive and stable in pres-
ence of dynamic wet/dry fronts , without any unphysical regularisation i.e.
a cut-off at the front like it is classically done in the literature, see e.g. [1]
and references therein.
To our best knowledge, the present combination is original; it leads to a nu-
merical solver accuracy, stability, and finally robustness as never published
in the literature. The numerical schemes have been assessed by perform-
ing classical test cases from the literature plus extra new ones, representing
geophysical shallow flow features and difficulties. In the present article, we
present two selected test cases only: a first one presenting a dynamic wet-dry
front and a second one (presented in Appendix Appendix A) considering a
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Figure 1: Dam break test case (computed in 2D): (L) Sketch (D) Reference and computed
solution (h, q).

"regular" dam-break layout. The goal of this second test case is to demon-
strate the actual second order feature of the scheme (this is not classical, to
our best knowledge). We refer to [25] extra test cases (classical and original
ones).
Let us point out that the second order accuracy can be mathematically
reached on smooth solutions only. Nevertheless, in presence of a wet/dry
front (i.e. in presence of non-smooth solution), it is demonstrated below that
the second-order schemes remain more accurate than the first order ones
(even if their convergence rate decreases to almost one).

Recall that the aim of the present section is to demonstrate the accuracy
and the robustness of the derived numerical schemes in flood plain like config-
urations. The test case presented below is a dam break on a constant bottom
slope, involving a dynamic wet/dry front, see Fig. 1. The Manning-Strickler
friction law is taken into account.

The domain length is l
x

= 1000 m with wall boundaries on each side, the
slope s = 0.5 %, the Manning-Strickler coefficient is constant, n = 0.05, and
the simulation time is T = 500 s. Since no analytical solution is known, the
"reference solution" is the numerical solution computed on an extremely fine
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grid -12 800 cells- Fig. 1; it is considered as almost exact. The "computed
solution" is obtained on a rough mesh: 20 cells in length only.
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Figure 2: Dam break test case (computed in 2D): convergence curves (relative error norms
e1(h) for the different schemes vs mesh size).

The dynamic wet/dry front is well captured by all finite volume scheme
versions (first and second order), without any cut-off water depth h

✏

(this is
an unusual feature). The numerical depths h remain strictly positive.

The computed relative error norm is defined by:

e1(x) =
kxnum � xexactk1

kxexactk1
with kxk1 =

X

K2⌦

m
K

|x
K

|

where K denotes the mesh cells and m
K

their measures.

In the first order scheme case, the convergence rate of e1(h) equals 1 as
expected, Fig. 2.
Two versions of second order scheme are assessed: one based on the RK-SSP2
time scheme (Heun’s method) and an other one based on an implicit-explicit
Runge-Kutta (IMEX) time scheme. If using the second order RK-SSP2 time
scheme (Heune’s method), the convergence rate remains equal to 1, but with
a better accuracy than the first order scheme one, Fig. 2. If using the IMEX
time scheme, the convergence rate is slightly greater than 1 only, but the
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accuracy is better than the others.
The loss of the optimal order (order 2) is normal since the solution at wet/dry
front is singular. The test case presented in Appendix Appendix A is the
regularised version of the present dam break test case; then the solution is
regular at the front and the convergence rate demonstrates the actual second
order of the IMEX finite volume scheme. (Let us recall that such demon-
strated accuracy is unusual in the literature).

The stability condition of the global schemes is the classical CFL-like
condition. We refer to [25] for more details and more test cases (classical and
original ones).

Concerning the CPU time, the second order schemes require 4 / 5 times
more CPU time than the first order version. This ratio of 4 / 5 is roughly
due to a factor 2 for the IMEX time scheme and to a factor 2 for the MUSCL
reconstruction.

Finally, the numerical tests presented above demonstrate that the present
numerical schemes are robust and accurate even in presence of wet-front dy-
namics. A demonstrated numerical scheme accuracy is crucial before study-
ing complex geophysical flows. Indeed it makes the numerical solver "trans-
parent" in the flow analyses, making possible to focus on the modelling errors
only (e.g. the data - mathematical model consistency etc).

3. The Inverse Model

In this section, the adjoint-based inverse method is presented. Recall
that the adjoint method makes possible to compute efficiently a cost func-
tion gradient. Next it leads to: a) sensitivities analyses (even for spatially
distributed coefficients); b) parameter identifications and model calibration,
based on an optimal control - optimisation process.

The adjoint-based method remains a key tool to perform full optimisation
processes (Variational Data Assimilation) and make decrease model param-
eter uncertainties. More details on the VDA method can be found for exam-
ple in [30, 31]. As mentioned previously, the optimal control - adjoint based
method is classical in the data assimilation community. Nevertheless, the de-
velopment of robust, efficient algorithms, and their application to real-world
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problems remain a challenge. To our best knowledge, the present accurate,
"automatically" derived, HPC version, is new in the surface flow research
community, see e.g. [32]. Variational sensitivity results are promising to im-
prove our surface water flow analyses. The algorithms described below have
been implemented into the computational software DassFlow, [22, 21, 23].

The inverse problem is stated as a optimal control / optimisation problem.
Since the uncertain parameter number is generally huge (typically the initial
condition is never perfectly known), the optimisation problem is solved using
the adjoint method. The adjoint code is obtained from the direct source code
by source-to-source differentiation (automatic differentiation using Tapenade
software, [24]). The link from the differential of the cost function and the
adjoint code automatically generated is highlighted in Appendix B.
The so-called variational sensitivities are defined as being the gradient of the
cost function. If the parameter considered is spatially distributed, it leads
to sensitivity maps. These sensitivities are local information only since the
gradient values are valid at a given control parameter value only (first or-
der Taylor’s expansion). Next, the VDA process (also called 4D-var in the
literature) is described. The latter makes possible to calibrate the model (pa-
rameter identification) by making fit the model with the observations (e.g.
elevation water surface values).

3.1. Minimisation problem

The so-called "forward code" solves the 2D shallow-water equations as
presented previously and computes the model response j (a scalar valued
function). The model response j depends on the model input parameters
k; k is the control vector. It can include scalar values or spatially dis-
tributed variables. Typically k can contain the (time-dependent) inflow
discharge, the outflow boundary conditions (e.g. the rating curve param-
eters), the Manning-Strickler roughness coefficients (spatially distributed),
the bathymetry, the initial condition or any combination of these "parame-
ters".

In a data assimilation context, j(k) measures the misfit between the nu-
merical solution and the observations; it is the cost function. Otherwise,
j can be defined from the state of the system only, or its derivative, for a
stability analysis purpose for example. The reader can refer to educational
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resources for more details for example in [30, 31].
A typical cost function in the present data assimilation context reads as
follows:

j(k) =

Z
k�obs � �(k)k2⇤ dx+ regularisation terms (2)

In the present context, the quantity � denotes generally the water elevation.
Subscript obs denotes an observed quantity. Usually, the regularisation term
is a quadratic term in k or its derivatives, hence regularising and locally
"convexifying" the cost function (Tykhonov’s regularisation). Also the reg-
ularisation term is used to introduce a "good" a-priori on the optimal values
sough.
The data assimilation problem reads as an optimal control problem as fol-
lows:

min
k

j(k) (3)

where �(k) is deduced from the solution of the forward model (1) at k given.

Calibrating the model or identifying some parameters consists to solve
this optimisation problem. It is done classically using descent algorithms,
generally quasi-Newton algorithms. Thus the computation of the gradient of
j with respect to k is required. The latter is performed by introducing the
adjoint model in order to obtain all partial derivatives of j (with respect to
all components of k) in one extra model resolution only.

3.2. Gradient computation

The adjoint code and the cost function gradient are obtained by code/algorithmic
differentiation using Tapenade software [24]. The output corresponds to the
partial derivatives of the cost function j with respect to all control vari-
ables. The non trivial link between the forward code, the cost function j,
the adjoint code generated automatically using an automatic differentiation
software source-to-source and the resulting gradient, is shown in Appendix
B. For a sake of simplicity, this link is described in the case the input pa-
rameters are: 1) the initial condition; 2) the inflow discharge (boundary con-
trol, time dependent); 3) the Manning-Strikler roughness coefficient n (time-
independent, spatially distributed coefficient). In this case: k = (y(0); q

in

, n)
with y0 = (h0,q0).
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Then the total differential dj(k) of the cost function j(k) writes as follows :

dj(k) = @j

@y0
(k) · �y0 + @j

@qin
(k) · �q

in

+ @j

@n

(k) · �n (4)

The adjoint code obtained via automatic differentiation costs approxima-
tively 5� 6 times the direct code. A basic complexity calculation shows that
a factor 3 is a minimum, while in practice a factor 5 is good.

The adjoint code obtained by automatic differentiation is reverse in the
memory path; this process requires a huge memory amount. Furthermore,
the VDA process requires a large number of minimisation iterates, typically
10�50. Therefore, in practice HPC codes are required; also it is highly desir-
able to introduce some memory optimisation tricks within the adjoint code.
Developing an affordable (direct + adjoint) computational code requires few
crucial tricks. In a MPI context, these tricks are detailed in [25]. They make
possible to decrease the (huge) memory required by the automatic differenti-
ation. As a demonstration of the efficiency of DassFlow computational code,
a speed-up curve is presented in Appendix B.

3.3. Variational sensitivities

Given a perturbation of the control vector dk 2 K, we have:

j(k+ dk) ⇡ j(k) +rj(k).dk (5)

at first order (Taylor’s expansion). Thus, the gradient value rj(k) provides a
local sensitivity of the cost function (model output) with respect to the input
parameters. In other words, the i-th value @j

@ki
(k) gives the sensitivity of the

model output with respect to the i-th parameter, e.g. the Manning-Strickler
coefficient at one location point. These sensitivities are local since they are
valid at a given point k only. Nevertheless, the resulting sensitivity analysis
tool is extremely interesting tool leading to better understanding of both the

physics and the model by quantifying the roles of the physical parameters
and the influences of parameter variations.

3.4. Data assimilation (twin experiments)

As mentioned previously, the VDA approach consists to solve the optimi-
sation problem (3). The minimising procedure operates on the control vector
k to generate a new set of parameters making the model output closer to the
observations. The VDA process is sketched in Figure 3.
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Figure 3: Principle of a 4D-Var type variational data assimilation algorithm.

Here, the classical quasi-Newton L-BFGS algorithm is employed; more pre-
cisely, the L-BFGS algorithm implemented in the routine from [33].

Let us point out that each variable of the control vector may be active
or not, as an actual control variable. In practice, of copurse it is possible
to identify simultaneously only few unknown parameters (control variables);
the identifiability depending on the available observations.

The methodology of twin experiments is used. They are designed as fol-
lows : the reference model parameters k

ref

are used to generate the observa-
tions y

obs

(synthetic data). The latter are perturbed by a realistic Gaussian
noise, hence generating real-like observations. Next, the inverse problem
consists to retrieve the set of parameters k

ref

starting from an initial guess
k 6= k

ref

and by performing the minimisation process. At each iterate the
VDA algorithm computes l a new set of parameters kl according to the gra-
dient @j

@k

, which make decrease the cost function value j. The parameter
inferences presented below in the case of Lèze river are obtained following
this methodology.

4. A Food Plain Dynamic: Leze River (southwestern of France)

In this section, the inverse computational method capabilities are demon-
strated on a real data case: a portion of the Leze river, southwestern of
France. First, the robustness of the developed numerical schemes are high-
lighted in this context (a real flood plain dynamic). Furthermore, given a
computational grid (the finite volume mesh), given a DTM (derived from a
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fine LIDAR), some comparisons between the first and second order schemes
are presented and commented.
Next, the inverse capabilities of the full model are shown: sensitivity maps
(gradient values spatially distributed) and data assimilation. Two twin ex-
periments are performed: 1) the identification of the friction coefficient in
6 land covers; 2) the inflow discharge Q

in

(t). These numerical experiments
demonstrate the capabilities of the present variational inverse method in a
real-like flood plain case.
Also, these numerical tests assess the whole numerical chain implemented into
DassFlow software [23], in presence of wet-dry front dynamics over complex
topography: accurate, stable direct and adjoint models, sensitivity analysis,
parameter identifications and calibration processes.

4.1. The river configuration

Lèze River is a 70km long river in southwestern of France near Toulouse.
The case presented hereafter is a 2 km long subdomain centred on the hydro-
logical station of Lezat-sur-Leze. The domain is discretised with a relatively
coarse mesh, 24632 cells. Topography data come from local surveys (LIDAR
data); the resulting DEM is extremely fine; it has been projected onto the
computational mesh.

This real test case presents a quite complex topography, in particular
since the presence of a cross road and a bridge (it is the location where the
gauge station is), see Fig. 4.

The domain boundaries consist in two open boundaries at upstream and
downstream; wall boundary is applied elsewhere. At upstream boundary, the
inflow hydrograph corresponding to the exceptional flood event of June 2000
is imposed, Fig 5(a). An experimental rating curve is imposed at the outflow
open boundary (downstream). The Manning-Strickler coefficients are defined
as follows. Two scalar values of n are considered: one uniform value in the
stream-bed and one uniform value elsewhere (in the floodplain). The two
values of Manning friction parameters are : 0.1 s1/3.m�2 in the stream-bed
and 0.05 s1/3.m�2 in the floodplain. These values have been obtained after
a trial-error calibration (i.e. "by hand") leading to a good representation of
the flow plain dynamics observed during the June 2000 event (no accurate
measurements are available).
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Figure 4: Leze river topography and mesh (24632 cells)

The initial condition is set as follows. The whole domain is considered dry,
next it is gradually filled in the stream-bed during a long time (about two
hours) to obtain a realistic initial condition; it is the flow state at t = 0.

4.2. Direct computations and scheme comparisons

In this section, the direct model only is performed; this shows some flow
features. Also, some comparisons between the first order scheme and a second
order scheme are presented. In this section, the "1st order scheme" denotes
the Euler / A-well-balanced scheme, and the "2nd order scheme" denotes the
IMEX/MUSCL A-well-balanced scheme, see Section 2.
The time simulation is T=63 hours; the max CFL number is 0.8 which cor-
responds to 2, 880, 282 time steps for the first order scheme (and 2, 872, 208
time steps for the second order scheme).
All the results presented here are obtained using a water depth cutoff h

✏

⇡
10�15. In other words, the numerical schemes remain stable even when com-
puting wet-dry front dynamics over complex topography.
The Froude number equals 0.3 at maximum (it is during the flood peak).
The CPU computation times are: about 4h (5ms per dt) if using the first
order scheme and about 17h (21ms per dt) if using the second order scheme.

The resulting hydrographs Q
out

obtained at outflow are compared in Fig.
5(a). Both schemes give similar outflow discharges; excepted at t = 19h, a
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maximal discrepancy of 8% is observed.

time (h)

Q
in
 /
 Q

o
u

t (
m

3
/s

)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Imposed hydrograph
Qout first order
Qout second order

(a) Q
in

and Q
out

in time

time (h)

W
a
te

r 
vo

lu
m

e
 (

m
3
)

0 10 20 30 40 50 60
0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

First order
Second order

(b) Total water volume V in time

Figure 5: Left : Prescribed hydrograph at inflow (black curve), resulting outflow hydro-
graphs Q

out

obtained from the 1st and 2nd order schemes. Right: Water volume in the
computational domain vs time (in hours): V =

R
T

0 (Q
in

�Q
out

) dt obtained from the 1st
order and 2nd order schemes.

The net mass balance (total water volume) in the computational domain
is plotted vs time in Fig. 5(b). An over-estimate of the net mass balance by
the 1st order scheme can be noticed (by a factor of 20% at maximum). This
is due to an over-estimate of the water level h in the stream-bed, see Fig. 6
for h at the three "stations", and Fig. 7 for h at two cross-sections. Also,
it can be noticed that the first order scheme gives slightly lower velocities in
the stream-bed than those obtained using the second order scheme.

If comparing the spatially distributed water depth h at the flood peak
time, the two schemes give slightly different flood plain patterns (in particular
downstream the crossing road); this slight difference is not plotted.

In conclusion, as expected, given a realistic computational mesh and DTM
accuracy, the hydraulic model accuracy difference obtained between a first
order scheme and an actual second order scheme, is notable but it may be
secondary in a geophysical uncertain context. The second order requires a
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Figure 7: Water surface (z
b

+h) at time t = 26h at Section 1 (Left) and Section 2 (Right).
See the section locations in Fig.8. First and second order results are plotted.

CPU time computation about 4 / 5 times higher.
In other respect, let us recall that the front dynamic can be greatly affected
by any unphysical regularisation introduced in the numerical solver (areas
where h tends to 0) see e.g. [1] and references therein. In a flood plain
context, this feature is likely more important than the accuracy discrepancy
between the first and second order. Recall that the present numerical solvers
(both first and second orders) do not introduce any regularisation at the
front, hence do not present this embarrassing numerical modelling bias.

19



Flow
direction

Road

1

1

3

2

2

h

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Flow
direction

Road

1

1

3

2

2

Flow
direction

Road

1

1

3

2

2

h

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Flow
direction

Road

1

1

3

2

2

h
diff

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 8: Top views of water depth h at t = 26 h (flood peak), locations of the 3 observation
points/areas, locations of the 2 cross-sections. (Up left) first-order computed depth h. (Up
right) second order computed depth h. (Down) Difference between the first and second
order depth �h.

20



4.3. Sensitivity maps

In this section, variational sensitivities are performed with respect to
the Manning-Strickler roughness coefficient n and the bathymetry z

b

. It is
spatially distributed quantities hence these sensitivities leads to sensitivity
maps.

Boundary conditions are identical to the previous section: the discharge
is imposed at inflow and a rating curve is imposed at outflow.

First the measurements are generated by the forward model (synthetic
data), next a realistic Gaussian noise is added. For all experiments, the mea-
surements are time-series of water elevation at the virtual stations 1 and 2,
see Fig. 9. The recorded water elevation values are perturbed by a random
noise of +/ � 10cm (representing realistic error measurements). Station 2
measurements are based on the average of a dozen of cell values. Similarly,
Station 1 measurements are the average of a dozen of cell values representing
a mean cross-section value in the stream-bed.

The Manning-Strickler coefficients used to generate the data are defined
by areas; their values are given in Table 1.

The cost function is defined as follows:

j(n, z
b

) =
X

time step i

X

station j

(h
i,j

� hobs

i,j

)2 (6)

The sensitivity maps with respect to the Manning coefficient n, Fig. 10(a)
and with respect to the bathymetry z

b

, Fig. 10(b), are the corresponding gra-
dient components for each mesh cell. They are simultaneously obtained by
performing one direct - adjoint run. Let us recall that the model outputs
are the water elevations at the two stations 1 and 2 (see the cost function
j defined by (6)). The gradient values (the sensitivity maps) are relative to
the observations (the water elevations at stations 1 and 2) and relative to
the "computational point" value (i.e. the value of the fields n and z

b

used in
the forward model), see (5).

The gradient value with respect to the Manning friction coefficient is
roughly 2 orders of magnitude higher than those with respect to the bathymetry.
Then for a sake of clarity, the gradient values plotted in Fig 6 have been nor-
malised.
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The highest sensitivities with respect to the friction coefficient n are down-
stream of the observation location areas. This sensitivity distribution is logi-
cal since the flow is everywhere sub-critical (the Froude number is everywhere
less than 0.3).
The dominant sensitivity with respect to the friction coefficient n is in the
stream-bed. One of the consequence is the following. Calibrating the mean
stream-bed roughness coefficient during astandard regime (i.e. without over-
flowing) is highly desirable before calibrating the same model but applied to
a flooding event.

The highest sensitivities with respect to the bathymetry z
b

are located at
the observation locations. This is logical since the direct correlation between
the measurement (water elevation) and the bathymetry elevation.
The bathymetry sensitivity pattern is globally comparable to the friction sen-
sitivity one but more point-wise, less diffused. This remark corroborates the
analyses presented in [34] (sensitivities performed on the linearised steady-
state system around an uniform flow): the bathymetry sensitivity is local (it
does not depend on the perturbation surface area) while the friction sensi-
tivity depends on the perturbation surface area (non-local sensitivity).

In other respect, the similarity between the bathymetry and the friction
coefficient sensitivity global patterns suggest that a simultaneous "blind"
calibration of both quantities (potentially making fit accurately the model
to data) would not result to an intrinsic model, hence providing a model
not necessarily predictive. In other words, these similar patterns illustrate
the potential equifinality problem related to the (topography-friction) pair in
the 2d shallow-water equations. The (topography-friction) pair equifinality
problem and the difficulty to infer this "basal modelling pair" are discussed
for example in [35] for 1d flows.

Finally, let us point out that spatially distributed sensitivity maps can
greatly help the hydraulic modeller to better understand both the hydraulic
model (combining the DTM, the parametrisation) and the flow.
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4.4. Data assimilation and model calibration

In this section, two twin experiments are performed: 1) the identification
of the friction coefficient in 6 land covers; 2) the identification of the inflow
discharge Q

in

(t). The direct model and the assimilated data are the same
as previously (time series of water elevation H at two locations). These two
assimilation experiments demonstrate the capabilities of the present inverse
computational method. These inverse computational methods should make
improve the flood plain modelling.

4.4.1. Roughness coefficient identification

The twin experiment performed aims at identifying the Manning coeffi-
cient values n for each land cover, see Fig. 11(a).

The entire stream-bed corresponds to one land cover, while the compu-
tational flood plain domain is divided into five land covers. The forward
model is strictly the same as the previous one (those used for the sensitivity
analyses): the observations are water elevations measured at the two virtual
stations. The boundary conditions (inflow discharge, outflow law) and the
input parameters (friction coefficients) are the same as previously. The first
guess values were arbitrarily defined as twice or half the target values (de-
pending on the target value), see Table 1. If considering perfect observations
(no noise introduced), then the target values are perfectly recovered. If the
synthetic observations H are perturbed by a +/� 10cm Gaussian noise, the
identified friction coefficients are still very good; It is the results presented
in Table 1.

Land cover # first guess identified target
1 (stream-bed) 0.10 0.0521 0.05
2 (flood plain) 0.06 0.0378 0.03
3 (flood plain) 0.08 0.0550 0.04
4 (flood plain) 0.05 0.1436 0.10
5 (flood plain) 0.14 0.0548 0.07
6 (flood plain) 0.10 0.0096 0.05

Table 1: The Manning coefficient values n identified per land cover (water elevation
measurements include +/� 10cm Gaussian noise).
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An accurate convergence is reached into 32 iterations, see Fig 11(b) (the
stopping criteria have been set extremely small to make decrease as much as
possible the cost function).

It can be noticed that very quickly (after the 6th iterate), the cost func-
tion has almost reached its minimal value but the control parameters did not
converged yet, see Fig. 12 (L), excepted the dominating one: the stream-bed
friction coefficient (land cover #1). The algorithm behaviour is coherent with
the presence of a dominating parameter influence. Next, all the remaining
friction values can be recovered only if the gradient values are computed ac-
curately, hence an accurate direct and adjoint solvers. Also the minimisation
algorithm employed must be efficient and accurate; here it is the L-BFGS
version presented in [33].
This optimisation computation enhances the importance of developing ac-
curate and stable numerical schemes, even in the presence of the dynamic
wet-dry front (see the discussions led in the previous sections).
This synthetic but real-like data assimilation experiment demonstrates the
present inverse method capabilities to enhance flood plain dynamic mod-
elling.

4.4.2. Inflow discharge identification

The present twin experiment aims at identifying the inflow hydrograph.
The forward model is strictly the same as the previous one; the friction co-
efficients are set to the target values indicated in Table 1. The observations
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generated at the two virtual stations are the same as previously (synthetic
water elevation values plus a Gaussian noise); the boundary conditions (in-
flow discharge, outflow law) are the same too.
The cost function is defined as follows:

j(Q
in

) =
X

time step i

X

station j

(h
i,j

� hobs

i,j

)2 + ↵(Q
in

�Qfiltered

in

)2

The second term in the cost expression is a regularisation term (Tykonov-
type term) aiming at smoothing the identified parameter Q

in

(t). The coeffi-
cient ↵ equals 10�3; the smoothed function Qfiltered

in

(t) is defined as a low-pass
filter based on a window size of 4dt (1�0.2)

0.2 (exponential smoothing).

The target hydrograph, the first guess hydrograph and few intermediate
hydrographs are plotted in Fig. 12 (R). The first guess hydrograph is defined
by dividing by two the difference between the maximum value, plus a phase
shift of 4 hours approximatively.

The convergence curves (the decreasing curves of j and krjk vs iterates)
are not plotted since they are similar than those in Fig. 11(b): a fast de-
crease of j the first 7 iterates then a much slower decrease of j, while the
gradient norm krjk keeps decrease until an accurate convergence is reached
at iterate 20. In other words, the target hydrograph is perfectly retrieved by
the minimisation process at iterate 20 while it is already very close at iterate
7, see Fig. 12 (R).

The present identification experiment is very robust and accurate because
the assimilated data are very constraining, in particular the water elevation
time series in the stream-bed. Less dense data would lead to less accurate
identified inflow discharges, see e.g. [15, 16]. Finally, this numerical experi-
ment demonstrates the inverse method capability to infer inflow hydrographs
corresponding to a flood plain event, given time series of water elevation.

5. Conclusion

In this study, a whole computational chain modelling accurately a flood
plain dynamics making possible the inference of uncertain parameters (either
spatially distributed like the friction coefficient and the bathymetry, or time-
dependent like the inflow discharge) has been developed and assessed. As
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a first step, a particular attention has been paid to the robustness and the
accuracy of the forward solver (finite volume method) in presence of a dy-
namic wet/dry front. The difficulty being to do not introduce any numerical
regularisation at the front, regularisation leading to a wrong front velocity.
An innovative finite volume scheme has been built up from a combination
of classical methods (HLLC solver, well-balanced treatment, MUSCL recon-
struction and implicit-explicit Runge-Kutta time scheme) completed with a
less classical modification (the intermediate wave speed in the solver). The
resulting global scheme has been demonstrated to be actually second order,
and naturally stable in presence of dynamic wet/dry fronts (no numerical
cut-off at the wet-dry front). The numerical schemes have been assessed into
details, in particular on benchmarks representing well some flood plain dy-
namic difficulties.

Next, an inverse variational computational method, adjoint based, has
been exposed, including crucial know-hows and tricks in a MPI automatic
differentiation context. This inverse method, classical in other geophysical
flow modelling contexts (e.g. atmosphere, oceans), provides precious sen-
sitivity information in view to better understand the flow and the model.
Given dense in-situ measurements (e.g. water elevation time series), sensi-
tivity maps with respect to the friction parameter (spatially distributed) and
the bathymetry have been performed and compared in the Leze river case
(past flood event of june 2000). The full Variational Data Assimilation pro-
cess make possible the identification of uncertain "parameters", time-series
like the inflow discharge or spatially distributed like the friction coefficient.
These numerical experiments demonstrate the robustness and the great ca-
pabilities of the present inverse computational algorithms, making possible
to reduce uncertainties hence improving flood plain dynamic models.
As already mentioned, the adjoint method has few drawbacks: the poten-
tially complex generation of the adjoint code, its CPU-time and memory use.
Nevertheless, it has been demonstrated that if the direct computational code
is designed for VDA, using automatic differentiation it is possible to derive
quite quickly a reliable assimilation chain. Next, to circumvent the memory
and CPU time drawback of the VDA method, an incomplete adjoint model,
tuneable in terms of accuracy and CPU time, leading to a large gain of com-
putational efficiency with a minimal accuracy loss, could be considered like
it has been done in [36].
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Finally in a context of fast growing remote-sensed data volume acquired
(e.g. the forthcoming ESA Sentinel missions and NASA-CNES SWOT mis-
sion), as mentioned in [32], designing reliable inverse and data assimilation
tools should make a breakthrough in the flood plain modelling.

Appendix A. Finite Volume Solver Assessments

The present section aims at assessing the actual accuracy and convergence
rate of the numerical solvers. To do so a regular solution is compulsory, hence
a flow without wet/dry front (like it has been considered in Section 22). Then
the test case is a "regularised" version of the dam-break benchmark. The
(non-linear) Manning-Strickler friction term is still taken into account.
If using the IMEX time scheme, the convergence rate obtained equals 2 while
for if using the Runge Kutta 2 (RK-SSP2) time-scheme, it equals 1 only, see
Tab. A.13(L). In other words, if not considering the right time-space numer-
ical scheme combination, an a-priori order 2 scheme can be actually order 1...

The test case is as follows. The initial condition is defined by:
(

z
b

(x) = 0.5 e�(x� l
x

/2)2 /2�2

h(x, t = 0) = 0.1 + 0.5 e�(x� l
x

/2)2 /2�2 (A.1)

with � = 100 m, see Fig. A.13. The computational domain length equals
l
x

= 1000 m; the Manning-Strickler coefficient n = 0.05; the total simulation
time is T = 100s. A reference simulation is computed on an extremely small
grid (12, 800 cells); it is considered as exact. The initial condition and the
"exact" solution (h, q) are plotted on Fig.A.13. It can be noticed that the
solution is regular.

The relative error norms e1(h) and e1(q) vs the cell numbers are plotted
on Fig.A.13(L). The RK-SSP2 time stepping method leads to a globally first
order scheme only. Nevertheless, its accuracy is higher than the first order
scheme accuracy. The IMEX time stepping leads to an actual second order
convergence rate.
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(R) Relative error norms e1(h) and e1(q) vs the number of cells.

This test case demonstrates the actual second-order accuracy of the global
scheme resulting from the right combination of: the HLLC solver with the in-
termediate wave velocity presented in [9], the well-balanced numerical solver
defined in [12], a standard MUSCL reconstruction and the IMEX-SSP(3,2,2)
time stepping method. To our best knowledge, such a demonstrated second-
order accuracy is not classical in the literature.

Appendix B. On the gradient derivation

Let us describe the existing link between the forward code, the cost func-
tion j, the adjoint code generated automatically using an automatic differ-
entiation software source-to-source and the resulting gradient.
For a sake of simplicity, the link is described in the case the input param-
eters are: 1) the initial condition; 2)the inflow discharge (boundary con-
trol, time dependent); 3) the Manning-Strikler roughness coefficient n (time-
independent, spatially distributed coefficient). In this case: k = (y(0); q

in

, n)
with y0 = (h0,q0).
The total differential dj(k) of the cost function j(k) writes as follows :

dj(k) = @j

@y0
(k) · �y0 + @j

@qin
(k) · �q

in

+ @j

@n

(k) · �n (B.1)

We show how the output of the adjoint code generated by algorithmic
differentiation, and using Tapenade software for example [24], corresponds
to the partial derivatives of the cost function j with respect to the control
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variables. The derivation below follows those presented in [37].

Let K be the space of control variables and Y the space of the forward code
response. The direct code can be represented as the operator: M : K �! Y
with:

Y =
�
y, j

�
T

Let us point out that both the state and the cost function of the system are
included into the response of the forward code.

The tangent model writes: @M
@k (k) : K �! Y . It takes as input variable a

perturbation of the control vector dk 2 K, then it gives the variation dY 2 Y
as output variable:

dY =
@M
@k

(k) · dk

The adjoint model is defined as the adjoint operator of the tangent model.
This can be represented as follows:

�
@M
@k (k)

�⇤
: Y 0 �! K0. It takes dY ⇤ 2 Y 0

an input variable and provides the adjoint variable dk⇤ 2 K0 at output:

dk⇤ =

✓
@M
@k

(k)

◆⇤

· dY ⇤

Next, the link between the adjoint code and the "computational" gradient
is as follows. By definition of the adjoint operator, we have:

D �
@M
@k

�⇤· dY ⇤, dk
E

K0⇥K
=

D
dY ⇤,

�
@M
@k

�
· dk

E

Y 0⇥Y
(B.2)

or, using the relations presented above:
⌦
dk⇤, dk

↵
K0⇥K =

⌦
dY ⇤, dY

↵
Y 0⇥Y . (B.3)

If we set dY ⇤ = (0, 1) and by denoting the perturbation vector dk =
(�y0, �qin, �n), we obtain:

⌧✓
0
1

◆
,

✓
dy⇤

dj⇤

◆�

Y 0⇥Y
=

*0

@
�y⇤0
�q⇤

in

�n⇤

1

A ,

0

@
�y0
�q

in

�n

1

A
+

K0⇥K
Moreover, by definition:

dj = @j

@y0
(k) · �y0 + @j

@qin
(k) · �q

in

+ @j

@n

(k) · �n
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Therefore, the adjoint variable dk⇤ (output of the adjoint code with dY ⇤ =
(0, 1)) corresponds to the partial derivatives of the cost function j:

@j

@y0
(k) = y⇤0

@j

@n

(k) = n⇤ @j

@qin
(k) = q⇤

in

In summary, in order to compute the "computational" gradient (partial
derivatives of the cost function J using differentiation of the forward code),
first, the direct code is executed, second the adjoint code is executed with
dY ⇤ = (0, 1) as input.

Gradient validation. Finally let us clarify that how the adjoint code (MPI
or not) is classically validated. As usual, a gradient test is performed by
computing the quantity j(k+"�k)�j(k)

"

, " > 0, small, which should converge
to the partial derivative of the cost function @j(k)

@k

· �k when " ! 0. The
finite difference approximation is evaluated by performing twice the direct
code with �k a random vector. Next a convergence curve in function of " is
plotted; the difference between the computed gradient using the adjoint code
and the finite difference approximation (using the direct code only) converge
at order 1 in ". The same convergence curve is obtained while using an
adaptive time step for the forward code.

Appendix C. Speed-up of the full MPI computational code

The direct code is written in Fortran and uses the MPI library. The
automatic differentiation softwares, source-to-source, do not handle MPI in-
structions yet; in particular Tapenade software. Then, to derive a MPI ver-
sion of the adjoint code, it is required to re-write "by hand" the adjoint
instructions of the MPI standards calls such as MPI_SEND, MPI_RECV
or MPI_ALLREDUCE. This known-how is described into details in [23, 25];
it follows some technics described in [38].
Then, it becomes interesting to measure the efficiency of the resulting whole
MPI inverse code (i.e. the direct code plus the adjoint code). In Fig. C.14 is
presented the speed-up curve obtained if performing sensitivity analysis (Lèze
river test case, 25 000 cells approx.). For example, at 32 processors, 82.5%
of the idealistic speed-up is reached. A speed curve performed on a larger
mesh (containing typically 1 million of cells) should give a good performance
up to a much higher processor number. This curve illustrates the good op-
erating of the technics and known-hows described in [25] to obtain the MPI
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version of the adjoint instructions. All these methods and known-hows are
implemented in the open source software DassFlow [23].

Figure C.14: Speed-up obtained on a sensitivity computation (DassFlow-Shallow software,
Lèze river test case, 25 000 cells, Calmip cluster Toulouse).
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