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The time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystal [André J-M and Jonnard P, J. Opt. 17, 085609 (2015)] and also by extending the Takagi-Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time-delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry.

Introduction

The time-dependentBragg diffraction of a one-dimensional photonic crystal (1D-PC) modelled by a periodic stack of bilayers has been studied in our recent paper [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF]. In the present work, we extend our analysis to multilayer gratings that can be regarded as a specific case of two-dimensional photonic crystals. This kind of multilayer gratings has acquired a considerable importance in optics of short wavelength radiation (from UV to hard x-rays) [START_REF] Rife | Multilayer-coated blazed grating performance in the soft x-ray region[END_REF][START_REF] Sammar | Narrow bandpass multilayer x-ray monochromator[END_REF][START_REF] Vinogradov | Gratings and zone plates based on sliced multilayer structures[END_REF][START_REF] Yan | Hard x-ray nanofocusing by multilayer Laue lenses[END_REF]. The advent of short (femtosecond) and even ultra-short (attosecond) sources in these spectral domains has naturally led to a growing interest in the study of the temporal response of these optics. In fact, most of the works relative to the temporal diffraction have concerned the "real" crystals usually implemented in x-ray diffractive optics. Chukovskii and Förster have found analytical solutions of the time-dependent Bragg diffraction by thick crystal [START_REF] Chukhovskii | Time-dependent X-ray Bragg diffraction[END_REF] using a Tagaki-Taupin approach; Graeff has found similar solutions but for Laue geometry [START_REF] Graeff | Short X-ray pulses in a Laue-case crystal[END_REF]. More recently the problem has been treated in reflection geometry and transmission geometry by Lindberg and Shvyd'ko,also within the Tagaki-Taupin approach, with application to self-seeding free-electron lasers [START_REF] Lindberg | Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers[END_REF][START_REF] Lindberg | Spatiotemporal response of crystals in x-ray Bragg diffraction[END_REF]. Fourier analysis, which is not very adequate to treat transient phenomena, has been used by many authors to investigate spatiotemporal response of crystals or multilayer optics [START_REF] Ksenzov | Time-space transformation of femtosecond free-electron laser pulses by periodical multilayers[END_REF][START_REF] Bushuev | Diffraction of X-ray free-electron laser femtosecond pulses on single crystals in the Bragg and Laue geometry[END_REF].

In this paper, we implement the time-dependentcoupled-wave theory (CWT) in the twowave approximation,which leads to a system of coupled partial differential equations (PDEs); note that this CWT has been recently unified in [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF] to treat the diffraction by multilayer gratings in the steady-state case.For the time-dependent case,we solve this system using the matrix methoddeveloped in [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF]but we also use the Tagaki-Taupin approach (in quasi-specular conditions) to give a physical insight to the problemand to point out the key physical parameters of the problem.We consider multilayer gratings with various shapes (lamellar, sliced, blazed,…)diffracting in reflectionor transmission geometry. Werestrict our analysis to s-polarization (transverse electric) case and planar (non-conical) diffraction since the other situations, p-polarization and conical diffraction,are more complicated to handle because the paraxial approximation cannot be directly applied.

Time-dependent coupled-wave theory

We consider a diffraction multilayer grating as shown in Figure 1 struck by an incident plane wave under a glancing angle𝜃 0 with a wave-vector 𝒌 = 𝑐𝑜𝑠 𝜃 0 𝒙 + 𝑠𝑖𝑛 𝜃 0 𝒛 forming together with the normal to the grating surface,the incidence plane (x, z). The diffraction is considered as planar (not conical). Let us recall that in conical mounting the incident wave-vector is not perpendicular to the grating grooves and the wave-vectors of the different diffraction orders lie on a conical surface; in standard planar mounting that interests us in thiswork, the wave-vectors of the different diffracted orders remain in the incident plane. The considered geometry of the grating covers a large set of gratingshapes, from the simple (Γ = 1, 𝜙 = 0) or sliced multilayer mirror(Γ = 1, 𝜙 ≠ 0) to the lamellar multilayer grating ( Γ < 1 , 𝜙 = 0) or blazed multilayer grating (Γ < 1 , 𝜙 ≠ 0), were Γ is the ratio of the pitch to the grating period and 𝜙 defines the orientation of the multilayer with respect to the surface. Since the propagation takes place within the (𝑥, 𝑧) plane then, in the framework of the paraxial approximation, the wave time-dependent propagation equation is given in Gaussian cgs units by

𝜕 2 𝑬 𝑹 ∥ , 𝑡 𝜕𝑥 2 + 𝜕 2 𝑬 𝑹 ∥ , 𝑡 𝜕𝑧 2 - 1 𝑐 2 𝜕 2 𝑬 𝑹 ∥ , 𝑡 𝜕𝑡 2 = 4𝜋 𝑐 2 𝜕 2 𝑷 𝑹 ∥ , 𝑡 𝜕𝑡 2 (1) 
where𝑬 𝑹 ∥ , 𝑡 stands for the electric field and 𝑷 𝑹 ∥ , 𝑡 for the electric polarization vector, c being the speed of light in vacuum and𝑹 ∥ = (𝒙, 𝒛) the position vector in the (𝑥, 𝑧) plane. Let us recall that the paraxial approximation neglects the term 𝛁(𝛁. 𝑬) in the Maxwell equations leading to Eq.( 1); this approximation is justified as long as the electric field remains transverse.

Since weconsider only the s-polarization (transverse electric) case, the electric field vector𝑬 𝑹 ∥ , 𝑡 is along the y axis. It is assumed that the electric field of the optical pulse is formed of a quickly varying carrier with frequency  by an envelope 𝐸 0 𝑹 ∥ , 𝑡 and we write it as follows taking into account the s-polarization geometry

𝑬 𝑹 ∥ , 𝑡 = 𝐸 0 𝑹 ∥ , 𝑡 𝑒 -𝑖 𝜔 𝑡 𝒚 (2) 
We assume that the polarization is essentially electronic and follows instantly the change of the electric field, and that the media have a linear response. Hence we write the polarization 𝑷 as

𝑷 𝑹 ∥ , 𝑡 = 𝜒 𝑹 ∥ 𝑬 𝑹 ∥ , 𝑡 = 𝜒 𝑹 ∥ 𝐸 0 𝑹 ∥ , 𝑡 𝑒 -𝑖 𝜔 𝑡 𝒚 (3) 
where 𝜒 𝑹 ∥ , 𝑧 is the dielectric susceptibility assumed in our model to be time independent.

The susceptibility in the grating can be expanded in Fourier series [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF] 𝜒 𝑹 ∥ = 𝑢 𝑚 𝑈 𝑚 ,𝑛 𝑒 

with 𝜖the dielectric constant given in the Gauss unit system, by

𝜖 𝑹 ∥ = 1 + 4𝜋 𝜒 𝑹 ∥ (6) 
and

𝑘 = 𝜔 𝑐 (7) 
The envelope of the diffracted electric field can be represented by the Rayleigh expansion [START_REF] Petit | Electromagnetic Theory of GratingsTopics in Current Physics[END_REF] 𝐸 0 𝑹 ∥ , 𝑡 = ℇ 𝑝 𝑧, 𝑡 𝑒𝑥𝑝 proved to be very efficient in this kind of optical problem [START_REF] Yeh | Optical Waves in Layered Media[END_REF].In this context, the field can be written as the superposition of two waves propagating in opposite directions along the z-axis, so that we write, using the CWT ℇ 𝑝 𝑧, 𝑡 = 𝐹 𝑝 𝑧, 𝑡 𝑒 + 𝑖 𝜅 𝑝 𝑧 + 𝐵 𝑝 𝑧, 𝑡 𝑒 -𝑖 𝜅 𝑝 𝑧 ; 𝜅 𝑝 = 𝑘 2 𝜖 -𝑞 𝑝 2 (11a) together with the following requirementto ensure the uniqueness [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF] 𝐹 𝑝 ′ 𝑧, 𝑡 𝑒 + 𝑖 𝜅 𝑝 𝑧 + 𝐵 𝑝 ′ 𝑧, 𝑡 𝑒 -𝑖 𝜅 𝑝 𝑧 = 0

(11b)
The term 𝜖 is the average value of the dielectric constant (term zero of the Fourier series)that means that 𝜅 𝑝 does not depend on the z variable in agreement with the essence of the CWT.

SubstitutingEqs. [START_REF] Bushuev | Diffraction of X-ray free-electron laser femtosecond pulses on single crystals in the Bragg and Laue geometry[END_REF] in Eqs. [START_REF] Ksenzov | Time-space transformation of femtosecond free-electron laser pulses by periodical multilayers[END_REF] 

Only the zeroth order term 𝜖 in the Fourier expansion of 𝜖 𝑹 ∥ has been kept in the timedependent term of Eqs. [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF]; so one can say that our calculation is a first-order (in terms of 𝜖) perturbative time-dependent model.

Two-wave theory

Matrix approach

Let us assume a strong couplingoccurringbetween the incident wave with amplitude𝐹 0 𝑧, 𝑡 and the p th wave diffracted by the grating with amplitude 𝐵 𝑝 𝑧, 𝑡 . In this condition it is possible to keep in the system given by Eqs.( 12) only the two terms 𝐹 0 𝑧, 𝑡 and 𝐵 𝑝 𝑧, 𝑡 .This is a situation that corresponds to the so-called two-wave theory (TWT) in the dynamical theory of diffraction. The conditions of validity of this approximation are discussed in several papers [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF][START_REF] Francescangeli | On the limits of validity of the two-wave approximation in the dynamical theory of electromagnetic scattering by periodic dielectric media[END_REF] ; as mentioned in [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF] a validity condition for this regime is that the angular width of the diffracted peak is small compared to the distance in terms of glancing angle between the neighbouring diffraction peaks, a condition generally required for a spectroscopic application of the gratings.

One finally gets a system of PDEs with terms that do not depend on the variable z,provided than one introduces the following auxiliary amplitude terms

𝑓 0 𝑧, 𝑡 = 𝐹 0 𝑧, 𝑡 exp [𝑖 (𝜅 0 + 𝜅 𝑝 ) - 𝑗 𝐺 𝑧 2 𝑧 ] (13a) 
and

𝑏 𝑝 𝑧, 𝑡 = 𝐵 𝑝 𝑧, 𝑡 exp [-𝑖 (𝜅 0 + 𝜅 𝑝 ) - 𝑗 𝐺 𝑧 2 𝑧 ] (13b) 
Moreover, if the system is in the vicinity of the jthBragg resonance 𝑗 𝐺 𝑧 ≈ 𝜅 0 + 𝜅 𝑝 [START_REF] Yeh | Optical Waves in Layered Media[END_REF] and 𝑓 0 𝑧, 𝑡 ≈ 𝐹 0 𝑧, 𝑡 , 𝑏 𝑝 𝑧, 𝑡 ≈ 𝐵 𝑝 𝑧, 𝑡 . Eq.( 14) gives the generalized Bragg condition.Combining Eqs. [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF][START_REF] Petit | Electromagnetic Theory of GratingsTopics in Current Physics[END_REF],there results after some algebra the following system of time-dependent coupled PDEs satisfied by the varying amplitudes 𝑓 0 𝑧, 𝑡 and 𝑏 𝑝 𝑧, 𝑡 in the domain of the p th diffraction; using the matrix formalism, this system reads

𝜕 𝜕𝑧 Σ B 𝑧, 𝑡 = ℬ 𝐵𝑝 𝜕 𝜕𝑡 Σ B 𝑧, 𝑡 + 𝑖 ℳ 𝐵𝑝 Σ B 𝑧, 𝑡 (15) 
where Σ B 𝑧, 𝑡 is the following column amplitude vector

Σ B 𝑧, 𝑡 = 𝑓 0 𝑧, 𝑡 𝑏 𝑝 𝑧, 𝑡 (16) 
The subscript B stands for the Bragg-case reflection geometry. In Eq.( 15),ℳ 𝐵𝑝 is the propagation matrix in space

ℳ 𝐵𝑝 = -𝛼 𝐵 𝐾 𝐵 + 𝐾 𝐵 - 𝛼 𝐵 (17a) 
𝛼 𝐵 = 𝜅 - 𝑗 𝐺 𝑧 2 - 𝑘 2 2𝜅 0 Γ 𝜒 ; 𝜅 = (𝜅 0 + 𝜅 𝑝 ) 2 (17b) 𝛼 𝐵 = 𝜅 - 𝑗 𝐺 𝑧 2 - 𝑘 2 2 𝜅 𝑝 Γ 𝜒 (17c) 
𝐾 𝐵 + = - 𝑘 2 2 𝜅 0 𝑢 𝑗 𝑈 𝑗 ,-𝑝 ; 𝐾 𝐵 -= + 𝑘 2 2 𝜅 𝑝 𝑢 -𝑗 𝑈 -𝑗 ,𝑝 (17d) 
ℬ 𝐵𝑝 is the propagation matrix in time

ℬ 𝐵𝑝 = - 𝑘 𝑐𝜅 0 0 0 + 𝑘 𝑐 𝜅 𝑝 (18)
We first consider the time-independent case

𝜕 𝜕𝑧 Σ B 𝑧 = 𝑖 ℳ 𝐵𝑝 Σ B 𝑧 (19) 
The solution can be obtained by substituting

Σ B 𝑧 = 𝐴 𝐵 𝑒 𝑖 𝜓 𝑧 (20) 
andasshown in Appendix 1, Some calculations show that 𝑆 𝐵𝑝 𝑧 reduces to the matrix 𝑆 𝑧 given by Eq.( 17)ofRef. [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF]for the case of a 1D-PC. From Eqs. [START_REF] Sammar | Diffraction and scattering by lamellar amplitude multilayer gratings in the X-UV region[END_REF][START_REF] Afanas | Dynamical theory of X-ray diffraction in crystals with defects[END_REF](23)(24), which form the basis of the time-independent two-wave CW analysis, it is possible to calculate the reflection and transmission diffraction efficiencies of a grating at a given diffraction orderand the electric field distribution within the grating.

Σ B 𝑧 = 𝑆 𝐵𝑝 𝑧 Σ B 0 (21) 
As for the time-dependent case, one searches the solution by analogy with the timeindependent case in the following form:

Σ B 𝑧, 𝑡 = 𝐴(𝑡) 𝐵(𝑡) 𝑒 𝑖 𝜓 𝑧 (25)
This approach can be regarded as a kind ofLagrange's method of variationof constants: 

Finally, by following a way similar to the one presented for the time-independent case, we obtain

Σ B 𝑧, 𝑡 = 𝑅 B𝑝 𝑧, 𝑡 Σ B 0,0 (29) 
where

𝑅 B𝑝 𝑧, 𝑡 = exp -𝐺 B𝑝 𝑡 𝑆 B𝑝 𝑧 (30) 
The propagation of the electric field in time and space (field distribution within the grating, transmission, reflection, …) can be deduced from Eqs.(28-30). In the following, we consider the indicial responsein terms of reflection and transmissionunder Heaviside unit-step input. Some numerical examples will be given in Section 4.

Indicial response in the two-wave approximation

The reflection and transmission coefficientsare derived from the initial and boundary conditions: at z = 0, a Heaviside unit-step Θ(𝑡) is applied, so that 𝑓 0 0, 𝑡 = Θ(𝑡), and at z = L there is no incoming wave, so that𝑏 𝑝 𝐿, 𝑡 = 0, which gives from Eq.( 29)

𝑓 0 𝐿, 𝑡 𝑏 𝑝 𝐿, 𝑡 = 0 = 𝑅 B𝑝11 𝐿, 𝑡 𝑅 B𝑝12 𝐿, 𝑡 𝑅 B𝑝21 𝐿, 𝑡 𝑅 B𝑝22 𝐿, 𝑡 Θ(0 + ) 𝑏 𝑝 (0, 0 + ) (31)
where 𝑅 B𝑝𝑖𝑗 stand for the coefficients of the matrix 𝑅 B𝑝 𝑧, 𝑡 .Then, the calculation can becarried out as in Ref. [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF]to give

𝑏 𝑝 0, 𝑡 = 𝑅 B𝑝21 0, 𝑡 -𝑅 B𝑝22 0, 𝑡 𝑅 B𝑝21 𝐿, 𝑡 𝑅 B𝑝22 𝐿, 𝑡 (32) 
Consequently using the definition of the reflection coefficient, one finds the indicial response 𝑅 𝛩 in terms of reflectivity at the time t after switching on abruptly a constant intensity source at t = 0, or in other words, when applying a Heaviside unit-step inputΘ;

thus, it resultsfor the indicial response in terms of reflectance

𝑅 𝛩 t ≡ 𝑏 𝑝 0, 𝑡 0 t 2 (33) 
From Eq.(31) one also finds that

𝑓 0 𝐿, 𝑡 = 𝐷𝑒𝑡[𝑅 B𝑝 𝐿, 𝑡 ] 𝑅 B𝑝22 𝐿, 𝑡 (34) 
The indicial response in terms of transmittance is

𝑇 𝛩 t ≡ 𝑓 0 𝐿, 𝑡 0 t 2 (35) 

3.3Tagaki-Taupin approach

We now consider the particular case where 𝛼 𝐵 ≈ 𝛼 𝐵 ; this situation occurs when the grating is used in specular conditionp = 0(in this case 𝛼 𝐵 and 𝛼 𝐵 are strickly equal) or when the period of the grating is large with respect to the wavelength of the diffracted radiation so that 𝜅 𝑝 ≈ 𝜅 0 and 𝜃 𝑝 ≈ 𝜃 0 . In this condition, it is useful to follow an approach adopted by Tagaki and Taupin and now usually implemented in the dynamical theory of x-ray diffraction [START_REF] Authier | Dynamical Theory of X-Ray Diffraction[END_REF],since it leads to a formulation giving aphysical insight into the problem, as we show hereafter.As shown in Appendix 2, the problem can be reduced to the following hyperbolic second order PDE ℒ 𝑣,𝑤 𝑓 0 𝑣, 𝑤 ; 𝑏 𝑝 𝑣, 𝑤 = 0

(36)
where ℒ 𝑣,𝑤 is the differential operator defined by

ℒ 𝑣,𝑤 = 𝜕 2 𝜕𝑣𝜕𝑤 + 𝜋 2 Λ 2 (37) 
with Λ 2 , the quantity related to the coupling constants 𝐾 𝐵 + , 𝐾 𝐵 -by

Λ 2 = - 𝜋 2 𝐾 𝐵 + 𝐾 𝐵 - (38) 
𝑣, 𝑤are the following characteristic coordinates

𝑣 = 1 2 𝑐 𝑡 𝑠𝑖𝑛𝜃 -𝑧 (39a) 𝑤 = 1 2 𝑐 𝑡 𝑠𝑖𝑛𝜃 + 𝑧 (39b) 
and 𝑓 0 𝑣, 𝑤 , 𝑏 𝑝 𝑣, 𝑤 the reduced field amplitudes defined according to

𝑓 0 𝑣, 𝑤 = 𝑒𝑥𝑝 -𝑖 𝒶 𝑐 𝑡 𝑠𝑖𝑛𝜃 𝑓 0 𝑣, 𝑤 (40a) 
𝑏 𝑝 𝑣, 𝑤 = 𝑒𝑥𝑝 -𝑖 𝒶 𝑐 𝑡 𝑠𝑖𝑛𝜃 𝑏 𝑝 𝑣, 𝑤

where 𝒶 ≡ 𝛼 𝐵 . Provided that the media are not absorbing, using Eqs. [START_REF] Courant | Partial Differential Equations[END_REF], it follows that

Λ = 2 𝜋 𝑠𝑖𝑛𝜃 𝑘 𝑢 𝑗 𝑈 𝑗 ,-𝑝 (41) 
One recognizes that the quantity Λ is the extinction length of the dynamical theory of diffraction [START_REF] Authier | Dynamical Theory of X-Ray Diffraction[END_REF].The PDE given by Eq.(36) can be solved for given boundary conditions by implementing different methods; the most common one is the Riemann's method that we summarize hereafter.For the sake of consistency, we present in Appendix 3,a brief mathematical development of the Riemann's method applied to our problem; the rigorous mathematical foundations of the method can be found in Ref. [START_REF] Courant | Partial Differential Equations[END_REF]and some details of the calculationare available in Ref. [START_REF] Lindberg | Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers[END_REF]. The application of Riemann's methodrequires an integration contourin the characteristic coordinate plane shown in Figure 2. As shown in Appendix 3,the diffracted field in reflection geometry can be written as It is interesting to note that the Tagaki-Taupin approach shows that the indicial response in terms of reflection is conditioned by the extinction length and that it presents a transient period whose duration is given by a characteristic transient time𝑡 𝑐 approximately equal to 2 units of reduced time as shown in figure 3. One is led to think that even where the specular approximation is not valid, the indicial response of the grating still presents a transient period of the order of 𝑡 𝑐 .

𝑏 𝑝 𝑣, 𝑣 = -𝑖 𝐾 𝐵 -Λ 𝜋 𝐽 1 2 𝜋 Λ 𝑣 -𝑣 ′ 𝑣 -𝑣 ′ 𝑓 0 𝑣 ′ , 𝑣 ′ 𝑄 𝑃 𝑑𝑣 ′ ( 
As also shown in Appendix 3,the diffracted field in transmission geometry is approximately given by :

𝑓 0 𝑣, 𝑤 𝑇 ≈ - 2 𝜋 2 𝐿 Λ 2 𝑓 0 𝑣 ′ , 𝑣 ′ 𝐽 1 2 𝜋 Λ 𝑣 + 𝐿 -𝑣 ′ 𝑣 -𝑣 ′ 2 𝜋 Λ 𝑣 + 𝐿 -𝑣 ′ 𝑣 -𝑣 ′ 𝑄 𝑃 𝑑𝑣 ′ (48) 
To determine the impulse response in terms of transmission, we insert in Eq.( 48) the expression of the incident pulse given by Eq.( 44) as for the reflection caseand we performthe integration as for the reflection geometry; it resultsthat the impulse response in terms of transmission 𝑓 0 𝑧 = 𝐿, 𝑇 δ is Strejc [START_REF] Strejc | [END_REF][START_REF] Larminat | Analysis and Control of Linear Systems[END_REF]. The temporal dependence of the reflection or transmission of a short pulse can, then, be determined using Eq.( 51) and then performing an inverse Laplace transform. Details can be found in Ref. [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF].

𝑓 0 𝑧 = 𝐿, 𝑇 δ ≈ 𝑔 𝑇 𝑇 = 𝜋 2 𝐿 𝑠𝑖𝑛𝜃 Λ 2 𝐽 1 𝜉 𝑇 𝜉 𝑇 Θ 𝑇 ; 𝜉 𝑇 = 𝜋 Λ 𝑐 𝑇 2 𝐿 𝑠𝑖𝑛𝜃 + 𝑐 𝑇 𝑠𝑖𝑛𝜃 2

Numerical simulations

We present a numerical example obtained with the time-dependent matrix approach in the continuation of the one presented in Ref. [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF]. We consider a lamellar unslanted (𝜙 = 0) grating formed from multilayer bars. The multilayer structure consists of a periodic stack of N= 20Fe/C bilayers; the period d is equal to 5.0 nm and the ratio is equal to 0.5, that is to say the thicknesses of the Fe and C layers are the same. Figure 4 displays this structure and the parameters.

Figure 4: Scheme of the unslanted lamellar grating considered in the numerical applications. D is the period of the grating andD the width of the multilayer bars.

The energy of the incident radiation is 8 keV. In all calculations, we use for the optical indices the values tabulated in the CXRO database [START_REF]CXRO X-Ray Interactions With Matter[END_REF]. One assumes that the grating period D equals 1 m.Figures5 and 6show the steady state reflectance and transmittancerespectively, for the diffraction order p = -1 at different values of the  parameter: 0.1, 0.2, 0.4 and 0.6; they arecalculated by the TWT presented in section 3.1Let us emphasize that in the Bragg domain, the results of the TWTare in very good agreement with results given by a rigorous coupled wave analysis RCWA (see for instance Eq.( 12) of Ref. [START_REF] Yang | Unified analytical theory of single-order soft x-ray multilayer gratings[END_REF])or a modal theory (MT) [START_REF] Sammar | Diffraction and scattering by lamellar amplitude multilayer gratings in the X-UV region[END_REF] as illustrated by 

Conclusion

We have generalized the time-dependent coupled-wave theory initially developed for one-dimensional photonic crystals [START_REF] André | Time-dependent Bragg diffraction and shortpulse reflection by one-dimensional photonic crystalsJ[END_REF] to the spatiotemporal diffraction by multilayer gratings. The results obtained with the matrix formalism are in agreement with the Tagaki-Taupin theory originally developed in the framework of the dynamical theory of crystal diffraction that we have extended to grating diffraction. From Tagaki-Taupin theory, it appears that in reflection geometry, the key quantity is the extinction length while in transmission geometry, the thickness of the grating is also an important parameter. Although a very interesting means for obtaining a physical insight of the problem, Tagaki-Taupin approach is not relevant for predicting accurately the nonspecular case behaviour; instead a matrix approach is very efficient.

This theoretical work gives a useful tool to predict the temporal response of optics implemented with short sources such as free electron lasers, high harmonic generation sources, …Numericalapplications of the present theory to gratings other than the lamellar one will be presented in a forthcoming paper. Our time-dependent matrix approach should be applicable beyond the two-wave approximation that is in the framework of the rigorous coupled-wave analysis; this work is underway. Finally this theory has to be extended to p-polarizationand conical diffraction that requires going beyond the paraxial approximation.

(A3.1)

To treat the Bragg-case geometry, we consider the contour 𝒞 formed by the triangle (PQR) formed in the plane of characteristic coordinates 𝑣, 𝑤as shown in Figure 2 

Figure 1 :

 1 Figure 1: Sketch of the grating of period D; each grating pitch has a width equal to Γ𝐷 and is formed by a periodic stack of N bilayers with thickness d; the bilayer is made up of a material a of dielectric susceptibilityχ 𝑎 and material bof dielectric susceptibilityχ 𝑏 , with layer thickness da = d and db = (1-)d respectively. The incoming radiation strikes the

  𝐴 → 𝐴 𝑡 , 𝐵 → 𝐵(𝑡).Inserting Eq.(25) in Eq.(15) gives after derivation with respect to space 𝜕 𝜕𝑡 𝐴(𝑡) 𝐵(𝑡) = -𝐺 B𝑝 𝐴(𝑡) 𝐵(𝑡) (26) with 𝐺 B𝑝 = 𝑖 ℬ B𝑝 -1 𝜓 𝐼 -ℳ B𝑝 (27) Integration of Eq.(25)with respect to time gives 𝐴(𝑡) 𝐵(𝑡) = exp -𝐺 B𝑝 𝑡 𝐴(0) 𝐵(0)

Figure 2 :

 2 Figure 2: Grating geometry in the characteristic coordinate reference frame (v,w); the grating front surfaceis given by w = v(line PQ) while the rear surface is given by w = v + L (line RT).

  42) where𝑓 0 𝑣 ′ , 𝑣 ′ corresponds to the incoming wave at the front surface (z =0). 𝐽 𝑛 is a Bessel function of the first kind.From Eq.(42) one can deduce the impulse and indicial response in terms of reflection coefficient.The impulseincident reduced field amplitude 𝑓 0 𝑣, 𝑣 δ reads 𝑓 0 𝑣, 𝑣 δ = 𝑒𝑥𝑝 + 𝛿stands for the Dirac peak. Inserting Eq.(43) in Eq.(42) and performing the integration gives for the reduced diffracted field𝑏 𝑝 𝑣, 𝑣 δ under the incidence of a Dirac pulse 𝑏 𝑝 𝑣, 𝑣 δ = -𝑖 𝑠𝑖𝑛𝜃 𝐾 𝐵 -that is, for the diffracted field 𝑏 𝑝 𝑧 = 0, 𝑇 δ = 𝑖 𝑠𝑖𝑛𝜃 𝐾 𝐵 introduced the time delay T measured with respect to the diffracted wave plane 𝑇 = 𝑐 𝑡 -𝑥 𝑐𝑜𝑠 𝜃 𝑐 (46) The quantity𝑔 𝑅 𝑇 = 𝑏 𝑝 𝑧 = 0, 𝑇 δ is the temporal Green function. For time coherent radiation with time-dependent causal distribution Ξ (normalized to unity), the indicial response 𝑅 𝛩 𝑡 in terms of reflection coefficient is given by 𝑅 𝛩 𝑡 = 𝑔 𝑅 (𝑇) 47) allows one to draw a "universal" curve for the indicial response 𝑅 𝛩 𝑡 in terms of reduced time 𝑡 = 𝑡 𝜋 sin 𝜃 𝑐 Λ , see Figure 3.

Figure 3 :

 3 Figure 3: Indicial response in terms of reflectance versus reduced time for a grating working in Bragg geometry close to the specular condition. The response is normalized to unity.

3 . 4

 34 radiation with time-dependent causal distribution Ξ (normalized to unity), the indicial response 𝑇 𝛩 𝑡 in terms of transmission coefficient is given by 𝑇 𝛩 𝑡 = 𝑔 𝑇 (𝑇) From indicial response to time-dependent reflection and transmission of a short pulse Let 𝐸 𝑡 be the temporal envelope shape of any incident pulse and S(t) the envelopeof the time-dependent reflected or transmitted pulse. Then the Laplace transform 𝑆 𝑠 of S(t) is related to the Laplace transform 𝐸 𝑠 of 𝐸 𝑡 by means of the convolution theorem 𝑆 𝑠 = Ζ 𝛿 𝑠 𝐸 𝑠 (51) whereΖ 𝛿 𝑠 is the transfer function in terms of reflectance or transmittance that is the Laplace transform of the impulse response Ζ 𝛿 𝑡 . This impulse response corresponds to the instantaneous reflectance or transmittanceobtained when the system is struck by a Dirac pulse at t=0 and should not be confused with the indicial response Ζ Θ 𝑡 . Nevertheless Ζ 𝛿 𝑡 and consequently Ζ 𝛿 𝑠 can bedetermined from Ζ Θ 𝑡 by different methods; we have applied a basic but efficient graphic method introduced by

Figure 7 .

 7 In this figure, as an example of the accuracy of the TWT in the Bragg domain, the steadystate reflectance for the unslanted grating with a value of 0.2is presented: the data D GD from TWT are given by the solid line and the data from RCWA and MT (which are identical) by the dots; the calculations in the RCWA or MT are done with 15 Fourier terms(or modes). Similar agreements are observed for the other reflectances and transmittances displayed in figures 5 and 6.

Figure 5 :

 5 Figure 5: Steady-state reflectance versus glancing angle0of an unslanted lamellar multilayer grating shown in figure 4 for different values of the parameter . The photon energy is 8 keV and the parameters of the grating are given in the text: =0.6 green thick solid line, =0.4 black dotted line, =0.2 blue dashed line, =0.1 red thicksolid line. The diffraction order p = -1.

Figure 7 :

 7 Figure 7: Steady-state reflectance versus glancing angle 0of the unslanted lamellar multilayer grating shown in figure 4 for =0.2 calculated from TWT (solid line) and rigorous theories RCWA and MT (dots). The diffraction order p = -1.

Figure 8 Figure 9

 89 Figure 8 showsthe indicial response of the peak reflectance𝑅 𝛩 𝐵𝑟𝑎𝑔𝑔 for the grating diffraction order p = -1, that is the reflectance at the generalized Bragg angleBragg ,for different values of the  parameter: 0.1, 0.2, 0.4 and 0.6. It appears that the response presents a transient period in agreement with the Tagaki-Taupin approach; the transient time is approximately equal to two units of reduced time and depends on the value of the parameter: the smaller the  the  (Eq.(42)) since 𝑈 𝑗 ,-𝑝 is proportional to (Eq.(4 f))  consequently, the longer the transient period as indicated by the Tagaki-Taupin theory.Let us outline that the generalized Bragg angle varies slightly with the value of the parameter according to Eq.(14). After the transient period the peak reflectance reaches the steadystate valueRsp which also depends on the value of  Figure 9 shows the indicial response 𝑇 𝛩 𝐵𝑟𝑎𝑔𝑔 for the grating diffraction order p = -1, now in terms of transmittance at the generalized Bragg angle Bragg , for different values of the  parameter: 0.1, 0.2, 0.4 and 0.6. The indicial response in terms of transmittance presents also a transient period but contrary to the reflectance case, the transient time depends not only on the   but also on the thickness of the grating.

Figure 8 :

 8 Figure 8: Indicial response in terms of peak reflectance 𝑅 𝛩 𝐵𝑟𝑎𝑔𝑔 of an unslanted lamellar multilayer grating shown in figure4for different values of the parameter . The photon energy is 8 keV, the grating diffraction order p = -1 and the parameters of the grating are given in the text: =0.6green thick solid line,=0.4black dotted line, =0.2blue dashed line, =0.1 red thin solid line.

Figure 9 :

 9 Figure 9: Indicial response in terms of transmittance𝑇 𝛩 𝐵𝑟𝑎𝑔𝑔 of an unslanted lamellar multilayer grating shown in figure 4 for different values of the parameter  at the Bragg angle. The photon energy is 8 keV, the grating diffraction order p = -1 and the parameters of the grating are given in the text: =0.6 green thick solid line, =0.4 black dotted line, =0.2 blue dashed line, =0.1 red thin solid line.

Figures 10 and 11 displaythe 3 -

 3 Figures 10 and 11 displaythe 3-dimensionaltemporal and spectral indicial response in terms of reflectance and transmittance for the unslanted lamellar grating described in figure 4 for =0.2. The spectral dependence versus the glancing angle at a given photon energy (8keV) is given; we choose this representation in order to avoid taking into account the energy dispersion of the optical indices. The figures are zoomed on the short values of time in order to focus on the transient period. It clearly appears that the transient time is shorter for transmittance than for reflectance; as mentioned previously the transient time in transmittance is mainly dependent on the thickness Lof the grating, in agreement with the Tagaki-Taupin theory (see Eq.(48)).

Figure 10 :

 10 Figure 10: Temporal and spectral indicial response in terms of reflectance of the lamellar grating shown in figure 4 for =0.2. The photon energy is 8 keV, the grating diffraction order p = -1.

Figure 11 :

 11 Figure 11: Temporal and spectral indicial response in terms of transmittance of the lamellar grating shown in figure 4 for =0.2. The photon energy is 8 keV, the grating diffraction order p = -1.

Figure 12

 12 Figure 12 displays the reflected peak height of an incident Gaussian pulse with unit amplitude and temporal width equal to 10 fs for the grating considered in figure 4. The calculations are performed according to the method given in section 3.4. The influence of the  parameter is clearly evident, particularly concerning the stretching of the reflected pulse. The calculations are carried out according to the method given in section 3.4.

Figure 12 :

 12 Figure 12: Time dependence of the reflected pulse height for an incident pulse of width equal to 10 fs, of an unslanted lamellar multilayer grating shown in figure 4 for different values of the parameter . The photon energy is 8 keV, the grating diffraction order p = -1 and the parameters of the grating are given in the text: =0.6 green thick solid line, =0.4 black dotted line, =0.2 blue dashed line, =0.1 red thin solid line.
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 5681915216 Figure2; the segment𝑅𝑇 corresponds mathematically to the condition v = w-Land physically to the rear surface of the grating. In a way similar to the reflection case, contour integration along ℬ leads to

(A3. 21 )

 21 along the rear surface 𝑤 = 𝑣 + 𝐿and

  Implementing these conditions Eqs.(A3.17-A3.19) in Eq.(A3.16) gives 𝐹 𝑣 ′ , 𝑤 ′ 𝑇 = 𝑅 𝑣, 𝑤; 𝑣 ′ , 𝑤 ′ 𝐹 𝑣 ′ , 𝑤 ′ 𝑄 -𝑅 𝑣, 𝑤; 𝑣 ′ , 𝑤 ′ 𝜕𝐹 𝑣 ′ , 𝑤 ′ 𝜕𝑣 ′Afanas'ev and Kohn[START_REF] Sammar | Diffraction and scattering by lamellar amplitude multilayer gratings in the X-UV region[END_REF]have given the Riemann 𝑅 𝑣, 𝑤; 𝑣 ′ , 𝑤 ′ function that fulfills the transmission conditions given by Eqs.(A3.17-A3.[START_REF] Larminat | Analysis and Control of Linear Systems[END_REF] 

				′	𝑇 = 1
							(A3.19)
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	-	𝑄 𝑃	𝐹 𝑣 ′ , 𝑤 ′ 𝜕𝑅 𝑣, 𝑤; 𝑣 ′ , 𝑤 ′ 𝜕𝑣 ′	𝑤 ′ = 𝑣 ′ 𝑑𝑣 ′
							(A3.20)
	𝑅 𝑣, 𝑤; 𝑣 ′ , 𝑤 ′ = 𝐽 0	2 𝜋 Λ	𝑤 -𝑤 ′ 𝑣 -𝑣 ′ +	𝑣 -𝑣 ′ 𝑤 -𝑤 ′ 𝐽 2	2 𝜋 Λ	𝑤 -𝑤 ′ 𝑣 -𝑣 ′

APPENDIX 1

Inserting Eq. [START_REF]CXRO X-Ray Interactions With Matter[END_REF] in Eq. [START_REF] Francescangeli | On the limits of validity of the two-wave approximation in the dynamical theory of electromagnetic scattering by periodic dielectric media[END_REF] To the two eigenvalues 𝜓 ± are associated two eigenvectors

The solutions for Σ B 𝑧 can be derived using the eigenmatrix

that is

Since the general solution is a linear combination of the eigensolutions Σ B 𝑧 = 𝐶 + 𝑒 + 𝑖 𝜓 + 𝑧 𝑉 + + 𝐶 -𝑒 𝑖 𝜓 -𝑧 𝑉 -= 𝑃 𝑒 + 𝑖 𝜓 + 𝑧 0 0 𝑒 𝑖 𝜓 -𝑧 𝐶 + 𝐶 - (A1.6)

At z = 0, one has

Putting Eq.(A1.7) in Eq (A1.5), it follows that

where 𝑆 𝐵𝑝 𝑧 is obtained by the product 𝑃 𝑒 + 𝑖 𝜓 + 𝑧 0 0 𝑒 𝑖 𝜓 -𝑧 𝑃 -1 .

APPENDIX 2

With 𝛼 𝐵 ≈ 𝛼 𝐵 ≡ 𝒶 and 𝜃 𝑝 ≈ 𝜃 0 ≡ 𝜃, the system given by Eq.( 15) can be written