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 Abstract: 

  

Purpose: This study aimed to evaluate the impact of consensus algorithms on segmentation 

results when applied on clinical PET images. In particular, how majority vote or STAPLE 

algorithms could improve the final result in terms of accuracy and reproducibility when 

combining three semi-automatic segmentation algorithms. 

  

Methods: Three published approaches of segmentation (contrast-oriented, possibility theory 

and adaptive thresholding) and two consensus algorithms, majority vote and STAPLE,were 

implemented in a single software platform (Artiview®). Four clinical datasets including 

different locations (thorax, breast, abdomen) or pathologies (NSCLC primary tumours, 

metastasis, lymphoma) were used to evaluate accuracy and reproducibility of the consensus 

approach in comparison with pathology ground truth or CT – ground truth surrogate. 

 

Results:Our results reflect the variable performance of individual segmentation algorithms for 

lesions of different tumour entities that is for PET images that differ in resolution, contrast 

and image noise. Independent on location and pathology of the lesion, however, the consensus 

method displays improved volume segmentation accuracy compared to the worst performing 

individual method in the majority of cases and is close to the best performing method in many 

cases. In addition, the implementation reveals high reproducibility of the segmentation results 

against small changes in the respective starting conditions.No significant difference between 

STAPLE and majority vote algorithms was found. 

 

Conclusion:This study shows that combining different PET-segmentation methods by 

application of a consensus algorithm offers robustness against the variable performance of 

individual segmentation methods andistherefore useful for radiation oncology purposes. It 

might also be relevant for other scenarios like the joining of expert recommendations in 

clinical routine and trials or thegeneration of multi-observer generated contours for 

standardisation of automatic contouring. 

 

Keywords: 
18

FDG PET, image segmentation, STAPLE, radiation oncology 
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I. Introduction 

The use of molecular imaging methods in radiation oncology has become a routine procedure 

providing valuable information in radiotherapy treatment planning and beyond. For many 

malignancies, the beneficial effects of fluorodeoxyglucose (
18

FDG) Positron Emission 

Tomography (PET) imaging has been shown, e.g. in the delineation of the gross tumour 

volume (GTV). However, due to technical and biological factors, tumours as depicted by PET 

appear blurred, heterogeneous, and often in a rather noisy background which hampers 

thesegmentation of reliable manual contours as well as the development and validation of 

automatic segmentation tools.  

In times of increasing radiotherapy treatment precision leading to high rates of local control 

with minimum toxicity once reliable tumour targeting has been achieved, the correct depiction 

of tumour tissue is of utmost importance. However, due to the shortcomings of anatomical 

imaging by CT and the often superior diagnostic accuracy of molecular imaging by PET, its 

use is highly desirable in this context. Therefore, many groups have addressed the problem of 

PET segmentation in recent years proposing different segmentation approaches.The main 

challenging task of any segmentation algorithm in itself, however, is its validation. 

Among semi-automatic PET-segmentation methods one can underline two main classes of 

approach: threshold based and image processing based. Threshold based segmentation 

methods are used for lesion delineation because of their simplicity. In this context the 

segmentation process relies on an intensity threshold above which all voxels are considered to 

belong to the tumour volume. This threshold can either be fixed [1-4] or depending on some 

features measured on the image (e.g.: Standard Uptake Value, SUV), background noise, 

signal-to-noise ratio, image contrast). In the latter case, the threshold is adaptive and needs to 

be determined - mostly iteratively - by specific algorithms including prior calibration of the 

PET device[5-13]. 

To tackle low contrast and heterogeneity of PET images and to avoid prior calibration of the 

PET system, more advanced approaches have been investigated including watershed 

segmentation [14-16], gradient based approach [17], clustering approach [18, 19], possibility 

theory [20, 21] or bayesian framework [22, 23]. Based on image processing theory and 

clustering approaches, these methods offer the possibility to delineate uptakes semi-

automatically without prior calibration.  

In different investigations including phantom studiesand/or clinical data [24, 25]many 

methods revealed their advantages and also their own specific weaknesses. Moreover, the 

accuracy of lesion segmentation by a given algorithm to a given clinical case was shown to 

highly depend on its software implementation, user interaction and last but not least on 

technical factors of the PET system in use. This may be a hint that depending on the varying 

clinical conditions it will never be possible to select one “perfect” automatic method. 

In order to overcome those shortcomings, it may make sense to combine 

severalindividualautomatic and semi-automatic methods applying a consensus method as it 

has been proposed recently in MRI imaging [26, 27]. This may helpto exploit the advantages 

of the different algorithmswhile minimizing their disadvantages.  
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The easiest method is to apply the majority vote rule which decides if voxels belong to the 

lesion or not according to the results of the majority of the individual segmentation methods 

[28]. Recently, the Simultaneous Truth and Performance Level Estimation (STAPLE) 

algorithm wasproposed in the literature [29, 30], which computes a probabilistic estimate of 

the ground truth from a collection of segmentation results. To assure an optimal clinical 

workflow both, the individual segmentation methods as well as the consensus algorithmneed 

to be implemented on the same workstation.  

A previous study by McGurk et al. [31]introduced the concept of applying consensus methods 

to PET segmentation. These authors investigated the use of two methods, simple majority 

voting and probabilistic estimation, to combine five segmentation approaches on PET 

phantom measurements.Both methods were found to improve the segmentation accuracy 

when combining volumes and to offer robustness against the variable performance of 

individual methods. The aim of the present paper was to validate clinically the feasibility of 

combining different segmentation algorithms by the concept of consensus onmulticentre 

clinical PET data. Investigationof the impact of the two consensus algorithms (majority vote 

(MV) and STAPLE) on the segmentation of 
18

FDG PET-positive lesionswas performed in 

terms of accuracy of segmentation and robustness of the consensus contour. Patient data of 

different tumour entities representing a variety of lesions that differ in biology, size and body 

location were available to validate the clinical feasibility of the consensus approach. Three 

segmentation methods developed by the authors were used as entry of the consensus 

algorithms: possibility theory based approach [20], contrast oriented approach [13] and 

threshold oriented approach [32]. Consensus and segmentation algorithms were implemented 

on the same software platform. 

 

I. Material and methods 

a) Description of the software 

The concept of combining several segmentation methods by a consensus algorithm within a 

clinical workflow was implemented as a part of the software package Artiview® (Aquilab, 

France). This software package allows experts to review, compare, evaluate and assess 

multimodality imaging and radiotherapy treatments. For PET-segmentation, three individual 

methods as well as two consensus algorithmswereimplemented.To process, a PET sub-

volume is created by the user which roughly envelops the lesion (mask, 3D-box). The 

automated methods and the consensus will be applied simultaneously within this mask to 

calculate the resulting PET volumes.All contours can be compared visually as well as by use 

of different metrics (e.g. Dice similarity index (DSC; Eq. (4)) or Percent error (Eq. (5)) which 

were also applied in the current evaluation. The integration followed up a co-design process, 

that is, allend-users were fully involved in the interface design.  

 

b) Individual segmentation methods 

The following individual segmentation methods were implemented in one single 

softwarepackage. Because computer science may involve different implementation processes 
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(different programming language, code optimization achieved by computer scientist, floating 

precision used, stochastic formulation used) or simply differences in mathematical procedures 

like different points-of-origin for the definition of voxel coordinates,segmentation results 

might slightly differ between several software packages depending on the implementation. 

Thus, the implementation of different algorithms into one single software system needed to be 

approved in comparison with the native lab’s software. This was done by phantom 

measurements asdescribedin [33]. For all three methods, agreement was reported in terms of 

the mean percent error in delineated volume(Eq. (5); <3.2% for all three methods) and/or the 

mean DSC ((Eq. (4); >0.92 for all three methods). 

 

i) Contrast-oriented algorithm(COA) 

The contrast-oriented algorithm is an adaptive thresholding algorithm for the FDG-PET-based 

delineation of tumour volumes [13] which uses two parameters to calculate the threshold for 

auto-contouring a volume in the FDG-PET data: (i) The mean standardized uptake value of 

the 70%-of- SUVmax –isocontour of the object to characterize the mean SUV of this object 

(mSUV70%) and (ii) the background-SUV surrounding the object (BG). The relationship 

between the optimal threshold, TS, and the image contrast determined by a regression analysis 

[13]results in the following threshold equation: 

𝑇𝑆 = 𝐴 ∙ 𝑚𝑆𝑈𝑉70% + 𝐵 ∙ 𝐵𝐺 (1) 

The values of parameters A and B are known to be specific for the PET system applied in 

combination with the predefined imaging protocol [34]. Therefore, the use of the contrast-

oriented algorithm requires a system-specific calibration by phantom measurements described 

in the respective original publications [13, 34].  

 

ii) Possibility theory based method (POS) 

In 2008, Dewalle et al. introduced a nearly automatic and operator independent method for 

volume segmentation on PET images [21]. The method relies on two key points. First, the use 

of the Maximum of Intensity Projections (MIP) algorithm enabled the usually poor PET 

image contrast to be overcome. Then, a possibility theory [35] -based algorithm was 

developed to take account for the gradual transition between healthy tissues and volumes of 

interest (VOI), partially due to the poor spatial resolution of the PET images. Application of 

the possibility theory framework enabled to manage fuzzy value (included in ) instead of 

binary values ( ). This approach, which did not require prior calibration, remained 

independent of PET facilities. 

 

iii) Adaptive threshold oriented method (ADP) 

The native adaptive thresholding method has been described previously [32].Briefly, the 

optimal threshold value, ThOpt, to segment the lesion follows the mathematical expression: 

ThOpt= A/Contmeas+ B (2) 

 1;0

 1 0;
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Where A and B are 2 constant parameters which need to be defined during a calibration 

procedure and that was described in detail in [32]. Contmeasand ThOpt are obtained following 

an iterative process. Contmeascorresponds to a measured local contrast between the lesion and 

the background. For the background region, a shell surrounding the lesion is automatically 

delineated. The shell has a thickness of 2 voxels, and the inner edge of the shell was chosen to 

be 2 voxels away from the lesion boundary to limit the partial volume effect. The average 

grey level in the shell, Bavg, is computed, as well as Contmeas, such as: 

Contmeas = Maxavg / Bavg (3) 

whereMaxavg is the maximum average value of a volume of 0.5 mL within the lesion. 

 

c) Consensus algorithms 

 

i) Majority vote (MV) 

The majority vote rule is a simple consensus approach[26, 28, 36]. The volume is obtained by 

applying the majority vote rule: a voxel is considered to belong to the lesion according to the 

majority of the segmentation methods results.  

 

ii) STAPLE 

The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm is an 

instance of the expectation-maximization (EM) algorithm proposed in 2004 by Warfield et al 

[29]. From a collection of segmentation results as input, STAPLE provides a probabilistic 

estimate of the ground truth and a measure of the performance level of each input. Recently, 

Commowick et al. [30] proposed a new version of the STAPLE algorithm in which a 

maximum a posteriori (MAP) estimate of the true segmentation is obtained by considering a 

beta prior probability for the performance levels. 

The algorithm was firstly developed by the Computational Radiology Laboratory (CRL). This 

implementation is available via the CRKit software (http://crl.med.harvard.edu/). In order to 

evaluate the consensus methodology in an integrated system, the algorithm was implemented 

in Artiview®. The implementation was performed according to the method proposed in the 

original paper. To model a relationship of neighbouring voxels, a Markov Random Field was 

incorporated[30]. 

STAPLE algorithm involves several parameters, which can affect the quality of the consensus 

estimate. Mainly, the parameters (maximum number of iterations, convergence threshold, 

initial performance level of each input segmentation result, global prior probability) were set 

to their default values [29].To optimize the remaining parameters, a prior study on PET 

simulated data was performed. Results of this simulation study and the implementation of 

STAPLE are presented in detail in [37][37]. 

 

d) Database description 

Implementation and clinical feasibility of the consensus algorithms were evaluated on four 

http://www.crl.med.harvard.edu/
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patient cohorts that comprised different tumour entities and were provided by four different 

centres in Europe. All patients underwent routine 
18

FDG PET or PET/CT applying the centre-

specific clinical protocols which are summarized in Table 1. The corresponding imaging 

protocols are presented in Table 2. For each cohort of patients the segmentation results were 

compared with a dataset-specific ground truth as a reference as stated below.  

 

i) Lung tumours (centre-1) 

Ungated PET-data sets of twelve patients (four women and eight men, ranging in age from 56 

to 79 years (mean age ± SD 65±7years) with histologically proven Non-Small Cells Lung 

Cancer (NSCLC) were included in this evaluation. Patient characteristics with respect to 

tumour localization and TNM classification were described in [38]. Within three weeks after 

PET examination all patients were treated with lobectomy and mediastinal lymph node 

dissection with curative intent. Lung lobes were laminated in a standardized manner receiving 

slices of 4-5mm thickness. Digitized macrophotographs of each slice were recorded and 

evaluated as described in [38] to estimate the pathological lung volume that was used as the 

reference standard throughout this study. 

 

ii) Lung tumours (centre-2) 

This dataset consists of a cohort of 9 patients (14 lesions; six women and three men, mean 

age: 67±5 years) with primary NSCLC or pulmonary metastases who were intented to to 

receive stereotactic body radiotherapy. 4D-CT and 4D-PET datasets were retrospectively 

gated in 10 bins based on the breathing curve provided by a pressure sensor belt. On both, CT 

and PET images, the manual contours of 4 experts were combined with a majority vote as a 

ground truth surrogate for PET (manualPETvote) and CT (manualCTvote). The evaluated 

algorithms were applied to all PET timebins and the resulting mean volume was compared to 

manualCTvote, unless otherwise stated. 

 

iii) Lymphoma (centre-3) 

Eight lymphoma patients (4 men and 4 women, ranging in age from 35 to 69 years, 5 

follicular lymphoma, 2 refractory Hodgkin lymphoma and 1 transformed indolent lymphoma) 

who underwent routine whole-body 
18

F-FDG PET-CT before initiation of a first or new line 

of treatment were retrospectively included. Ten abdominal nodal lesions including bulky 

lesions were chosen in those 8 patients: 4 in the hepatic hilum, 3 in the lumbo-aortic area, 2 

coelio-mesenteric and 1 iliac node. These lesions were chosen according to their location and 

if their limits were delineable in each CT slice. The manual contour of one expert nuclear 

medicine physician on the CT of the PET-CT was used as a surrogate of ground truth.  

 

iv) Breast tumours (centre-4) 

Ten women with confirmed mammary Invasive Ductal Carcinoma (IDC) stage T2-T3 / M0 

were prospectively included. The study was declared to the ClinicalTrials.gov Protocol 
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Registration System (PRS) (VoSeTep study, N°RCB: 2009-A00602-55). Patient 

characteristics with respect to tumour localization and TNM classification were described in 

[39]. All patients underwent procubitus ungated PET-CT acquisition, centred on the breast 

region, immobilized with a device fixing the mammalian gland to avoid tumour movement.  

The surgery was performed 4 ± 3 days after the PET/CT examination of the patient. Surgical 

respected specimen was oriented to the in-vivo geometry. The specimen was sectioned with a 

macrotome (EH-170T, Sofraca, France) into 5 µm thick slices at 2 mm intervals. Digitized 

slides of each slice were recorded and evaluated as described in [39] to estimate the 

pathological volume that was used as the gold standard volume of the lesion. 

 

e) Data analysis 

 

i) Accuracy evaluation 

In a first step, the accuracy of segmentation was analysed for each dataset in terms of the Dice 

similarity coefficient (DSC)[40]and the percent error which both compare the volumes 

delineated by the different algorithms with the corresponding ground truth.The DSC,which 

provides an index of the spatial overlap [40] between the estimated volume (e.g. STAPLE or 

MV output), , and the ground truth, , is defined as: 

 

 
(4) 

Where  represents the size of the set . 

The percent error, which compares the estimated volumes of the segmentation results (e.g. 

STAPLE or vote output), , expressed in ml, with the gold-standard volumes in ml, , 

is defined as: 

 

(5) 

 

ii) Ranking 

In a second step a ranking approach was applied to investigate if it is favourable in clinical 

routine to use a consensus-contour instead of the best performing method. In the present 

evaluation, a pathology ground truth or CT-ground truth surrogate is available offering a 

reliable reference for PET-based segmentation. Therefore, it is possible to investigate whether 

or not it is favourable to simply use the best-performing method all the time by ranking the 

segmented volumes relative to the respective ground truth for the three methods, the two 

consensus-approaches and each patient. Ranking needs to be done twice, with respect to the 

best-performing and to the worst-performing method. If one individual method is observed to 

V
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consistently provide the best segmentation and simultaneously not to provide the worst 

segmentation, then using a consensus approach may not offer any improvement over using 

this best method. All segmentation methods were therefore ranked according to both, the 

smallest and the largest difference of volume compared to ground truth (best and worst 

method, respectively). Taking into account the comparatively low resolution of PET imaging, 

differences in segmented volumes smaller than 2% corresponding to differences in calculated 

diameter smaller than 1mm (smaller than half a pixel) were disregarded. The number of times, 

Ni,p, each method (i) was ranked best (p=1) or worst (p=0), respectively, in a comparison was 

recorded and this number was normalized by the total number of comparisons (Ntot) made. 

 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑖,𝑝 =  
𝑁𝑖,𝑝

𝑁𝑡𝑜𝑡
 (6) 

 

iii) Reproducibility evaluation 

Finally, implementation of an algorithm should always lead to reproducible segmentations 

results, but sensitivity of the segmentation might be affected by slight changes in the initial 

conditions. Thus, the sensibility of the algorithm to small changes in the starting conditions 

requires reproducibility testing[41] that was achieved for the implementation by repeating 

thedelineation procedure times for each patient. The impact of user interaction on the 

delineation process was simulated by modifications of the unique subvolume (mask, 3D-

box)manually drawn by the user to compute contours from the different algorithms and from 

the consensus approaches. As a metric of accuracy the mean standard deviation of the DSC 

(eq. (4)) or percent error between the delineated volume and the pathological ground truth (eq. 

(5)) were estimated from the 5 delineations of each patient data set. 

 

iv) Statistical analysis 

The non-parametric Wilcoxon test for paired samples was applied to determine if DSC, 

volume percent error and/or volume normalized to pathology were significantly different 

between MV and STAPLE consensus volumes. In order to determine if the MV rule gives 

significantly different volume percent error than the individual segmentation methods, a 

nested analysis of variance (ANOVA) on the pooled data of the 4 centres was performed. 

Further, Tukey’s test was applied for pairwise comparisons of respective means. Statistical 

analysis was carried out by use of the software package XLSTAT 2011 (Addinsoft). All 

values are expressed as mean and SD unless otherwise indicated. The p-values are considered 

statistically significant if less than 0.05. 

 

II. Results 

The patient cohorts included in this evaluation comprised different tumour entities, that is, 

tumours that differ in size, biology and body location. The corresponding PET datasets 

therefore represent a collection of clinical PET images that differ in terms of image contrast 
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and noise levels. 

Figure 1 shows both the individually segmented volumes together with the MV and STAPLE 

consensus volumes for both, a patient with confluent lesions in the hepatic hilum (patient no. 

2, centre-3) as an example of a high-contrast irregular object surrounded by tissues of non-

negligible uptake and a breast lesion of small size and low FDG-tracer uptake (patient no.8, 

centre-4) exemplifying the resulting contours in case of a small, faintly accumulating lesion. 

Forthe lymphoma all methods produce plausible segmentations of the lesion with small 

differences in the resulting contours. For the breast lesion, however, the individual 

segmentation methods provide quite different volumes that all include large volume 

differences to the pathological ground truth. 

 

  

Figure 1a Coronal slice of confluent nodal lesions in the hepatic hilum with contours determined byADT (red), 

POS (green), COA (blue) and the MV consensus method (pink) (Lymphoma – centre-3). 

 

 

Figure 1b: Transverse PET-slice of a patient with a breast FDG positive lesion (centre-4). Contours determined 

by the delineation methods ADT (red), POS (green), COA (blue) and the consensus-method MV (pink) are 

overlaid.   

 

a) Volume segmentation 

Table 3 presents the mean delineated volumes and the mean percent- and absolute errors of 

both, the three individual segmentation algorithms and the two consensus methods for the 



12 
 

four datasets in comparison with the respective ground truth and ground truth surrogate, 

respectively. Very close results were found between the two consensus methods.The 

statistical analysis (Wilcoxon test) of all datasets confirmed that the percent errors obtained 

from the MV rule were not significantly different to those obtained with the STAPLE 

algorithm (all p>0.201). Therefore only MV will be considered in the following results.  

For each patient of the 4 clinicaldatabases, Figure 2a-d shows the overall performance of the 

independent segmentation algorithms and the MV consensus method in terms of the 

delineated volumes normalized to the respective ground truth. Depending on tumour 

characteristics as lesion size and FDG-uptake, the four patient databases revealed different 

segmentation results applying the individual methods. 

Lung tumours of centre-1 (Figure 2a) could be evaluated in comparison with pathological 

specimen findings. Moreover, for this evaluation the macroscopic extent of the tumours could 

be determined by use of a volumetric analysis method which yielded a reliable pathological 

ground truth [38]. Although only a few number of patients could be investigated the 

corresponding tumours varied with respect to parameters as FDG-uptake (range of SUVmax: 

5.9 – 29.8; median SUV: 12.8), FDG-uptake heterogeneity, tumour size (mean volume 

35.8±49.5ml and tumour localisation [38]. As a limitation, solely 3D-PET data could be 

included in this cohort. Therefore the delineation results may be influenced by respiratory 

motion that may vary depending on the size, location and surrounding of the individual lung 

tumour [38, 42, 43]. Compared with the pathological specimens slight overestimation of the 

volumes delineated from PET data was observed for COA for all patients of this database 

whereas Adaptive Threshold (ADT) and Possibility Theory (POS) underestimated the 

pathological volume for 1/12 and 3/12 patients, respectively. 

In the second cohort of lung tumour patients (centre-2) comprised gated PET- and CT data 

that should at least diminish the impact of respiratory motion on the segmentation 

results.Here, the PET delineation results were compared to the majority vote (MV) of the 

manual CT contours of 4 experts as a ground truth surrogate. The MV consensus was chosen 

to reduce the well-known inter-observer variability of CT contouring [44, 45] and therefore to 

improve the delineation accuracy. In addition, patients with peripheral tumours are clearly 

delineable on CT images were included in this cohort even in casesthe tumorswere rather 

small (mean volume: 3.5±3.5ml, range of SUVmax: 2.9 – 28.8) compare Figure 2b).For these 

lesions, the PET volumes delineated by all methodswere both over- and underestimation in 

relation tomanualCTvotemethod. Comparing the individual methods, the volume 

overestimation was larger with POS and  the smallest were obtained with COA. 

 

The lymphomas of the cohort from centre 3 were bulky lesions in the abdominal area (mean 

volume 77.9 ± 90.5 ml) that showed high but heterogeneous accumulation of FDG (mean 

SUVmax 15.14 ± 6.78). In addition, these lesions were located, at least in several patients, in 

the neighbourhood of organs with high FDG uptake, for example the spleen and bowel. CT 

delineation of the lesions by an expert nuclear medicine physician was used as the ground 

truth surrogate. Only lesions surrounded by fat were chosen in order to provide a reasonably 

good surrogate as the ground truth. The delineated PET volumes were underestimated by all 

segmentation methods in most patients in relation to the CT delineation (Fig. 2c). 
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In the cohort with breast cancer from centre 4, the PET    volumes were greatly overestimated 

by all methods in relation   to the pathological volumes.   These results can be explained by 

the fact that the lesions volumes were small (mean volume: 4.0 ± 3.29 ml) leading to partial 

volume effect, and thus a small SUVmax (metdian 4.6, range: 1.9 – 11.0). Moreover, mean 

percent error werehigh mainly because of the very small pathology volume of three of the ten 

lesions (0.76 ml, 1.30 ml and 2.07 ml) thatresulted in very large differences in the delineated 

volumes. For the othersevenlesions (meanpathology volume 5.14 ± 3.09 ml), the mean 

percent error (meanabsoluteerror) with all methodswasalsohigh but with the consensus 

algorithmremainedsmallerthan 67 % (2.69± 1.92 ml). As shown in Fig. 2d, the threemethods 

of segmentation gave differentresults, especially for theseverysmalllesions (see for example 

patient 8 with a pathological volume of 0.76 ml). Breast cancer 

waschosenbecauseconservingsurgeryis the initial step in treatment and the partial 

breastsurgeryprovidessamplesthatcanbeused as the gold standard. In order to 

avoidtumourmovement and to optimizecountingstatistics, all patients 

underwentprocubitusungated PET/CT acquisition centred on the breastregionimmobilizedwith 

a device fixing the chest.  

 

The statistical analysis of the clinical data, comprising a nested ANOVA performed on the 

pooled percent errors in the tumour volumes delineated in patients from the four centres, 

revealed that variations mainly depended on the centre, that is, on the patient database. No 

significant effect of the method was found (p=0.072). 

 

b) Segmentation agreement 

Agreement in segmentation in terms of DSC in comparison with the manual CT ground truth 

surrogate was determined for the databases of centre-2 (lung lesions) and -3 (lymphoma). 

Corresponding results are included in the last column of Table 3. Identical mean DSCswere 

found for the two consensus methods. The Wilcoxon testperformed on the pooled data from 

centre-2 and -3 confirmed that there was no significant difference in DSC between the MV 

rule and the STAPLE algorithm (p=0.59). Therefore only the MV rule with results presented 

in Figure 3 for each patient will be considered in the remainder of this paragraph. 

 

For centre-2, the manualCTvoteof the small lung lesions was compared with the volume of 

the closest PET time bin. For thisdatabase, Figure 3a shows large differences in results for 

individual patients (minimum DSC: 0.15, maximum DSC: 0.76):in 10/14 patientsDSC of the 

consensus was found to be larger than 0.64(mean DSC: 0.67) indicating good segmentation 

quality. DSC of the individual methods was slightly smaller (mean of all methods: 0.65) with 

very small differences betweenthe individual methods. Small values of DSC (DSC<0.45) for 

both, all individual methods and the consensus were observed in 3/14 cases. These cases 

could be assigned to lesions located in the lower lobe of the lung exhibiting a relatively large 

respiratory displacement. 

For the lymphoma lesions (centre-3)onlysmalldiffer- 561 encesamong the 

individualmethodswerefound(mean DSC: 0.67±0.08, minimum DSC: 0.51, maximum DSC: 
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0.82). The largest difference in DSC was observed for patient 4 with a DSC of 0.67 for COA 

while all the other methods gave DSC higher than 0.80. Here, MV either exceeds or is close 

to a mean DSC of 0.67 (minimum DSC:0.55, maximum DSC:0.80, compare Figure 3b) 

indicatinggood segmentation quality for lymphoma lesion. 
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(b) 

 

(c) 
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(d) 

 

Figure 2: Volumes delineated by the three individual algorithms and the consensus-method MV and 

normalized to the corresponding ground truth or ground truth surrogate for each patient: (a) lung tumours of 

centre-1 normalized to pathology reference, (b) lung tumours of centre-2 normalized to manualCTvote, (c) 

lymphoma of centre-3 normalized to manual CT delineation by one expert, (d) breast cancer of centre-4 

normalized to pathology reference. 
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c) Ranking 

As described in section “data analysis” a ranking approach was applied to investigate if it is 

favourable in clinical routine to use a consensus-contour instead of simply using the best 

performing method. Compared to a reliable ground truth our results have shown that the best 

individual method depends on parameters like lesion size or tracer uptake resulting in PET 

images of different contrasts and levels of noise. In clinical routine, however, we do not 

generally know the reliable ground truth beforehand and therefore we do not know the best 

individual method before segmentation. The distribution of the resulting method ranking that 

was calculated according to Eq. 6 is shown in Figure 4. For the datasets of centre 1, 2 and 3 

ranking demonstrates that the individual method best performing in many cases was also often 

the worst performing method in other cases. Compared with the individual methods the best 

ranking of the consensus was slightly lower but never ranked as worst method, except for one 

case of centre-1.. Altogether, these results demonstrate that combining different segmentation 

methods by application of a consensus method offers robustness against the variable 

performance of individual segmentation methods. 

 

 

(a) 

 

(b) 

 

Figure 3: Mean DSC between the CT-volume and the PET-volume delineated by the three individual algorithms 

and the consensus-method MV for each patient. (a) Lung tumours of centre-2, (b) Lymphoma of centre-3. 
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(a) (b) 

 
 

(c) (d) 

Figure 4: Rankingproportions of volume ranking of the individual segmentation algorithms and the consensus 

methods. (a) lung lesions (centre-1), ranking based on the volume difference to pathology (b) lung lesions 

(centre-2), ranking based on the volume difference to the manualCTvote;  (c) lymphoma(centre-3), ranking 

based on the DSC;(d) breast lesions (centre-4), ranking based on the volume difference to pathology 
 

 

Our results (Figures 2-4) reflect that the performance of individual segmentation algorithms 

can be variable for lesions of different tumour entities, that is, for PET images that differ in 

resolution, contrast and image noise.However, (Figures 2-4) also demonstrate that the 

consensus method displays improved volume segmentation accuracy compared to the worst 

performing individual method in all cases and is close to the best performing method in many 

cases. This observation was supported by the results of the statistical analysis: Application of 

a nested ANOVA on the pooled databases of the 4 centres followed by a further Tukey’s tests 

revealed that the percent errors obtained with the worst performing method are significantly 

higher than those obtained with MV (p=0.031). In addition the Wilcoxon test revealed that 

DSC values of the worst performing method are significantly lower than those obtained with 

MV (centre-2: p=0.0019; centre-3: p=0.0029) confirming the robustness of the consensus-

method. 

 

d) Reproducibility 

For each method the mean of the standard deviation of the percent volume error or DSC was 
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calculated over all patients and summarized in Table 4. The values for centre-1, centre-3 and 

centre-4 demonstrate that for all methods used a modification of the volume of work placed at 

the beginning of the segmentation process has only a minor effect on the delineation results. 

However, for breast lesions (centre-4), corresponding to small, faintly accumulating lesions, a 

change of this volume may have an important impact on the segmentation output (compare 

Table 4). 

 

III Discussion 

In this paper, clinical PET/CT data comprising different tumour entities were used to assess 

the performance of a novel PET segmentation concept that combines three individual PET 

segmentation methods by application of two consensus algorithms. Consensus and individual 

segmentation algorithms were implemented on the same software platform to allow an 

optimal workflow and minimize reproducibility drawbacks. Three segmentation methods 

developed by the authors were used as entry of the consensus algorithms: possibility theory 

based approach (POS)[20], contrast oriented approach (COA) [13] and adaptive threshold 

oriented approach (ADT)[32]. To our knowledge we provide the first multicentre clinical 

evaluation of combining several PET-segmentation methods by a consensus approach on 

different tumour entities. Our study is in line with previous work from McGurk et al [46] who 

evaluated application of the consensus method on phantom measurements. In addition, this 

group proposed to use consensus volumes to reduce the intra- and inter-observer variability of 

manual delineation for head-and-neck cancer patients and applied the consensus methods to 

assess the treatment response in radiation therapy. 

Our clinical databases comprised lung tumours, breast tumours and lymphoma, that is, 

tumours that differ in biology, size and body location. The corresponding PET datasets 

therefore represent a collection of clinical PET images that differ in terms of image contrast 

and noise levels. In addition the images were acquired in different centres on different 

PET/CT systems.Overall, the present analysis was used to evaluate the feasibility and 

usefulness of the consensus approach to improve robustness of PET based contouring of 

tumour volumes. 

Our results demonstrate that the consensus methods display improved volume segmentation 

accuracy compared to the worst performing individual methodsin the majority of cases and 

are close to the best performing methods for many cases of the tumour entities involved. 

Differences in volume percent error varied for the different tumour entities demonstrating the 

impact of tumour characteristics translating into PET-image characteristics on the accuracy of 

the individual segmentation methods. Differences in DSC were small for both, lungs and 

lymphoma and statistically not significant between the consensus and the individual methods. 

However, compared with the worst performing method both, statistically significant lower 

values of percent error and higher values of DSC were obtained applying the consensus 

algorithm. Keeping in mind that the ground truth is generally not known, these findings 

demonstrate higher robustness and accuracy of the consensus contour compared to application 

of one individual segmentation method.  
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Our results on ranking confirm this higher robustness of the consensus method. Even if one of 

the individual methods was performing best in many cases (e.g. COA for lymphoma, lungs 

and breast or POS for lung 1) the same method was also the worst method in other cases. 

Consequently, the ranking of an individual segmentation method was observed to change 

depending on the tumour entity, and also on a comparison of individual patients within one 

database. This can be explained by the variable performance of individual PET-segmentation 

methods which is known to depend on varying clinical conditions involving different lesion 

size, noise levels or radiopharmaceutical uptake heterogeneity [47, 48]. Those uncertainties of 

image segmentation are also known in other fields of medical imaging, especially in MRI. To 

overcome, combining individual algorithms by use of a consensus method has been proposed 

in the literature and applied in different fields [26-28, 31, 36]. In our study on PET 

segmentation, the consensus method showed essentially equivalent performance compared to 

using the best performing individual segmentation method in many cases or, respectively, 

improved segmentation accuracy compared to the worst performing individual method in the 

majority of cases. This finding demonstrates evidently that combining multiple segmentation 

methods provides robustness of segmentation accuracy in comparison to using one single 

individual method. This is very important keeping in mind that the ground truth is generally 

not known. Moreover, to a certain extent, the consensus methods seem to compensate the 

weaknesses of the individual methods. Therefore the use of the consensus method may 

potentially provide a more robust approach to RT planning applications. 

The relatively small differences between the individual methods and the consensus algorithm 

might be explained by the choice of the individual methods, two of them are adaptive 

thresholding algorithms. As a limitation only three algorithms could be included in this 

evaluation (software implementation). In the recent publication by McGurk et al, the authors 

stated that according to [49]the accuracy in a majority vote approach is guaranteed to improve 

depending on the number of methods used if the individual methods have accuracies greater 

than 0.5. To exemplify, according to [49]combining 3 individual segmentation methods all 

having accuracies of 0.6 improves the consensus accuracy to 0.6480 (8%), combining 5 of 

them to 0.6826 (13.2%). In addition, higher accuracies of the individual methods cause higher 

levels of improvement. However, using three algorithms, situations might arise where the 

results of two methods are totally matching but are less accurate than that of the third 

algorithm. In these cases, the majority vote approach will not improve segmentation accuracy. 

Further developments of the current software should therefore involve the implementation of 

at least one or two additional other state-of-the-art PET-segmentation algorithms of high 

accuracy implying e.g. edge detection, stochastic models, and other approaches [14-20, 22, 

23]. 

 

In our study we applied two consensus methods: the majority vote rule leading to decide if 

voxels belong to the lesion or not according to the results of the majority of the segmentation 

methods (MV) [28] and a probabilistic method, the Simultaneous Truth and Performance 

Level Estimation (STAPLE) algorithm [29, 30], leading to compute a probabilistic estimate of 

the ground truth from a collection of segmentation results. The group of McGurk et al has 

investigated these two consensus methods on PET phantom measurements combining a 
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collection of 5 individual segmentation methods [31]. In concordance with our results on 

clinical data, these authors could demonstrate on phantom data that differences between MV 

and STAPLE were small and that both methods offer good performance when combining 

volumes[37]. The small differences between the two consensus methods should be explained 

considering the number and the respective segmentation accuracy of the individual algorithms 

which are used in entry of STAPLE. The number of three different algorithms included in our 

evaluation as well as the similarity of two of the methods might reduce the impact on the 

statistical estimate and therefore on the output of STAPLE. Again, further developments 

including several other state-of-the-art PET-segmentation algorithms of high accuracy will be 

necessary to investigate the impact on STAPLE. However, this was beyond the object of the 

current investigation. 

It needs to be stated that the reproducibility of the segmentation was good for all tumour 

entities except breast carcinoma.The current software implementation that allowed a 

simultaneous application of the different segmentation methods while keeping user interaction 

to a minimum was surely a key point that facilitates this good reproducibility.The relatively 

low values for breast carcinoma (compare Table 4), however, may reflectthe impact of 

neighbouring DCIS components [50] and partial volume effects due to small lesion size which 

are typical for this tumour entity.  

In the present evaluation study, only intra-user reproducibility was evaluated because of the 

huge amount of data to be analysed. According to our results on intra-user reproducibility we 

suggest that inter-user reproducibility of PET volume segmentation should also be improved 

when using the consensus approach instead of one individual segmentation method. This will 

be of high interest in those multi-centric clinical trials with targeting based on PET-CT 

delineation and might guaranty a more reliable, homogenous delineation approach over all the 

centres.  

Collecting databases of different tumour entities acquired on different PET/CT system 

remains a challenging task and only multicentre trials can offer this variability. Nevertheless, 

we are aware that the ground truth and ground truth surrogates, respectively, used here 

(volume pathology, manual CT-delineation) were not optimal in all cases. As an alternative 

Monte Carlo simulation (MC) of clinical PET/CT scans could be included. Considering the 

current state of the art of MC offering realistic images such as databases described in Hatt et 

al [51]or in Papadimitrioulas et al. [52] where authors introduced heterogeneity models, 

demonstrates that simulating datasets with features close to real life imaging has become 

feasible.Nevertheless, the use of databases generated by MC was beyond the object of the 

current investigation.   

 

Finally, our results on clinical data, based on different ground truth surrogates have 

demonstrated that combining several segmentation algorithms by a consensus method 

improved the segmentation accuracy in the majority of cases and, importantly, showed good 

robustness when comparing against the worst performing individual method for each site. 

Thus, this concept can be applied in clinical routine to combine different segmentation 

methodsor manual delineation results of several experts. This makes the use of consensus 

methods relevant for radiation therapy considering PET-based GTV-delineation but also for 
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other scenarios like the joining of expert recommendations in clinical routine and trials or the 

generation of multi-observer generated contours for standardisation of automatic contouring. 

 

IV Conclusion 

In this study, we determined the added value of combining PET-segmentation results with 

consensus methods considering different clinical scenarios, technical details and ground truths 

(or surrogates). Four different clinical databases comprising different tumour entities (lung, 

breast, lymphoma) and two consensus algorithms (MV, STAPLE) were included in this 

investigation. In terms of accuracy and reproducibility both consensus methods offered 

similar results, that is (i) consensus greatly improved volume segmentation compared to the 

worst performing individual method and (ii) the consensus delineation results were close to 

that of the best performing individual method in nearly all cases. These results were 

independent on tumour location (lung, breast) or pathology (lymphoma). Thus, this study 

demonstrates that consensus algorithms can be very useful for combining automatic 

segmentation results in medical imaging but also for other scenarios like the joining of expert 

recommendations in clinical routine and trials or the generation of multi-observer generated 

contours for standardisation of automatic contouring. 
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TABLES 

 

Table 1: Clinical protocols usedfor routine whole-body 
18

F-FDG PET or –PET/CT in the different centres 

Centre centre-1 centre-2 centre-3 centre-4 

scanner 
1
Siemens 

ART 

2
Philips GEMINI 

TF64 

³GE Discovery 

RX 

1
Siemens Biograph 

LSO sensation16 

Fasting time (h) 6 6 6 6 

Mean glucose 

level (mg/dl) 

<150 95 129 <150 

Acquisition time 

point (min p.i.) 

90 ± 8 120 86 ± 27 69 ±11 

Mean activity 

(MBq) 

279 ± 33 263 ± 32 316 ± 53 343 ± 70 

1
CTI/ Siemens Medical Solutions, Hoffman Estates, Knoxville, TN, USA 

²Medical Philips System, Eindhoven, Netherlands 

³GEHC - Milwaukee, Wisconsin, USA 

 

 

 

Table2: PET-scanner settingsas used in the different centres for acquisition of patient data.. 

 centre-1 centre-2 centre-3 centre-4 

Scanner Siemens ART Philips GEMINI TF64 GE Discovery Siemens Biograph 16 

Matrix size PET (voxels) 128x128x92 144x144x45 128x128x47 168x168x80 

Voxel size PET 5.15x5.15x3.375 mm
3
 4.00x4.00x4.00 mm

3
 5.46x5.46x3.27 mm

3
 4.06x4.06x2.0 mm

3
 

Axial Field of View 

(FOV) 

162 mm 180 mm 153 mm 152 mm 

Emission scan time per 

bed position 

10 min 15 min 2 min 3 min 

Reconstruction 

algorithm 

OSEM BLOB-OS-TF OSEM AWOSEM 

Algorithm settings 2 iterations, 4 subsets, 

2 mm Gaussian filter 

2 iterations, 21 subsets,  

5 mm Gaussian filter 

2 iterations, 21 subsets, 

5 mm Gaussian filter 

4 iterations, 8 subsets, 

5 mm Gaussian filter 

Attenuation correction Transmission in  4D CT correction CT correction CT correction 

Time bins 
Singles mode (137-Cs) 

 
10   
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Table 3: Mean percent-errors, absolute errors and mean DSC (if available) of PET-based delineation using the 

three individual segmentation algorithms and the two consensus methods in comparison with the given ground 

truth. Absolute values of the mean delineated volumes are also given (for comparison:; mean pathological 

volume lung lesions (centre-1): 35.8±49.5ml; mean CT volume lung lesions (centre-2): 3.52 ±3.54 ml mean CT 

volume lymphoma: 77.9 ±90.5 ml;mean pathological volume breast cancer: 4.0±3.3ml. 
 

Method Mean 

Delineated 

Volume (ml) 

Mean 

percent error 

(%) 

Mean absolute 

error (ml) Mean DSC 

Lung tumours (centre-1) 

 

ADT 44.8±61.9 30.6±18.0 8.93±13.54  

POS 36.4±48.9 13.1±19.2 0.61±3.77  

COA 41.1±53.7 25.4±16.0 5.31±5.43  

MV 41.1±53.9 26.3±16.3 5.33±5.63  

STAPLE 41.1±53.9 26.2±16.5 5.33±5.64  

Lung tumours (centre-2) 

 

ADT 3.44±1.73 29.45±56.43 -0.23±1.93 0.59±0.16 

POS 3.69±1.77 39.50±60.32 0.02±1.92 0.58±0.16 

COA 3.12±1.85 11.25±46.23 -0.55±1.85 0.58±0.16 

MV 3.39±1.73 27.00±54.96 -0.28±1.92 0.59±0.16 

STAPLE 3.39±1.73 27.00±54.96 -0.28±1.92 0.59±0.16 

Lymphoma (centre-3) 

 

ADT 60.2±71.98 26.66±16.12 19.03±20.02 0.67±0.09 

POS 58.48±66.78 26.57±13.69 20.08±21.55 0.69±0.06 

COA 45.78±45.08 25.59±14.08 20.13±22.73 0.64±0.09 

MV 56.21±65.98 27.85±14.14 21.69±23.09 0.67±0.08 

STAPLE 56.23±65.98 28.08±14.05 21.67±23.09 0.67±0.08 

Breast cancer (centre-4) 

 

ADT 6.8±2.7 255.5±333 4.4±3.3  

POS 8.5±4.6 307.4±343 5.9±4.8  

COA 6.0±2.7 196±221 3.9±2.9  

MV 6.5±2.6 231.2±285 4.2±3.1  

STAPLE 6.5±2.6 231.2±285 4.2±3.0  
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Table 4: Mean of standard deviation per method for lung tumours, lymphoma and breast cancer. 

 

Method %Variation of standard deviation  

Lung tumours (centre-1 /  percent error) 

 

ADT 1.66±2.24 

POS 5.11±8.75 

COA 2.08±2.53 

MV 2.10±3.13 

STAPLE 2.28±3.53 

Lymphoma (centre-3 / DSC) 

 

ADT 1.68±1.36 

POS 1.25±1.09 

COA 2.67±4.49 

MV 1.31±1.18 

STAPLE 1.44±1.23 

Breast cancer (centre-4 / percent error) 

 

ADT 84.14±160.80 

POS 35.36±67.19 

COA 128.62±163.44 

MV 47.55±66.93 

STAPLE 47.72±66.51 
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