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SOME RECENT RESULTS AND OPEN PROBLEMS ON SETS

OF LENGTHS OF KRULL MONOIDS WITH FINITE CLASS

GROUP

W. A. SCHMID

Abstract. Some of the fundamental notions related to sets of lengths of Krull
monoids with finite class group are discussed, and a survey of recent results
is given. These include the elasticity and related notions, the set of distances,
and the structure theorem for sets of lengths. Several open problems are
mentioned.

1. Introduction

Krull monoids are a central structure in factorization theory. On the one hand,
many structures of interest such as maximal orders of algebraic number fields and
more generally Dedekind domains are Krull monoids; we give some more examples
in Section 2. On the other hand, Krull monoids are by definition the class of
monoids one gets by considering the monoids whose arithmetic is given by direct
restriction of the arithmetic of a ‘surrounding’ factorial monoid. Thus, there is also
a purely intrinsic reason why they are a very natural type of monoid in this context,
and this might be part of the reason why they arise in various areas.

The investigation of the lengths of factorizations, that is the number of irre-
ducible factors in the factorizations, is a central subject in factorization theory.
One reason for considering lengths is that the length is a simple and natural pa-
rameter of a factorization, while still containing interesting information. There are
other, more technical reasons, that are explained later.

The idea of this survey article is to give some insight into current research on
sets of lengths of Krull monoids, with an emphasis on the case of finite class group
and each class containing a prime divisor. By ‘current’ we roughly mean obtained
during the last decade, or put differently since the publication of Geroldinger and
Halter-Koch’s monograph [23], which covered this subject in detail (see especially
Chapters 6 and 7).

The scope is quite narrow and even in this narrow scope we do not attempt to be
complete. Rather, the aim is to convey via discussion of selected subjects some of
the main trends in recent research on this subject and to highlight some problems
that might be interesting avenues for future research. In this vein, some effort is
made to explain the why and not only the what. For the most part, this survey
does not contain proofs of the results we mention. However, proofs of some basic
constructions and lemmas are included, on the one hand since sometimes the details
of these proofs are relevant for the discussion and on the other hand to convey the
type of arguments used.
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No attempt is made to faithfully recount the history of the subject. Of course,
we try to attribute correctly the main results we discuss, but we also often make
reference to secondary sources or even give none at all when we give a proof; this
is the case especially for some basic results and constructions that are very widely
known and used, and that sometimes exist in numerous slightly different versions
in the literature. Except for Proposition 4.14, none of the results in this survey is
new.

2. Preliminaries

We denote by N the set of positive integers and by N0 the set of non-negative
integers. Intervals are intervals of integers, that is for real numbers a, b we have
[a, b] = {z ∈ Z : a ≤ z ≤ b}.

For subsets A,B of the integers we denote by A + B = {a + b : a ∈ A, b ∈ B}
the sum of the sets A and B. For k an integer we denote by k · A = {ka : a ∈ A}
the dilation of A by k.

In general we follow the notation and conventions of [23] and [18] where more
detailed information could be found; the former gives an in-depth treatment of
factorization theory as a whole, the latter gives an introduction to the aspects most
relevant to this survey, that is factorizations in Krull monoids and the associated
zero-sum problems.

2.1. Monoids, factorizations, sets of lengths. In this paper, a monoid is a
commutative, cancelative semigroup with identity, which we usually simply denote
by 1. We typically use multiplicative notation for monoids. The multiplicative
semigroup of non-zero elements of an integral domain is a good example to keep
in mind. Let (H, ·) be a monoid. We denote by H× the set of invertible elements
of H ; we call the monoid reduced if 1 is the only invertible element. By A(H) we
denote the set of irreducible elements of H , also called atoms, that is the elements
a ∈ H \H× such that a = bc implies that b or c is invertible. Moreover, we recall
that an element a is called prime if a | bc implies that a | b or a | c. Every prime is
irreducible; the converse is not necessarily true.

We denote by Hred = H/H× the reduced monoid associated to H . We say that
elements a, b ∈ H are associated, in symbols a ≃ b, if a = ǫb with an invertible
element ǫ ∈ H×.

A monoid F is called free abelian if there exists a subset P (of prime elements)
such that every a ∈ F has a unique representation of the form

a =
∏

p∈P

pvp(a), where vp(a) ∈ N0 with vp(a) = 0 for all but finitely many p ∈ P.

We use the notation F(P ) to denote the free monoid with P as set of prime elements.
We call |a| =

∑
p∈P vp(a) the length of a.

The monoid Z(H) = F
(
A(Hred)

)
is called the factorization monoid of H , and

the monoid homomorphism

π : Z(H) → Hred

induced by π(a) = a for each a ∈ A(Hred) is the called factorization homomorphism
of H .

For a ∈ H ,

Z(a) = π−1(aH×)
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is the set of factorizations of a and

L(a) =
{
|z| : z ∈ Z(a)

}
⊂ N0

is the set of lengths of a. The above definition of the set of factorizations of a is
a formalization of what one could describe informally as the set of distinct (up to
ordering and associates) factorizations of a into irreducibles.

In the present survey, we essentially exclusively deal with lengths of factoriza-
tions, and thus we are mainly interested in L(a). An alternate description for L(a),
for a ∈ H \H×, is that it is the set of all l such that there exist u1, . . . , ul ∈ A(H)
with a = u1 . . . ul; and setting L(a) = {0} for a ∈ H×.

Moreover, we set L(H) = {L(a) : a ∈ H} the system of sets of lengths of H .

2.2. Abelian groups and zero-sum sequences. We denote abelian groups ad-
ditively. Mainly we deal with finite abelian groups. Let (G,+, 0) be an abelian
group. Let G0 ⊂ G be a subset. Then [G0] ⊂ G denotes the subsemigroup gen-
erated by G0, and 〈G0〉 ⊂ G denotes the subgroup generated by G0. A family of
non-zero elements (ei)i∈I of G is said to be independent if, for mi ∈ Z,

∑

i∈I

miei = 0 implies miei = 0 for all i ∈ I.

The tuple (ei)i∈I is called a basis if (ei)i∈I is independent and the elements ei
generate G as a group.

For n ∈ N, let Cn denote a cyclic group with n elements. Suppose G is finite.
For |G| > 1, there are uniquely determined integers 1 < n1 | . . . | nr such that

G ∼= Cn1 ⊕ . . .⊕ Cnr
.

We denote by r(G) = r the rank of G and by exp(G) = nr the exponent of G. If
|G| = 1, then r(G) = 0 and exp(G) = 1. A group is called a p-group if the exponent
is a prime-power.

We set D∗(G) = 1 +
∑r

i=1(ni − 1); the relevance of this number is explained at
the end of this subsection.

For (G,+) an abelian group, and G0 ⊂ G, we consider F(G0). It is common
to call an element S ∈ F(G0) a sequence over G0, and to use some terminology
derived from it. In particular, divisors of S are often called subsequences of S and
the neutral element of F(G0) is sometimes called the empty sequence.

By definition

S =
∏

g∈G0

gvg(S)

where vg(S) ∈ N0 with vg(S) = 0 for all but finitely many g ∈ G0, and this
representation is unique. Moreover, S = g1 . . . g|S| with gi ∈ G0 for each i ∈ [1, |S|]
that are uniquely determined up to ordering.

Since the set G0 is a subset of a group, it makes sense to consider the sum of S,
that is

σ(S) =
∑

g∈G0

vg(S)g =

|S|∑

i=1

gi.

The sequence S is called a zero-sum sequence if σ(S) = 0 ∈ G. A zero-sum
sequence is called a minimal zero-sum sequence if it is non-empty and each proper
subsequence is not a zero-sum sequence.
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The set of all zero-sum sequences over G0 is denoted by B(G0); it is a submonoid
of F(G0). The irreducible elements of B(G0) are the minimal zero-sum sequences;
for brevity we denote them by A(G0) rather than by A(B(G0)).

The Davenport constant of G0, denoted by D(G0), is defined as

sup{|A| : A ∈ A(G0)}.

It can be shown in general that D(G0) is finite if G0 is finite (see [23, Theorem
3.4.2]); in the special case that G0 is a subset of a finite group, or more generally
contains only elements of finite order, it however follows just by noting that in a
minimal zero-sum sequence no element can appear with a multiplicity larger than
its order.

For G a finite abelian group, one has D(G) ≥ D∗(G). Equality is known to hold
for groups of rank at most two and for p-groups. However, for groups of rank at
least four it is known that the inequality is strict for infinitely many groups. We
refer to [23, Chapter 5] and [18] for more information on the Davenport constant
in the context of factorization theory.

2.3. Krull monoids and transfer homomorphisms. We recall some basic facts
on Krull monoids. For a detailed discussion on Krull monoids we refer to the
relevant chapters of Halter-Koch’s monograph [33] or again [23, Chapter 2].

There are several equivalent ways to defined a Krull monoid; the one we use
is well-suited for the current context. A monoid H is called a Krull monoid if it
admits a divisor homomorphism into a free monoid. This means there is some free
monoid F(P ) and a monoid homomorphism ϕ : H → F(P ) such that a | b if and
only if ϕ(a) | ϕ(b). Thus, the arithmetic of a Krull monoid is directly induced by
the one of a free, and thus factorial, monoid.

There is an essentially unique ‘minimal’ free monoid with this property, which is
characterized by the property that for each p ∈ P there exist a1, . . . , ak ∈ H such
that p = gcd(ϕ(a1), . . . , ϕ(ak)).

One calls a divisor homomorphism ϕ : H → F(P ) with the additional property,
for each p ∈ P there exist a1, . . . , ak ∈ H such that p = gcd(ϕ(a1), . . . , ϕ(ak)), a
divisor theory. The elements of P are called prime divisors.

Every Krull monoid admits a divisor theory, which is unique up to isomorphism.
More specifically, a divisor theory is given by the map from H to Iv(H), the monoid
of divisorial ideals, mapping each element to the principal ideal it generates. This
is indeed a free monoid in the case of Krull monoids as every divisorial ideal is in
an essentially unique way, the product (in the sense of divisorial ideals) of divisorial
prime ideals.

Another characterization for Krull monoids is that they are completely inte-
grally closed and v-noetherian, that is they satisfy the ascending chain condition
on divisorial ideals.

For ϕ : H → F(P ) a divisor theory, the group G = q(F(P ))/q(ϕ(H)) is called
the class group of H . We denote the class containing some element f by [f ];
moreover, we use additive notation for the class group. The set GP = {[p] : p ∈
P} ⊂ G is called the set of classes containing prime divisors. The set GP generates
G as a semi-group; any generating subset of G can arise in this way.

Let β̃ : F(P ) → F(GP ) be the surjective monoid homomorphism induced by
p 7→ [p] for p ∈ P .
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One can see that the image of β̃ ◦ ϕ is B(GP ), and β = β̃ ◦ ϕ : H → B(GP ) is
called the block homomorphism.

The block homomorphism is the archetypal example of a transfer homomor-
phism. A monoid homomorphism θ : H → B is called a transfer homomorphism if
it has the following properties:

• B = θ(H)B× and θ−1(B×) = H×.
• If u ∈ H , b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H such that
u = vw, θ(v) ≃ b and θ(w) ≃ c.

An important property of transfer homomorphism is that L(a) = L(θ(a)) for
each a ∈ H , and L(H) = L(B). Thus, a transfer homomorphism allows to transfer
questions on sets of lengths from a monoid of interest H to a simpler auxiliary
monoid B. The notion transfer homomorphism was introduced by Halter-Koch
[32]; an early formalization of the block homomorphism, in the context of rings of
algebraic integers, was given by Narkiewicz [37].

2.4. Examples of Krull monoids and related structures. We gather some
of the main examples of structures of interest to which the results recalled in this
survey apply, that is structures that are Krull monoids or structures that admit
a transfer homomorphism to a Krull monoid, which then usually is a monoid of
zero-sum sequences.

Before we start, we recall that a domain is a Krull domain if and only if its
multiplicative monoid is a Krull monoid, as shown by Krause [35]. Thus, we include
Krull domains in our list of Krull monoids without further elaboration of this point.
Moreover, we recall that Dedekind domains and more generally integrally closed
noetherian domains are Krull domains (see, e.g., [23, Section 2.11]).

The following structures are Krull monoids.

• Rings of integers in algebraic number fields and more generally holomorphy
rings in global fields (see, e.g., [23], in particular Sections 2.11 and 8.9).

• Regular congruence monoids in Dedekind domains, for example the domains
mentioned above (see, e.g., [22] or [23, Section 2.11]).

• Rings of polynomial invariants of finite groups (see, e.g., [10, Theorem 4.1].
• Diophantine monoids (see, e.g., [7]).

Moreover, the monoid of zero-sum sequences over a subset G0 of an abelian group
is itself a Krull monoid; the embedding B(G0) →֒ F(G0) is a divisor homomorphism.

Moreover, semi-groups of isomorphy classes of certain modules (the operation
being the direct sum) turn out to be Krull monoids in various cases. There are
many contributions to this subject; we refer to the recent monograph of Leuschke
andWiegand [36] for an overview. We mention, specifically, a recent result by Baeth
and Geroldinger [2, Theorem 5.5], yielding a Krull monoid with cyclic classgroup
such that each class contains a prime divisor (earlier example often had infinite
class groups).

In addition to those examples of Krull monoids, there are structures that while
not Krull monoids themselves, for example as they are not commutative or not
integrally closed, still admit a transfer homomorphism to a Krull monoid. Hence
their system of sets of lengths is that of a Krull monoid.

We recall two recent results; the first is due to Smertnig [44, Theorem 1.1], the
second due to Geroldinger, Kainrath, and Reinhart [25, Theorem 5.8] (their actual
result is more general).
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• Let O be a holomorphy ring in a global field and let A be a central sim-
ple algebra over this field. For H a classical maximal O-order of A one
has that if every stably free left H-ideal is free, then there is a transfer-
homomorphism from H \ {0} to the monoid of zero-sum sequence over a
ray class group of O, which is a finite abelian group.

• Let H be a seminormal order in a holomorphy ring of a global field with

principal order Ĥ such that the natural map X(Ĥ) → X(H) is bijective

and there is an isomorphism between the v-class groups of H and Ĥ. Then
there is a transfer-homomorphism from H \ {0} to the monoid of zero-sum
sequence over this v-class group, which is a finite abelian group.

In general we formulate the results we recall for Krull monoids. However, in
cases where it seems to cause too much notational inconvenience, we give them for
monoids of zero-sum sequences only.

3. Some general results

In this section we collect some general results, before we focus on the more
specific context of Krull monoids with finite class group in the subsequent sections.

Definition 3.1. Let H be a monoid.

(1) H is called atomic if |Z(a)| > 0 for each a ∈ H .
(2) H is called factorial if |Z(a)| = 1 for each a ∈ H .
(3) H is called half-factorial if |L(a)| = 1 for each a ∈ H .
(4) H is called an FF-monoid if 1 ≤ |Z(a)| < ∞ for each a ∈ H .
(5) H is called a BF-monoid if 1 ≤ |L(a)| < ∞ for each a ∈ H .

The definition directly implies that all these monoids are atomic; a factorial
monoid is half-factorial; an FF-monoid is a BF-monoid. It is not hard to see that
a Krull monoid is an FF-monoid, and thus a BF-monoid.

Sets of lengths are subsets of the non-negative integers. However, sets of lengths
containing 0 or 1 are very special. We make this precise in the following remark.

Remark 3.2. Let H be a monoid and let a ∈ H .

(1) If 0 ∈ L(a), then L(a) = {0} and a ∈ H×.
(2) If 1 ∈ L(a), then L(a) = {1} and a ∈ A(H).

If H is half-factorial, then L(H) = {{n} : n ∈ N0}. Going beyond half-factorial
monoids, one might have the idea to relax the condition only slightly, say by impos-
ing that each element has factorizations of at most two distinct lengths. However,
this idea is infeasible, as the following lemma illustrates.

Lemma 3.3. Let H be an atomic monoid and let a, b ∈ H. Then L(a) + L(b) ⊂
L(ab). In particular, if |L(a)| > 1, then |L(an)| > n for each n ∈ N.

Proof. Let k ∈ L(a) and l ∈ L(b). Let a = u1 . . . uk and b = v1 . . . vl with irreducible
ui, vj ∈ A(H) for each i ∈ [1, k] and j ∈ [1, l]. Then ab = u1 . . . ukv1 . . . vl is
a factorization of ab of length k + l, and thus k + l ∈ L(ab). The ‘in particular’-
statement follows by an easy inductive argument, using the fact that for A,B ⊂ Z of
cardinality at least 2, one has |A+B| > |A| (in fact even |A+B| ≥ |A|+|B|−1). �

We end this section by discussing some ‘extremal’ cases for Krull monoids. The
first result, in the context of rings of algebraic integers, goes back to Carlitz [4];
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for a proof in the context of monoids of zero-sum sequences, which suffices by the
transfer result recalled in Section 2.3 see [23, Theorem 3.4.11.5] or [18, Proposition
1.2.4].

Theorem 3.4. Let H be a Krull monoid such that each class contains a prime
divisor. Then, H is half-factorial if an only if its class group has order at most 2.

The subsequent result is due to Kainrath [34].

Theorem 3.5. Let H be a Krull monoid with infinite class group such that each
class contains a prime divisor. Then, every finite subset of N≥2 is a set of lengths.

Thus for H a Krull monoid with class group of order at most 2, we have L(H) =
{{n} : n ∈ N0}; for H a Krull monoid with infinite class group such that each class
contains a prime divisor we have L(H) = {{0}, {1}} ∪ Pfin(N≥2), where Pfin(N≥2)
denotes the set of all finite subsets of N≥2.

For this reason we often restrict to considering the case of finite class groups of
order at least 3.

4. Small sets

As discussed, an atomic monoid that is not half-factorial always has arbitrarily
large sets in its system of sets of lengths. One approach to understand the system of
sets of lengths is to focus on ‘small’ sets, that is those sets that arise from factoring
elements that are a product of only few irreducibles (their sets of lengths thus
contain some small number).

As an irreducible element u has a unique factorization and L(u) = {1}, the
next simplest case is to consider the product of two irreducibles. Studying the
factorizations of uv, for u, v ∈ A(H), turns out to yield interesting problems.

One natural question to ask is what other lengths can there be besides 2 in a set
of lengths. We start by recalling two basic constructions.

Lemma 4.1. Let G be a finite abelian group of order at least 3.

(1) Then {2, 3} ∈ L(G).
(2) If g ∈ G is an element of order n ≥ 3, then {2, n} ∈ L(G).

Proof. Let g ∈ G be of order n ≥ 3. Setting B = g2(−2g) · (−g)2(2g) and noting
B = ((−g)g)2 · (−2g)2g, it follows that L(B) = {2, 3}. Note that 2g = −g holds for
n = 3, but this does not affect the argument. Moreover, setting C = gn(−g)n and
noting C = ((−g)g)n we see L(C) = {2, n}.

It remains to show the first part in case there is no element of order at least 3.
If this is the case, there exist independent elements (e1, e2) each of order 2. We
set D = e21e

2
2(e1 + e2)

2 and noting D = (e1e2(e1 + e2))
2, it follows that L(D) =

{2, 3}. �

We note that in some sense the simplest non-singleton set that can be a set
of length, namely {2, 3}, is always in L(G) for |G| ≥ 3, but there is no absolute
bound (that is one independent of G) on the size of elements in a set of lengths
containing 2. One natural question is to study this maximum size, for a given
monoid H . Formally, one investigates max{maxL(uv) : u, v ∈ A(H)} or written

differently max
(⋃

2∈L,L∈L(H) L
)
.

Similarly, one can consider the product of 3 or more irreducibles. More generally,
one considers the following quantities.
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Definition 4.2. Let H be an atomic monoid. For M ⊂ N0 let

UM (H) =
⋃

M⊂L,L∈L(H)

L.

Moreover, let λM (H) = minUM (H) and ρM (H) = supUM (H).

The case where M is a singleton is of particular interest. For k ∈ N0, we write
Uk(H), λk(H) and ρk(H) for U{k}(H), λ{k}(H) and ρ{k}(H). These constants,
especially ρk(H) are those that received most interest so far. The sets Uk(H) were
introduced by Chapman and Smith [9], and the generalization UM (H) appeared in
[3].

Moreover, the quantity ρ(H) = supk∈N ρk(H)/k is called elasticity of the monoid,
and it is also a classical constant in factorization theory. The more common way
to define it is as supa∈H\H× (sup L(a)/min L(a)). We refer to [1] for an overview of
classical results.

We saw that U0(H) = {0} and U1(H) = {1}. For H a Krull monoid with finite
class group G such that each class contains a prime divisor, it is not difficult to
determine ρ{k}(H) for even k; it is however a challenging problem for odd k. We
show the former as part of the following well-known lemma, which we prove to give
a general idea of the type of argument.

Lemma 4.3. Let H be a non-factorial Krull monoid with set of classes containing
prime divisors GP such that the Davenport constant D(GP ) is finite.

(1) ρk(H) ≤ kD(GP )/2 for all k ∈ N.
(2) If GP = −GP , then ρk+2(H) ≥ ρk(H) + D(GP ). In particular,

ρk(H) ≥

{
k
2D(GP ) k even
k−1
2 D(GP ) + 1 k odd

and ρ2l(H) = lD(GP ) for every l ∈ N0.

Proof. By the transfer results recalled in Section 2.3 we can consider the problem
in B(GP ). We note that D(GP ) ≥ 2 as the monoid is not factorial.

1. Let B ∈ B(GP ) with k ∈ L(B), say B = U1 . . . Uk with Ui ∈ A(GP ) for each
i ∈ [1, k]. Let B = V1 . . . Vr with Vj ∈ A(GP ) for each j ∈ [1, r].

First, suppose 0 ∤ B. Then |Vj | ≥ 2 for all j ∈ [1, r], while |Ui| ≤ D(GP ) for all
i ∈ [1, k], whence 2r ≤ |B| ≤ kD(GP ). Thus r ≤ kD(GP )/2. This shows that every
element of L(B) is bounded above by kD(GP )/2, showing the claim.

Now, let B = 0vB′ where v ∈ N and 0 ∤ B′. Then L(B) = v + L(B′) and
k − v ∈ L(B′). Thus, maxL(B′) ≤ (k − v)D(GP )/2 and max L(B) ≤ v + (k −
v)D(GP )/2 ≤ kD(GP )/2.

2. Let U = g1 . . . gl ∈ A(GP ). Then −U ∈ A(GP ). We have (−U)U =∏l
i=1(−gi)gi and (−gi)gi ∈ A(GP ) for all i ∈ [1, l], it follows that l ∈ L((−U)U)

and l ≤ ρ2(H). Let us now assume U has length |U | = D(GP ); such a U exists by
definition of D(GP ).

Let B ∈ B(GP ) with {k, ρk(H)} ⊂ L(B). Then, as L((−U)U) + L(B) ⊂
L((−U)UB), we have {k+2, ρk(H)+D(GP )} ⊂ L((−U)UB) and the claim follows.

To get the ‘in particular’-claim it suffices to apply this bound repeatedly, starting
from ρ0(H) = 0 and ρ1(H) = 1. �
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We focus on the case that every class contains a prime divisor. Since GP = −GP

is trivially true, in this case ρk(H) is determined for even k, and we now recall some
results for the case that k is odd.

From the preceding lemma one has the inequality

(4.1) kD(G) + 1 ≤ ρ2k+1(G) ≤ kD(G) +

⌊
D(G)

2

⌋
.

By a result of Gao and Geroldinger [15] it is known that for cyclic groups equality
always holds at the lower bound.

Theorem 4.4. Let H be Krull monoid with finite cyclic class group G of order at
least 3 such that each class contains a prime divisor. Then ρ2k+1(H) = k|G| + 1
for all k ∈ N0.

The proof uses results on the structure of long minimal zero-sum sequences over
cyclic groups (‘long’ is meant in a relative sense), see [40, 45]. As can be seen
from the proof of the preceding lemma, one of the factorizations that could lead
to a larger value of ρ2k+1(H) would have to be composed of minimal zero-sum
sequences of length ‘close’ to D(G). Having knowledge on the structure of such
sequences, allows to analyze this situation in a more explicit way.

However, the case of cyclic groups seems to be quite exceptional, and there are
various results asserting even equality at the upper bound in the inequality above.

We recall a recent result due to Geroldinger, Grynkiewicz, Yuan [19, Theorem
4.1]. Moreover, they conjectured that cyclic groups and the group C2

2 are the only
groups for which ρ3(G) = D(G) + 1.

Theorem 4.5. Let H be Krull monoid with class group G such that each class
contains a prime divisor. Suppose that G ∼= ⊕r

i=1C
si
ni

with 1 < n1 | · · · | nr and
si ≥ 2 for each i ∈ [1, r]. Then, for every k ∈ N,

ρ2k+1(H) ≥ (k − 1)D(G) + D∗(G) +

⌊
D∗(G)

2

⌋
.

In particular, if D∗(G) = D(G), then ρ2k+1(G) = kD(G) + ⌊D(G)
2 ⌋ for every k ∈ N.

The point of considering D∗(G) rather than D(G) is that the former is explicitly
known and one thus has explicit examples of minimal zero-sum sequences of the
relevant length that can be used to construct examples. By contrast, D(G) is in
general not known, and thus knowledge on zero-sum sequence of this length can
only be obtained by general considerations.

For other conditions that imply equality at the upper bound in (4.1) see for
example [23, Theorem 6.3.4]. Indeed, Geroldinger, Grynkiewicz, Yuan [19, Conjec-
ture 3.3] put forward the conjecture that for sufficiently large k this equality always
holds for non-cyclic groups.

Conjecture 4.6. Let H be Krull monoid with finite non-cyclic class group G such
that each class contains a prime divisor. Then there exists some k∗ ∈ N such that
for each k ≥ k∗ one has

ρ2k+1(H) = kD(G) +

⌊
D(G)

2

⌋
.

To restrict to sufficiently large k is certainly necessary, as the following result
illustrates, see Geroldinger, Grynkiewicz, Yuan [19, Theorem 5.1].
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Theorem 4.7. Let H be Krull monoid with class group G such that each class
contains a prime divisor. Suppose that G ∼= Cm ⊕ Cmn with m ≥ 2 and n ≥ 1.
Then

ρ3(H) = D(G) +

⌊
D(G)

2

⌋
if and only if n = 1 or n = m = 2.

The proof uses the fact that the structure of minimal zero-sum sequences of
maximal length is known for groups of rank 2 (see [39, 16, 43]). To put this
in context, we remark that to know the sequences of maximal lengths allows to
exclude equality at the upper bound for most groups of rank 2; to get further
improved upper bounds might need knowledge on the structure of long (yet not
maximum length) minimal zero-sum sequences in addition, as known and used in
the case of cyclic groups.

This result allows to give examples of groups where the actual value of ρ3(G)
can be neither the upper nor the lower bound in (4.1). An example is C2 ⊕C2n for
n ≥ 3; however, in line with the above mentioned conjecture, one still has equality
of ρ2k+1(G) with the upper bound for k ≥ 2n− 1 (see [19, Corollary 5.3]).

Very recently Fan and Zhong [11, Theorem 1.1] made considerable progress to-
wards the above-mentioned conjecture. In particular, they verified it under the
assumption that D(G) = D∗(G).

Theorem 4.8. Let H be Krull monoid with finite non-cyclic class group G such
that each class contains a prime divisor. Then there exists some k∗ ∈ N such that
for each k ≥ k∗ one has

ρ2k+1(H) ≥ (k − k∗)D(G) + k∗D∗(G) +

⌊
D∗(G)

2

⌋
.

In particular, if D(G) = D∗(G), then ρ2k+1(H) = kD(G) +
⌊
D(G)
2

⌋
for k ≥ k∗.

Having discussed ρk(H) in some detail, we turn to the other constants. However,
we see that in important cases the determination of Uk(H) and λk(H) can be
reduced to the problem of determining ρk(H).

The following result is due to Freeze and Geroldinger [12, Theorem 4.2]; for
another proof of this result due to Halter-Koch see [18, Theorem 3.1.3].

Theorem 4.9. Let H be a Krull monoid with finite class group such that each class
contains a prime divisor. Then Uk(H) is an interval for every k ∈ N.

Thus, in this case it suffices to determine λk(H) and ρk(H) to know Uk(H).
Moreover, it is even possible (see [18, Corollary 3.1.4]) to express (in this case) the
constants λk(H) in terms of ρk(H).

Theorem 4.10. Let H be a Krull monoid with finite class group G such that each
class contains a prime divisor. Then for every k ∈ N0 we have

λkD(G)+j(H) =





2k for j = 0

2k + 1 for j ∈ [1, ρ2k+1(H)− kD(G)]

2k + 2 for j ∈ [ρ2k+1(H)− kD(G) + 1,D(G)− 1]

We turn to results on UM (H) where M is not a singleton. In view of the results
above, we see that if minM and maxM are too far apart then for H a Krull
monoid with finite class group the sets UM (H) will always be empty. Specifically,
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when minM = k, then UM (H) is empty if M contains some element greater than
ρk(H).

Considering U{k,ρk(H)}(H) is thus an interesting extremal case. This problem
was investigated recently by Baginski, Geroldinger, Grynkiewicz, Philipp [3], with a
focus on groups of rank two; again, it is important to know the structure of minimal
zero-sum sequences of maximal length.

We start by recalling an older result for cyclic groups and elementary 2-groups
(see [23, Theorem 6.6.3]).

Theorem 4.11. Let H be a Krull monoid with finite class group such that each
class contains a prime divisor. Then, U{2,ρ2(H)}(H) = {2, ρ2(H)} if and only if the
class group is cyclic or an elementary 2-group.

For groups of rank 2 the set U{2,ρ2(H)}(H) is a lot larger as shown in [3, Theorem
3.5].

Theorem 4.12. Let H be a Krull monoid with class group G ∼= Cm ⊕ Cmn where
m,n ∈ N and m ≥ 2 such that each class contains a prime divisor. Then,

U{2,ρ2(H)}(H) =





{2a : a ∈ [1, n]} ∪ {ρ2(H)} for m = 2

[2, ρ2(H)] for m ∈ [3, 4]

[2, ρ2(H)] \ {3} for m ≥ 5

If the class group is a group of rank greater than 2, one faces the following
problem. While one still knows ρ2(H) = D(G), one does in general not know D(G)
explicitly. Thus, one also has only little knowledge on the form of minimal zero-sum
sequences of maximal length.

However, for most groups for which D(G) = D∗(G) holds a description of
U{2,ρ2(H)}(H) can still be obtained, as more generally, U{2,D∗(G)}(H) can be de-
scribed almost completely for most groups of rank at least 3. The following result
was obtained in [3, Theorem 4.2].

Theorem 4.13. Let H be a Krull monoid with class group G ∼= ⊕r
i=1Cni

where
1 < n1 | · · · | nr with r ≥ 3 and nr−1 ≥ 3 such that each class contains a prime
divisor. Then, U{2,D∗(G)}(H) ⊃ [2,D∗(G)]. In particular, if D(G) = D∗(G), then
U{2,ρ2(H)} = [2, ρ2(H)].

We highlight the similarity to the results on ρ2(H), where also for general groups
one resorted to D∗(G) instead of D(G).

We end this section with a small complement to the preceding theorem, investi-
gating the relevance of the condition on nr−1.

Proposition 4.14. Let H be a Krull monoid with class group G ∼= Cr−1
2 ⊕ C2n

with r ≥ 3 and n ∈ N such that each class contains a prime divisor. Then, 3 ∈
U{2,D∗(G)}(H) if and only if n ≥ 3.

Proof. By the transfer results that we recalled in Section 2.3 we can assume H =
B(G). Let (e1, . . . , er−1, f) be a basis of G with ord ei = 2 for 1 ≤ i ≤ r − 1 and
ord f = 2n.

First, suppose n ≥ 3. We note that the sequence U = f2n−3(f + e1)
3(f +

e2)(−f+e1+ · · ·+er−1)e3 . . . er−1 is a minimal zero-sum sequence of length D∗(G):
the assertion on the sum and length are direct, and to see that it is minimal we
note that f2n−3(f + e1)

3(f + e2) has no non-empty subsequence with sum 0, so
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that a zero-sum subsequence T of U has to contain one and then each element of
(−f + e1 + · · · + er−1)e3 . . . er−1, which implies that T contains (f + e1)(f + e2)
and thus must equal U to get sufficiently many elements containing f .

We consider (−U)U . Of course it has factorizations of length 2 and D∗(G). It
remains to show that it has a factorization of length 3. To see this note that (−U)U
is equal to V1V2V3 with V1 = f2n−3(f + e1)(f + e2)(f + e1 + · · ·+ er−1)e3 . . . er−1,
V2 = (−f)2n−5(−f + e1)

3(−f + e2)(−f + e1 + · · · + er−1)e3 . . . er−1, and V3 =
(f + e1)

2(−f)2, and V1, V2, V3 are minimal zero-sum sequences.
For n = 1 it is established in Theorem 4.11 that 3 /∈ U{2,D∗(G)}(H). It remains

to consider n = 2. Note that in this case the exponent of G is 4, so G is a
2-group and D(G) = D∗(G) (see Section 2). Assume for a contradiction there
is a zero-sum sequence B over G such that {2, 3,D∗(G)} ⊂ L(B). As D(G) =
D∗(G) and {2,D∗(G)} ⊂ L(B), it follows that B = U(−U) where U is a minimal
zero-sum sequence of length D(G) = D∗(G) (see the proof of Lemma 4.3). Since
3 ∈ L(U(−U)) it follows that U(−U) = V1V2V3 with minimal zero-sum sequences
V1, V2, V3 and further for each 1 ≤ i ≤ 3 we have Vi = Si(−Ti) with U = S1S2S3 =
T1T2T3. We note that none of the Si and Ti is the empty sequence. We have
σ(Si) = σ(Ti) for each 1 ≤ i ≤ 3 and moreover σ(S1) + σ(S2) + σ(S3) = 0.

We claim that at least one of the elements σ(S1), σ(S2), σ(S3) has order 2. Since
U is a minimal zero-sum sequence all three elements are non-zero, as sums of
proper and non-empty subsequences of U . Denoting by G[2] the subgroup of G of
elements of order at most 2, we have G/G[2] is a group of order 2 and as the images
of σ(S1), σ(S2), σ(S3) in G/G[2] form a zero-sum sequence not all of them can be
the non-zero element in G/G[2]. Consequently, at least one of the elements has
order at most 2 and as it must be non-zero it has order 2, establishing the claim.

Without loss of generality, we assume that σ(S3) = e has order 2. If gcd(S3, T3) =
1, then S3T3 | U . As σ(T3S3) = 2e = 0, it follows that S3T3 = U , that is T3 = S1S2

and S3 = T1T2. Yet then S3(−T3) = (S1(−T1))(S2(−T2)) contradicting the fact
that S3(−T3) is a minimal zero-sum sequence.

Thus, gcd(S3, T3) 6= 1. This implies, as S3(−T3) is a minimal zero-sum sequence,
that |S3| = |T3| = 1 and S3 = T3 = e.

If gcd(S1, T1) = gcd(S2, T2) = 1, then S2 = T1 and S1 = T2. As σ(S1) = σ(T1),
it follows that σ(S1) = σ(S2) and thus e = −2σ(S1) ∈ 2 · G. However, this is not
possible, as a minimal zero-sum sequence of maximal length over a 2-group must
not contain an element from 2 · G (see [23, Proposition 5.5.8]). Alternatively, one
can argue that the image of Ue−1 in G/〈e〉 ∼= Cr

2 has to be a minimal zero-sum
sequence, which is not possible as its length exceeds the Davenport constant of Cr

2 .
Thus, we get that gcd(S2, T2) 6= 1. As above we get that |S2| = |T2| = 1. Yet

then |S1(−T1)| = 2|U | − 4 = 2D(G)− 4 > D(G), a contradiction. �

The preceding results yield the following corollary.

Corollary 4.15. Let H be a Krull monoid with class group G of rank r ≥ 3 such
that each class contains a prime divisor. The following conditions are equivalent:

• G is neither an elementary 2-group nor of the form Cr−1
2 ⊕ C4.

• 3 ∈ U{2,D∗(G)}(H).

We mention that this corollary allows to fill what we believe to be a minor gap
in the proof of [3, Theorem 5.6]; it can be invoked there instead of [3, Theorem 4.2]
(that is the result we recalled as Theorem 4.13).
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5. Distances

In the preceding section we discussed how spread out sets of lengths can be,
in the sense of comparing their extremal values. We now turn to the question
how large distances there can be between adjacent elements of the sets of lengths.
Moreover, considering distances also gives another measure for the complexity of
a set of lengths; highly structured sets, such as arithmetic progressions, have few
distinct distances even when the set itself might be large.

Definition 5.1.

• Let A ⊂ Z. Then the set of distances of A, denoted by ∆(A), is the set of
all differences between consecutive elements of A, formally, it is the set of
all d ∈ N for which there exists l ∈ A such that A ∩ [l, l+ d] = {l, l+ d}.

• For an atomic monoid H , we denote by

∆(H) =
⋃

a∈H

∆
(
L(a)

)
⊂ N

the set of distances of H .

It is sometimes common to denote, for a ∈ H , the set ∆(L(a)) by ∆(a). Since
we only use it rarely, we do not use this abbreviation here.

If H is a Krull monoid with finite class group, then ∆(H) is finite. More specif-
ically and more generally, one has the following general bound (see, e.g., [23, The-
orem 3.4.11 and Theorem 1.6.3].

Lemma 5.2. Let H be a Krull monoid and let GP denote the set of classes con-
taining prime divisors. Then sup∆(H) ≤ D(GP )− 2.

In case the class group is infinite, ∆(H) can be infinite, too. In fact, if each class
contains a prime divisor then ∆(H) = N. (This is a direct consequence of Theorem
3.5, yet it is a much simpler result; indeed, we give a partial proof below.)

The example recalled in Lemma 4.1 shows that for a Krull monoid where each
class contains a prime divisor we always have 1 ∈ ∆(H). Moreover, Geroldinger
and Yuan [28] showed that for these monoids ∆(H) is an interval.

Theorem 5.3. Let H be a Krull monoid with finite class group such that each class
contains a prime divisor. Then ∆(H) = [1,max∆(H)].

Thus, in this important case the problem of determining ∆(H) is reduced to the
problem of determining the maximum of this set. Before we discuss results towards
this goal, we recall some well-known constructions to get some rough insight into
which size of max∆(H) one might expect (for further details see, e.g., [23, Lemma
6.4.1]).

Lemma 5.4. Let G = Cn1 ⊕ . . .⊕ Cnr
with |G| ≥ 3 and 1 < n1 | · · · | nr. Then

[1, nr − 2] ∪ [1,−1 +

r∑

i=1

⌊ni

2

⌋
] ⊂ ∆(G)

Proof. Let e1, . . . , er ∈ G be independent with ord ei = ni for each i ∈ [1, r]. Let
e0 = k1e1 + . . .+ krer, where ki ∈ N0 and 2ki ≤ ord ei for all i ∈ [1, r]. For

U = (−e0)

r∏

i=1

eki

i ,



14 W. A. SCHMID

we have L((−U)U) = {2, k1+· · ·+kr+1}. This yields a distance of −1+k1+· · ·+kr
(except if k1+· · ·+kr = 1). Since k1+· · ·+kr can attain any value in [1,

∑r
i=1⌊

ni

2 ⌋],
we get [1,−1 +

∑r
i=1⌊

ni

2 ⌋] ⊂ ∆(G) .

Let e ∈ G be non-zero. Then L(en((a− 1)e)(−e)a−1) = {2, a} for a ∈ [2, ord(e)].
This yields a distance of a− 1. As there is an element of order nr, we get [1, nr −
2]. �

Remark 5.5. Since an infinite abelian torsion group contains elements of arbi-
trarily large order or an infinite independent set, the above constructions show
∆(G) = N for infinite torsion groups.

No element in ∆(G) larger than the ones given above is known. The bound
max∆(G) ≤ D(G) − 2 shows that for G cyclic or an elementary 2-group, indeed,
there can be no larger element. Thus, one has the following result (see [23, Theorem
6.4.7]).

Theorem 5.6. For r ≥ 2 and n ≥ 3 one has ∆(Cr
2 ) = [1, r − 1] and ∆(Cn) =

[1, n− 2].

These groups are in fact the only ones for which max∆(G) = D(G) − 2. A
characterization of groups for which max∆(G) = D(G) − 3 was recently given by
Geroldinger and Zhong [31].

However, in general the following problem is wide open.

Problem 5.7. Let G ∼= Cn1 ⊕ · · · ⊕ Cnr
with |G| ≥ 3 and 1 < n1 | · · · | nr. Is

max∆(G) = max

{
nr − 2,−1 +

r∑

i=1

⌊ni

2

⌋}
?

We recall results that give upper-bounds on max∆(H). It turned out that the
following quantity is a useful tool to this end. It was introduced in [21]. The
problem of determining max∆(H) and problems of distances more generally are
often studied in combination or even via a notion called catenary degree. The
catenary degree is a notion of factorization theory that does not only take the
length of factorizations into account, which is why we do not discuss it here.

Definition 5.8. Let H be an atomic monoid. Let

k(H) = sup
{
min

(
L(uv) \ {2}

)
: u, v ∈ A(H)

}
,

with the convention that min ∅ = sup ∅ = 0.

We point out that we again study sets of lengths of a product of two irreducible
elements; other aspects of this problem were discussed in the preceding section.
The following lemma is essentially a direct consequence of the definition.

Lemma 5.9. Let H be an atomic monoid. Then k(H) ≤ 2 + sup∆(H).

While equality does not always hold (for an example see below), it can be shown
to hold for Krull monoids under certain assumptions on the class group. Informally,
this then means that the largest possible distance is already attained in the sets
of lengths of the product of two irreducible elements, which simplifies the task of
actually determining this distance.

The following result is a special case of [21, Corollary 4.1].
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Theorem 5.10. Let H be a Krull monoid with class group G ∼= Cn1 ⊕ . . . ⊕ Cnr

where 1 < n1| . . . |nr and |G| ≥ 3 such that each class contains a prime divisors. If
⌊
1

2
D(G) + 1

⌋
≤ max

{
nr, 1 +

r∑

i=1

⌊ni

2

⌋}
.

Then k(H) = 2 +max∆(H).

We discuss the technical condition. Since

1 +

r∑

i=1

⌊ni

2

⌋
=

1 + r2(G) + D∗(G)

2
,

where r2(G) denotes the number of even nis, it follows that if D(G) = D∗(G), then

⌊1
2
D(G) + 1

⌋
≤ 1 +

r∑

i=1

⌊ni

2

⌋
.

We give an example where k(H) < 2 + max∆(H). For details of the example
see [23, Proposition 4.1.2].

Example 5.11. Let G be an abelian group and r, n ∈ N≥3 with n 6= r + 1. Let
e1, . . . , er ∈ G be independent elements with ord ei = n for all i ∈ [1, r]. We set
e0 = −(e1 + . . .+ er) and G0 = {e0, e1 . . . , er}. Then ∆(B(G0)) = {|n− r− 1|} yet
k(B(G0)) = 0.

To see this note that the only minimal zero-sum sequences are eni for i ∈ [0, r]
and W =

∏r
i=0 ei. To have a non-trivial relation, we at least need to have Wn,

which factors also as
∏r

i=0 e
n
i .

We continue with a bound on k(H); this is a special case of [21, Theorem 5.1].

Theorem 5.12. Let H be a Krull monoid with finite class group G such that each
class contains a prime divisor. If exp(G) = n and r(G) = r, then

k(H) ≤ max

{
n,

1

3

(
2D(G) +

1

2
rn+ 2r

)}
.

In combination with the preceding result one obtains bounds for max∆(H) for
various types of class groups. We formulate one explicitly.

Corollary 5.13. Let H be a Krull monoid with finite class group G ∼= C2
n with

n ≥ 2 such that each class contains a prime divisor. Then

max∆(H) ≤
5n− 4

3
.

We recall that the lower bound for max∆(H) is n − 2 for odd n and n − 1 for
even n whereas the simple upper-bound given by D(C2

n)− 2 is 2n− 3.
We point out that for this problem knowledge of the structure of minimal zero-

sum sequences of maximal length seems insufficient. The extremal known examples
are attained by minimal zero-sum sequences of length about D(C2

n)/2.
Up to now we only discussed ∆(H), that is the collection of all distance that

can occur in some monoid. It is also an interesting question to study ∆(L(a)) for
individual elements of a ∈ H . By definition it is clear that each d ∈ ∆(H) occurs
in ∆(L(a)) for some a ∈ H . Yet, passing to more than one distance, one gets
interesting questions. For example, for distances d1, d2 ∈ H one can ask if there
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exists some a ∈ H such that d1, d2 ∈ ∆(L(a)). Or, for some fixed distance d ∈ H
one can ask what are all the other distances in the sets of lengths having d as a
distance; formally, one can study similarly to Uk(H) the sets

⋃

a∈H, d∈∆(L(a))

∆(L(a)).

Recently, Chapman, Gotti, and Pelayo [6] obtained the following result on this type
of problem.

Theorem 5.14. Let H be a Krull monoid with cyclic class group of order n ≥ 3,
and let a ∈ H. If n− 2 ∈ ∆(L(a)), then ∆(L(a)) = {n− 2}.

We recall that n − 2 is the maximum of the set of distances for Krull monoid
with cyclic class group n, assuming that each class contains a prime divisor. A
similar result for elementary 2-groups is also known, see [27, Lemma 3.10].

6. Large sets

Sets of lengths can be arbitrarily large. However, one can show that they are
not arbitrarily complicated, in a sense to be made precise.

The construction we saw in Lemma 4.1, when we recalled that there cannot be
a global bound on the size of sets of lengths in non-half-factorial monoids, suggests
that there is some additive structure to large sets of lengths. Indeed, this is the case
for various classes of monoids. We recall the result and related relevant notions.

Definition 6.1. A non-empty subset L of Z is called an almost arithmetic multi-
progression (AAMP for short) with bound M ∈ N0, difference d ∈ N and period D
(where {0, d} ⊂ D ⊂ [0, d]) if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + d · Z

with 0 ∈ L∗ = [0,maxL∗]∩(D+d·Z) and L′ ⊂ [−M,−1] and L′′ ⊂ maxL∗+[1,M ].
One calls L∗ the central part, and L′ and L′′ the beginning and the end part,
respectively.

The notion of AAMP turns out, as we see below, to be natural for describing
sets of lengths of Krull monoids with finite class group, and also other monoids.
Informally, one can imagine an AAMP as a union of several slightly shifted copies
of an arithmetic progressions where at the beginning and the end some elements
might be removed. The definition of AAMP contains the following special cases.

Definition 6.2.

• an AAMP with bound M = 0 is called an arithmetic multi-progression
(AMP for short).

• an AAMP with period D = {0, d} is called an almost arithmetic progression
(AAP for short).

• an AAMP with bound M = 0 and period D = {0, d} is called an arithmetic
progression (AP for short).

The notion of AP just recalled of course coincides with the usual notion of a
finite arithmetic progression. The notion of arithmetic multi-progression should
not be confused with that of multi-dimensional arithmetic progressions, which is
typically defined as a sumset of several arithmetic progressions.
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Some care needs to be taken when saying that some set is or is not an AAMP.
In fact, one has:

• every non-empty finite set L ⊂ Z is an AAP for with bound maxL−minL
(and period {0, 1}).

• every non-empty finite set L ⊂ Z is an AMP for with period −minL+ L.

Thus, it is crucial to restrict bound and period in some way to make saying that a
set is an AAMP meaningful.

The importance of the notion of AAMP in this context is mainly due to the
following result, a Structure Theorem for Sets of Lengths (STSL). This result is
due to Geroldinger [17], except that there a slightly different notion of AAMP was
used; the current version was obtained in [13].

Theorem 6.3. Let H be a Krull monoid with finite class group. There is some
M ∈ N0 and a non-empty finite set ∆∗ ⊂ N such that for each a ∈ H its set of
lengths L(a) is a AAMP with bound M and difference d in ∆∗.

A crucial point in this result is that the bound and the set of differences depend
on the monoid, and not on the element. Indeed, by the transfer results recalled in
Section 2.3 they depend on the class group or more precisely the subset of classes
containing prime divisors, only.

This result was generalized in several ways and is known to hold for various
other classes of monoids, too (see [23, Chapter 4]). Even sticking to Krull monoids
it holds under the weaker condition that only finitely many classes contain prime
divisors, or still weaker, that the Davenport constant of the set of classes containing
prime divisors is finite (see Theorem 6.22).

The Structure Theorem for Sets of Lengths raises various follow-up questions.
On the one hand, it is a natural question to ask if this description is a natural one
or if there could be a simpler one. On the other hand, the result contains a bound
M and a set of differences ∆∗ and the question arises what are the actual values of
these parameters. We discuss this in the remainder of this section.

6.1. The relevance of AAMPs. Realizations results for sets of lengths prove
that in a certain sense Theorem 6.3 is optimal. We recall such a realization result
from [42]; for earlier result of this form see [23, Section 4.8].

Theorem 6.4. Let M ∈ N0 and let ∅ 6= ∆∗ ⊂ N be a finite set. Then, there exists
a Krull monoid H with finite class group such that the following holds: for every
set L that is an AAMP with difference d ∈ ∆∗ and bound M there is some yH,L

such that
y + L ∈ L(H) for all y ≥ yH,L.

This result implies the existence of Krull monoids with finite class group whose
system of sets of lengths contains all possible sets whose maximum and minimum
are not too far apart. (Though, this was known already earlier.)

Corollary 6.5. Let M ∈ N0. Then, there exists a Krull monoid H with finite class
group such that L ∈ L(H) for every L ⊂ N≥2 with maxL−minL ≤ M .

In [42] some explicit conditions on the class group were obtained that guarantee
that the above results hold. For example, it is known that B(Cr

p) for p a prime

greater than 5 and r ≥ 21(M2+max∆∗) fulfills the conditions of Theorem 6.4 and
thus of the corollary, too. This motivates the following problem.
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Problem 6.6. Can one determine a function f : N → N such that for G a finite
abelian group with |G| ≥ f(M) one has that L(G) contains each finite set L ⊂ N≥2

with maxL−minL ≤ M .

The author believes that such a function exists and a solution of this problem
should be well within reach of current methods and results. The appeal of having
such a result would be that it would give a precise way to express the informal idea
that L(G) contains all possible sets that are ‘small’ relative to G.

The result that L(G) for infinite G contains every finite set L ⊂ N≥2 could be
thought of as a limiting case of this result, for an infinite group every finite set
L ⊂ N≥2 is ‘small.’ In fact, a positive answer to this problem would even yield a
proof of the result for infinite torsion groups.

We do not recall a proof of Theorem 6.4 but still recall some simple constructions
that show how AAMPs arise naturally in this context (cf. Lemmas 3.3 and 4.1).

Lemma 6.7. Let g ∈ G be an element of order n ≥ 3. Then L((g(−g))kn) is an
AP with difference n− 2 and length k, more specifically it is 2k + (n− 2) · [0, k].

Proof. The only minimal zero-sum sequences over the set {−g, g} are (−g)g, gn,
and (−g)n. The only factorizations of (g(−g))kn are thus (gn(−g)n)k−j(g(−g))nj

for j ∈ [0, k]; their lengths are 2(k − j) + jn. �

Based on this lemma we give explicit examples of richer structures arising as sets
of lengths; we choose to really fix some parameters to avoid confusion from having
many parameters.

Example 6.8. Let e1, e2, g, h ∈ G be independent elements of order 2, 2, 10 and
14 respectively, then

L((g(−g))10k(h(−h))14k) = {4k} ∪ (4k + 8 + 4 · [0, 5k − 4]) ∪ {24k}

is an AAP with difference 4 and bound 8, and

L((e1e2(e1 + e2))
2(g(−g))10k(h(−h))14k) = {4k + 2, 4k + 3}

∪ (4k + 10 + {0, 1}+ 4 · [0, 5k − 4]) ∪ {24k + 2, 24k + 3}

is an AAMP with difference 4, period {0, 1, 4} and bound 8.

6.2. Some special cases. As discussed for a general result the notion of AAMP
seems inevitable. However, for special classes of groups simpler descriptions can be
obtained. This is of course the case for class groups C1 and C2 where the system
of sets of lengths consists of singletons only (see Theorem 3.4), but it is certainly
also the case for C2

2 and C3 where by Theorem 5.6 one has that ∆(G) = {1}, which
implies that all sets are intervals.

In recent work of Geroldinger and the author [26] a characterization of all groups
was obtained for which the more restrictive notions AP, AAP, or AMP suffice to
describe the system of sets of lengths of B(G). We recall the result. (The definition
and relevance of the set ∆∗(G), used in the result below, is recalled later in this
section; the exact definition is not really crucial for the result below, and it could
be replaced by [1, |G|] for example.)

Theorem 6.9. Let G be a finite abelian group.

(1) The following statements are equivalent:
• All sets of lengths in L(G) are arithmetical progressions.
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• G is cyclic of order |G| ≤ 4 or isomorphic to a subgroup of C3
2 or

isomorphic to a subgroup of C2
3 .

(2) The following statements are equivalent:
• There is a constant M ∈ N such that all sets of lengths in L(G) are
AAPs with bound M .

• G is isomorphic to a subgroup of C3
3 or isomorphic to a subgroup of

C3
4 .

(3) The following statements are equivalent:
• All sets of lengths in L(G) are AMPs with difference in ∆∗(G).
• G is cyclic with |G| ≤ 5 or isomorphic to a subgroup of C3

2 or isomor-
phic to a subgroup of C2

3 .

In several of these cases it is even possible to give a complete description of L(G).
We already discussed the first point several times; for the following ones see [23,
Theorem 7.3.2], and for the last one [27, Proposition 3.12].

Proposition 6.10.

(1) L(C1) = L(C2) =
{
{m} : m ∈ N0

}
.

(2) L(C3) = L(C2 ⊕ C2) =
{
y + 2k + [0, k] : y, k ∈ N0

}
.

(3) L(C4) =
{
y + k + 1 + [0, k] : y, k ∈ N0

}
∪

{
y + 2k + 2 · [0, k] : y, k ∈ N0

}
.

(4) L(C3
2 ) =

{
y + (k + 1) + [0, k] : y ∈ N0, k ∈ [0, 2]

}

∪
{
y+k+[0, k] : y ∈ N0, k ≥ 3

}
∪
{
y+2k+2 · [0, k] : y, k ∈ N0

}
.

(5) L(C2
3 ) = {[2k, l] : k ∈ N0, l ∈ [2k, 5k]}

∪ {[2k + 1, l] : k ∈ N, l ∈ [2k + 1, 5k + 2]} ∪ {{1}}.

However, to obtain results of this complete form becomes quite difficult. We
recall a quite precise yet not complete description for the group of order 5 from
[26].

Lemma 6.11. Let G be a cyclic group of order |G| = 5. Then every L ∈ L(G) has
one of the following forms:

• L is an arithmetical progression with difference 1.
• L is an arithmetical progression with difference 3.
• L is an AMP with period {0, 2, 3} or with period {0, 1, 3}.

6.3. The set of differences. The formulation of the Structure Theorem of Sets
of Lengths contains a set ∆∗. We give an overview on the current knowledge
about these sets. Of course, given the way the result is phrased this set cannot be
determined uniquely; for one thing, if some set ∆∗ is admissible for some bound
M , then any superset of it would work, too.

Yet, there is a natural choice for the set ∆∗ in the STSL for Krull monoids with
finite class group, it is

∆∗(H) = {min∆(S) : S ⊂ H a divisor-closed submonoid with ∆(S) 6= ∅}.

We recall that a submonoid S ⊂ H is called divisor-closed if for each s ∈ S every
a ∈ H with a | s (in H) is in fact an element of S.

The result holds true for this set and it can be shown that L(H) contains AAMPs
with difference d for each d ∈ ∆∗(H), so that it is not “too large.” The details of
the proof of the STSL provide further justification for considering this set as the
natural choice.



20 W. A. SCHMID

It should be noted though that in general this is not a minimal choice. If L is an
AAMP with difference d, period D and bound M , then L is also an AAMP with
difference md, period D+ d · [0,m− 1], and bound M . Thus, if the STSL holds for
some set ∆∗ that contains elements d, d′ with d | d′, then one could omit d without
effect on the result.

Thus, one could in principle “simplify” the set ∆∗(H) by omitting elements that
are a divisor of an element already in the set. Yet doing so rather obscures the
situation without yielding a true simplification.

Similarly, setting D = lcm∆∗(H) one can even replace the set of differences by
a unique difference and get the following reformulation of the STSL.

Corollary 6.12. Let H be a Krull monoid with finite class group. There is some
M ∈ N0 and some D ∈ N such that for each a ∈ H its set of lengths L(a) is a
AAMP with bound M and difference D.

While somewhat simpler to state, this formulation captures the reality of the
situation not as well as the common one.

By transfer results as recalled in Section 2.3 one can get that

∆∗(H) = {min∆(G0) : G0 ⊂ GP , ∆(G0) 6= ∅}

where as usual GP ⊂ G denotes the subset of classes containing prime divisor and G
the class group. (Some extra care is needed to check that divisor-closed submonoids
actually are preserved in this way.)

For |G| ≥ 3, one denotes by ∆∗(G) = {min∆(G0) : G0 ⊂ G, ∆(G0) 6= ∅}; this
matches the usual convention that ∆∗(G) = ∆∗(B(G)).

By Lemma 4.1 we know that min∆(G) = 1 for |G| ≥ 3. Thus 1 ∈ ∆∗(G).
Moreover the following constructions of elements of ∆∗(G) are classical.

Lemma 6.13. Let G be a finite abelian group with |G| ≥ 3.

(1) [1, r(G) − 1] ⊂ ∆∗(G).
(2) d− 2 ∈ ∆∗(G) for each 3 ≤ d | exp(G).
(3) |n− r − 1| ∈ ∆∗(Cr

n) for n ≥ 2, r ≥ 1, and n 6= r + 1.

In particular, max∆∗(G) ≥ max{r(G)− 1, exp(G)− 2}.

Proof. We only give a sketch for details see [23]. For the first point, let d ∈ [2, r]
and let e1, . . . , ed ∈ G be independent elements of the same order, which we denote
by n; note that by the definition of the rank such elements exist. Further, let

e0 =
∑n

i=1 ei. It follows that Wj = ejo
∏d

i=1 e
n−j
i for j ∈ [1, n] and eni for i ∈ [1, d]

are the only minimal zero-sum sequences. One has WjWk = Wj+k

∏d
i=1 e

n
i for

j+k ≤ n, and WjWk = Wj+k−nWn for j+k > n are the only non-trivial relations.
The former relations yield a distance of (d+ 1)− 2 = d− 1.

For the second point, we consider the set {−g, g} for an element of order g; cf.
Lemma 6.7.

For the third point, we consider the example given in Example 5.11. �

Recently, Geroldinger and Zhong [30] proved that in fact the inequality above
is an equality; partial results and relevant techniques appeared in various papers,
including [14, 41].

Theorem 6.14. Let H be a Krull monoid with finite class group G.

(1) If |G| ≤ 2, then ∆∗(H) = ∅.
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(2) If 2 < |G| < ∞, then max∆∗(H) ≤ max{exp(G) − 2, r(G) − 1}. If every
class contains a prime divisor then equality holds.

For the case of infinite class group it was proved by Chapman, Schmid, Smith
[8] that if each class contains a prime divisor then ∆∗(H) = N.

For groups G where the rank is large relative to the exponent the set ∆∗(G) is
completely determined by the preceding theorem.

Corollary 6.15. Let G be a finite abelian group. If r(G) − 1 ≥ exp(G) − 2, then
∆∗(G) = [1, r(G)− 1].

Moreover, directly from the above results, for exp(G) − 2 = r(G) the set ∆∗(G)
must still be an interval, namely [1, exp(G)−2], yet for groups with r(G) < exp(G)−
2 the set ∆∗(G) could have gaps. Indeed, it frequently does have gaps, as the result
below shows (it is a direct consequence of [41, Theorem 3.2] and [30]).

Theorem 6.16. Let H be a Krull monoid with class group G such that each class
contains a prime divisor. Suppose that exp(G)−3 ≥ r(G) and that G does not have
a subgroup isomorphic to C2

exp(G). Then ∆∗(H) is not an interval, as exp(G)− 3 /∈

∆∗(H) while {1, exp(G)− 2} ⊂ ∆∗(H).

The type of groups for which the problem of determining ∆∗(G) in more detail
has received most attention are cyclic groups. In this case ∆∗(G) shows a rich
structure that is not yet fully understood, despite various partial results.

For G a cyclic group of order n we have, by the results above, that max∆∗(G) =
n−2, and it was proved by Geroldinger and Hamidoune [24] that the second largest
element of ∆∗(G) is ⌊n/2⌋ − 1 for n ≥ 4.

Recently several further elements were determined by Plagne and the author
[38]; we state a simplified version of the result (the actual result goes down to a
tenth, rather than a fifth, of the order of the group).

Theorem 6.17. Let G be a cyclic group of order at least n0 (where n0 = 250 is a
possible choice). We have

∆∗(G) ∩ N≥|G|/5 = N ∩

{
|G|−2,

|G| − 2

2
,
|G| − 3

2
,
|G| − 4

2
,
|G| − 4

3
,

|G| − 6

3
,
|G| − 4

4
,
|G| − 5

4
,
|G| − 6

4
,
|G| − 8

4

}
.

An important tool in obtaining this result is the determination of min∆(G0) for
G0 a set with |G0| = 2. The key-case, to which all other cases can be reduced, is
that G0 = {e, ae} where e is a generating element and gcd(a, ord e) = 1.

In this case, one can express min∆(G0) in terms of the continued fraction ex-
pansion of (ord e)/a. More specifically, one has the following results [5, Theorem
2.1].

Theorem 6.18. Let G = 〈e〉 with ord e = n > 3. Further, let a ∈ [2, n− 1] and let
[a0, a1, . . . , am] be the continued fraction expansion of n/a of odd length (that is m
is even). Then

min∆({e, ae}) = gcd(a1, a3, . . . , am−1).

The continued fraction expansion mentioned in the result is the standard con-
tinued fraction expansion, except for the fact that one allows the last term to equal
1, which allows to always achieve that m is even.
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As a consequence of this, one obtains the following elements that correspond
precisely to those a for which the continued fraction expansion has length 3.

Remark 6.19. Let G = 〈e〉 with ord e = n > 3. Further, let b, c ∈ [1, n− 1] such
that (n− b)/c and (n− b− c)/(bc) are positive integers. Then

min∆

({
e,

n− b

c
e

})
=

n− b − c

bc
.

Moreover, it can be shown that if min∆({e, ae}) is ‘large’ then it must be of
that form (cf. [5, Corollary 3.2] and [38]).

Theorem 6.20. Let G be a cyclic group, e be a generating element of G and
a ∈ [1, |G|] such that gcd(a, |G|) = 1.

Then min∆({e, ae}) >
√
|G| if and only if there exist some positive integers c1

and c2 such that

a =
|G| − c1

c2
and the quantity

da =
|G| − (c1 + c2)

c1c2

is integral and satisfies da >
√
|G|. Indeed, in this case min∆({e, ae}) = da.

These results already explain the presence of several of the elements we men-
tioned in Theorem 6.17. Specifically one gets the elements

{
|G| − 2,

|G| − 3

2
,
|G| − 4

3
,
|G| − 5

4
,
|G| − 4

4

}

for (c1, c2) equaling (1, 1), (1, 2), (1, 3), (1, 4), and (2, 2) respectively.
Furthermore, for every subgroup G′ of G, one gets that exp(G′)−2 is an element

of ∆∗(G′) and thus of ∆∗(G). This yields the elements
{
|G| − 4

2
,
|G| − 6

3
,
|G| − 8

4

}
,

considering subgroups of order |G|/2, |G|/3, |G|/4, respectively. In addition, (|G|−
6)/4 is in ∆∗(G) as (exp(G′)− 3)/2 is in ∆∗(G′) for G′ a subgroup of order |G|/2.

It remains to construct {(|G| − 2)/2}. This element can be shown to equal
min∆({e,−e, (|G|/2)e}). In this way we have given some arguments for the pres-
ence of all these elements. Of course it remains to show that there are no other
elements. We do not discuss this here.

For other types of groups the set ∆∗(G) is less well-understood. But, it is for
example known for n ≥ 5 that {n − 3, n − 2} ⊂ ∆∗(C2

n) and max(∆∗(C2
n) \ {n −

3, n − 2}) = ⌊n/2⌋ − 1 (see [41, Corollary 3.7]). Further results of this form can
be obtained for more general groups under assumptions; see [41, Theorem 3.2] and
[29]. We end with a specific problem and a general remark on further work.

Problem 6.21. Is there a finite abelian group G such that ∆∗(G) is an interval
and exp(G) ≥ 2r(G) + 2?

For n ≤ 2r+ 1, it follows that ∆∗(Cr
n) = [1,max{n− 2, r− 1, }] as [1, r− 1] and

[max{1, n− r − 1}, n− 2] are contained in it.
Having some information about the differences ∆∗(H) at hand a next natural

question would be to determine which periods can appear in the STSL. Beyond
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the information contained in the complete results on L(H), for special cases which
we recalled above, not too much is known on this problem. However, given the
recent progress on the problem of determining ∆∗(G) and associated descriptions
of sets yielding the relevant distances, it might now be a good time to approach
this problem.

6.4. The bound in the STSL. Having discussed the set of differences we turn
to the other parameter in the STSL, the bound. A lot less is known about it.
Geroldinger and Grynkiewicz [20, Theorem 4.4.2] showed the following refinement
and generalization of Theorem 6.3.

Theorem 6.22. Let H be a Krull monoid with subset of classes containing prime
divisors GP such that D(GP ) is finite (and at least 3). Let

M = (2D(GP )− 5)D(GP )
2 +

1

2
D(GP )

4)
D(GP )(D(GP )−1)

2 .

For each a ∈ H its set of lengths L(a) is an AAMP with bound M and difference
d ∈ ∆(H).

The condition that D(GP ) ≥ 3 is no actual restriction as otherwise the monoid is
half-factorial. As mention in Section 2 finiteness of GP implies finiteness of D(Gp).
Thus, the result includes the case that only a finite number of classes contains prime
divisors. We highlight that in this result the set of differences is ∆(H) not ∆∗(H).
However, in case the class group is finite we can combine the results to get that
every set of lengths is an AAMP with difference in ∆∗(H) and still have an explicit
bound.

The bound above, being of the form exp(c log(D(GP ))D(GP )
2), grows quite fast

in terms of the Davenport constant. It is not at all clear what the actual order of
magnitude of the bound should be. Below we give a simple example showing that
the dependence is at least of quadratic order.

Example 6.23. Let n ≥ 6 be even, such that n/2 is odd. Let Cn/2 ⊕ Cn =
〈e1〉 ⊕ 〈e2〉. Then, for sufficiently large k, one has that the set of lengths of
(e1(−e1))

kn/2(e2(−e2))
kn is an AAP with difference 1 and bound (at least) (n −

3)(n/2− 3) while D(Cn/2 ⊕ Cn) = 3n/2− 1.

To see this let d1, d2 be co-prime positive integers. Then, for all sufficiently large
k1, k2 one has that L = (a+ d1 · [0, k1]) + (b+ d2 · [0, k2]) is an AAP with difference
1 and bound (at least) (d1 − 1)(d2 − 1); recall that the Frobenius number of d1, d2
is (d1 − 1)(d2− 1)− 1. Thus a+ b ∈ L while a+ b+(d1 − 1)(d2− 1)− 1 /∈ L so that
when writing L = y+(L′∪L∗∪L′′) in the usual way with L∗ an AP with difference
1, that is an interval, then y ≥ a+ b+ (d1 − 1)(d2 − 1) and a+ b ≥ y −M implies
that M ≥ (d1− 1)(d2− 1). Now, by Lemma 6.7 the set of length of (g(−g))k ord g is
an AP with difference ord g − 2 of length k. And L((e1(−e1))

kn/2(e2(−e2))
kn)) =

(2k + (n/2 − 2) · [0, k]) + (2k + (n − 2) · [0, k]). If n/2 is odd, n − 2 and n/2 − 2
are co-prime. By the argument above we thus have an AAP with bound at least
(n− 3)(n/2− 3) in L(Cn/2 ⊕ Cn), and D(Cn/2 ⊕ Cn) = 3n/2− 1.

This example shows that the bound is at least of quadratic order in terms of the
Davenport constant.

Problem 6.24. What is the (rough) order of magnitude of the bound in the STSL
for L(G) (in terms of D(G))?
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Initially, it would also be interesting to have an answer to this problem just for
some special (infinite) family of groups, or in other more restricted scenarios.

There is very little evidence on which one might base conjectures regarding the
size of the bound M . However, an effect that might limit the size of the bound is
that elements divisible by prime divisors from many different classes tend to have
very simple sets of lengths. We recall a result in this direction due to Geroldinger
and Halter-Koch [23, Theorem 7.6.9]; their actual result is more precise.

Theorem 6.25. Let H be a Krull monoid with finite class group, and let ϕ : H → F
be its divisor theory. If a ∈ H such that ϕ(a) is divisible by a prime divisor from
each non-zero class, then L(a) is an interval.
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