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NUMERICAL HIGH-FIELD LIMITS IN TWO-STREAM KINETIC
MODELS AND 1D AGGREGATION EQUATIONS

LAURENT GOSSE∗AND NICOLAS VAUCHELET†

Abstract. Numerical resolution of two-stream kinetic models in strong aggregative setting is
considered. To illustrate our approach, we consider an 1D kinetic model for chemotaxis in hydro-
dynamic scaling and the high field limit of the Vlasov-Poisson-Fokker-Planck system. A difficulty is
that, in this aggregative setting, weak solutions of the limiting model blow up in finite time, therefore
the scheme should be able to handle Dirac measures. It is overcome thanks to a careful discretization
of the macroscopic velocity resulting of Vol’pert calculus: accordingly, a new well-balanced (WB)
and asymptotic preserving (AP) numerical scheme is provided. Numerical simulations confirm a
good behavior of solutions.

Key words. Asymptotic-Preserving and Well-Balanced scheme; Chemotaxis dynamics; Duality
measure solutions; high-field limit; two-stream kinetic model; Vlasov-Poisson-Fokker-Planck system.

AMS subject classifications. 65M06, 92C17, 35L60.

1. Introduction. Two well-known 1D kinetic models, the Greenberg-Alt one of
chemotaxis dynamics [25] and the attractive Vlasov-Poisson Fokker-Planck (VPFP),
are numerically investigated in strong (high field) relaxing regime. Resulting macro-
scopic balance laws generally admit measure solutions involving Dirac atoms, which
create havoc inside standard algorithms, because of their inherent nonconservative
products [28]. Such singular limiting processes can be studied efficiently by means of
asymptotic preserving (AP) [32], here based on well-balanced (WB) [21], schemes.

1.1. A two-stream chemotaxis model. The Cattaneo or Greenberg-Alt model
[25, 12, 19, 26] describes the dynamics of the two distribution functions f±(t, x) of
bacteria moving respectively in positive and negative directions, at time t > 0 and
position x ∈ R. Rescaling microscopic velocities to ±1, it reads

∂tf
± ± ∂xf

± = ±1

ε

(
[
1

2
+ φ(∂xS)]f

− − [
1

2
− φ(∂xS)]f

+

)
, x ∈ R, (1.1)

with initial/decay conditions f±(t = 0, ·) = f±
0 , limx→±∞ f±(t, x) = 0. An equation

holds on S(t, x), the concentration of chemoattractant emitted by bacteria:

−∂xxS + S = ρ, ρ = f+ + f−, i.e. S(t, x) =
1

2
exp(−|x|) ∗ ρ(t, ·), (1.2)

with the same type of decay at infinity, limx→±∞ S(t, x) = 0. Indeed, Young inequal-
ity yields ‖∂xS‖L∞ ≤ ‖∂xK‖L∞‖ρ‖L1 with K(x) = 1

2e
−|x|. In this system the density

of cells is denoted ρ. The turning kernels T± := 1
2 ±φ(∂xS) correspond to bacteria re-

orientation rates, so 0 ≤ T± ≤ 1. Let M = ‖ρ‖L1 the total (time-independent) mass,
the latter condition on the turning kernel is satisfied provided a sub-characteristic
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condition is met:

sup
v∈[−M/2,M/2]

|φ(v)| ≤ 1

2
. (1.3)

Defining J = f+ − f−, (1.1) rewrites as a semi-linear relaxation system (see [2]),

∂tρ+ ∂xJ = 0, ∂tJ + ∂xρ =
1

ε

(
2φ(∂xS)ρ− J

)
. (1.4)

Thanks to (1.4), the model (1.1) appears to converge (at least formally), as ε → 0,
toward a continuity equation,

∂tρ+ ∂x(a(∂xS)ρ) = 0, a(∂xS) = 2φ(∂xS), −∂xxS + S = ρ, (1.5)

belonging to the class of aggregation equations for which finite time blow-up of weak
Lp-solutions for p > 1 was established (see e.g. [3]). Then Dirac deltas are produced
in finite time within the macroscopic density ρ; at these atoms’ location, the product
a(∂xS)ρ is not straightforwardly defined. Indeed, we infer from (1.2) that ∂xS is
discontinuous at atoms’ location.

1.2. A related Vlasov-Poisson-Fokker-Planck equation (VPFP). The
VPFP is a fundamental system used e.g. in plasma physics: it models the evolu-
tion of a statistical distribution of electrons which dynamics are governed by both
a self-consistent (gravitational or electrostatic) interaction and a Brownian motion
induced by the underlying medium. For an attractive self-interaction, it reads [34]

ε(∂tf + v∂xf) + ∂xφ · ∂vf =
1

θ
∂v(vf − κ∂vf), −∂xxφ = ρ :=

∫

R

f(v)dv. (1.6)

High field regime corresponds to letting ε → 0. In the attractive case, like (1.1)-(1.2),
an aggregation equation (for which blow-up of solutions usually occurs) emerges.

1.3. Organization of the manuscript. Although numerical approximation
of kinetic system with stiff relaxation terms was thoroughly investigated in the last
decade, there are only few contributions dealing with the strongly attractive case
where the numerical scheme is meant to handle correctly the dynamics of aggregated
matter, i.e. Dirac deltas. In [31], a fractional-step, asymptotic-preserving (AP)
numerical scheme endowed with a careful discretization of the nonconservative product
is proposed for the system (1.1)–(1.2). However this scheme is based on a time-
splitting algorithm which is known to not have a good behavior for large time [2],
i.e. does not satisfy the well-balanced property, in particular macroscopic flux for
large time displays large peakons instead of being flat. This paper proposes a new
numerical approach dealing with two-stream kinetic models in strongly aggregative
setting. The WB property is obtained following the strategy of [21]. Obtaining an
AP property relies on a careful discretization of Vol’pert calculus for BV functions.

The outline of the paper is as follows. In the next Section, we recall briefly
the theoretical results of convergence towards aggregation equation as ε → 0 for both
models. Section 3 is devoted to a reminder of the strategy of [21] to derive WB scheme
when the potential (∂xS for (1.1) or E for (VPFP)) is assumed to be given. In §4, we
develop our new strategy to build a WB and AP numerical scheme for the coupled
models (see also [5, 9, 14]), the AP property of which is explained in §5. The main
drawback of this strategy may be its CPU cost as it involves an iterative resolution
of a nonlinear algebraic system (see Appendix A). Hence, we propose in §6 a simpler
strategy for (1.1) based on hybridization [22]. Finally numerical comparisons between
those algorithms are provided in §7.
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2. Theoretical setups for both 1D kinetic models.

2.1. A two-stream model and its aggregation limit. A theory of measure
solutions for equations of the type (1.5) was established in [30], along with conver-
gence of kinetic solutions; besides, multi-dimensional aggregation equations were in-
vestigated in [7, 8]. In [30], (1.5) is treated as a conservative transport equation with a
discontinuous velocity (see also [8, 10, 35, 36]). A convenient tool (in one dimension)
to deal with such problems is provided by duality solutions, introduced in [4] (see
also [36, 37]). Numerical investigation of these was carried out in [24].

Definition 1. The set (ρ, S) ∈ C(0, T ;Mb(R))×C(0, T ;W 1,∞(R)) is a duality
solution to (1.5) if there exists α(t) ∈ L1

loc(0, T ) such that, for 0 < t1 < t2 < T ,
1. the continuity equation holds in the sense of duality on (t1, t2),
2. ∀t ∈ (0, T ), ∂x(a(∂xS))(t, ·) ≤ α(t) almost everywhere1 and a(∂xS) ∈ L∞,
3. the elliptic equation (1.2) holds in a weak sense, for any ϕ ∈ C1(R),

∀t ∈ (0, T ),

∫

R

∂xS(t, x) · ∂xϕ(x) + S(t, x) · ϕ(x)dx =

∫

R

ρ(t, x)ϕ(x)dx,

The terminology that a 1D continuity equation holds “in the sense of duality”
explicitly refers to [4, §4.2] or [24, §2.2]: it essentially means that test-functions are
chosen to be “reversible solutions” of the dual equation. The second point in Def. 1
is a one-sided Lipschitz condition. To secure uniqueness, a definition of a(∂xS)ρ, a
nonconservative product [28] at places where ρ(t, x) is a Dirac mass, is needed.
Indeed at such location, the product of the discontinuous function ∂xS with the
measure ρ is a priori not well defined.

From now on, we denote Mb(R) the space of local Borel measures on R with
finite total variation; this space of measures is always endowed with the weak topology
σ(Mb, C0) where C0 is the set of continuous functions that vanish at infinity.

Definition 2. Let A be such that A′ = a, with A(0) = 0. Based on (1.2), the
macroscopic flux is defined as follows,

J(t, x) = −∂xA(∂xS) + a(∂xS) · S. (2.1)

The Vol’Pert calculus (or chain rule for BV functions), again by (1.2), yields
J = âs · ρ, where â = a(∂xS) a.e.; the Vol’pert velocity is the quantity âs.

Thanks to both these definitions, the limiting process (1.1)–(1.2) is proved to
rigorously converge as ε → 0 toward the unique duality solution of (1.5):

Theorem 1. ([30, Theorem 3.9 & 3.10]) Let 0 ≤ f±
0 ∈ Mb(R) such that

∫
R
(1 +

|x|2)f±
0 (x)dx < ∞ and T > 0:
• there exists a unique duality solution on (0, T ) to (1.5)–(1.2) in the sense of
Definition 1 such that,

∂tρ+ ∂xJ = 0, with J defined in (2.1);

• the sequence f±
ε , Sε of weak solutions to (1.1)–(1.2) converges weakly,

ρε := f+
ε +f−

ε ⇀ ρ, in C([0, T ],Mb(R)), Sε ⇀ S, in C([0, T ],W 1,∞(R)),

where ρ, S the unique duality solution of (1.5)–(1.2)–(2.1).
Thus a challenging issue in the numerical handling of (1.1)–(1.2) is to unveil a

scheme at the kinetic level, able to recover the flux definition (2.1) when ε → 0.

1“almost everywhere” is always with respect to the Lebesgue measure.
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2.2. High field limit for a Vlasov-Poisson-Fokker-Planck system. We
switch now to (1.6), and its high field limit obtained by letting ε → 0:

ε(∂tf + v∂xf) + E∂vf =
1

θ
∂v(vf − κ∂vf), (2.2)

−∂xxφ = ρ, E = ∂xφ. (2.3)

In this attractive case, concentration occurs together with Dirac masses within the
limiting problem. Considering only the first two moments of equation (2.2) leads to,

∂tρ+ ∂xJ = 0, ∂tJ + ∂x

∫

R

v2f(v) dv =
1

θε
(θρE − J),

with standard notations ρ =
∫
R
f(v)dv and J =

∫
R
vf(v) dv. Letting formally ε → 0,

a scalar conservation law emerges,

J = θρE, ∂tρ+ θ∂x(ρE) = 0. (2.4)

As (2.3) implies that ρ = −∂xE, provided that the product ρE = − 1
2∂xE

2 is correctly
defined, an integration in space implies that E solves a Burgers-Hopf equation:

∂tE +
θ

2
∂xE

2 = 0, F (E) =
θ

2
|E|2. (2.5)

This formal computation has been rigorously studied in [34] (see also [29]):

Theorem 2. (see [34, Theorems 1 & 2] and [29, Theorem 3.2]) Let a sequence
of nonnegative initial data 0 ≤ fε

0 be such that:

•
∫
R2(1 + |x|2 + |v|2)fε

0dxdv, is uniformly bounded with respect to ε > 0,
• corresponding ρε0 ⇀ ρ0 in M+(R)-weak⋆.

Then, there exists an unique duality solution (ρ,E), ρ ≥ 0 to the system (2.3)–(2.4)
with initial data ρ0 and where the product is defined by ρE = − 1

2∂xE
2. It satisfies

ρ = −∂xE where E is the unique entropy solution of (2.5). Moreover, the sequence
(fε, Eε) from (2.2)–(2.3) weakly converges to this unique solution, in the sense

ρε =

∫

R

fε(v) dv ⇀ ρ, in D′([0, T ]× R) as ε → 0.

Thus an interesting issue in the numerical resolution of the high field limit of
VPFP is to design a numerical scheme, for which the numerical solution converges
to the one computed by solving the Burgers equation (2.5). Numerical simulation of
VPFP systems was studied by several authors, see e.g. [16, 33, 38, 42, 11]. However,
up to our knowledge, the numerical resolution of the high field limit has still not
been studied and in particular no numerical comparisons with solutions of (2.5) are
available. In fact, specific difficulties occur, if ε ≪ ∆x, because of the nonconservative
product appearing in the definition of the macroscopic flux.

3. Derivation of WB schemes based on scattering matrices. Hereafter
we shall always work on a uniform Cartesian computational grid, defined by the pa-
rameters ∆t,∆x > 0, with ∆t ≤ ∆x; in standard notation, numerical approximations
of kinetic densities read f±(tn, xj) ≃ f±

j,n for xj = j∆x, j ∈ Z and tn = n∆t, n ∈ N.
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3.1. Chemotaxis model (1.1). According to [21], a convenient manner of
treating a weakly nonlinear model like (1.1)–(1.2) consists in building a Godunov
scheme based on an exact Riemann solver for the slightly modified problem,

∂tf
± ± ∂xf

± = ±
∑

j∈Z

∆x

2ε

(
[1 + anj− 1

2

]f− − [1− anj− 1

2

]f+
)
· δ(x− xj− 1

2

), (3.1)

where an
j− 1

2

is a “consistent discretization” of 2φ(∂xS)(t
n, xj− 1

2

): this amounts to

decouple the original hyperbolic/elliptic model into a position-dependent linear 2× 2
system at each time-step. A justification comes from the explicit form of the solution
of (1.2), a convolution product, which supposedly reacts “slowly” to perturbations in
ρ (this idea traces back to Gummel [27]). Assuming that the form of an

j− 1

2

is known,

the Riemann problem arising at each interface xj− 1

2

gives rise to 3 elementary waves

(or normal modes): 2 usual linear convective ones, and a steady-state discontinuity
linked to the Dirac mass, across which unknowns jump according to a Boundary-Value
problem (BVP) for the stationary equations of (1.1), for any j, n ∈ Z× N,

2ε∂xf̄
±(x) = [1 + anj− 1

2

]f̄− − [1− anj− 1

2

]f̄+, f̄+(0) = f+
j−1,n, f̄−(∆x) = f−

j,n, (3.2)

which are equivalent to the “macroscopic stationary equations”,

∂xJ̄ = 0, ε∂xρ̄(x) = anj− 1

2

ρ̄− J̄ , x ∈ (0,∆x). (3.3)

Accordingly, the collision term is numerically handled as a countable collection of
“local scattering centers” [18], each of which inducing a 2× 2 scattering matrix, Sn

j− 1

2

relating incoming states (or “inflow data” of (3.2)) to outgoing ones:
(

f+
j− 1

2
,n

f−
j− 1

2
,n

)
:=

(
f̄+(∆x)
f̄−(0)

)
= Sn

j− 1

2

(
f+
j−1,n

f−
j,n

)
. (3.4)

The Divergence Theorem furnishes the expression of the resulting Godunov scheme,

f+
j,n+1 = f+

j,n − ∆t

∆x
(f+

j,n − f+
j− 1

2
,n
), f−

j,n+1 = f−
j,n +

∆t

∆x
(f−

j+ 1

2
,n

− f−
j,n),

which rewrites, in a vectorial form,
(

f+
j,n+1

f−
j−1,n+1

)
= (1− ∆t

∆x
)

(
f+
j,n

f−
j−1,n

)
+

∆t

∆x
Sn
j− 1

2

(
f+
j−1,n

f−
j,n

)
. (3.5)

Lemma 3.1. Suppose that for all j, n, the matrix Sn
j− 1

2

is left-stochastic and the

CFL restriction, ∆t ≤ ∆x, holds. Then the scheme (3.5) dissipates the L1 norm,

∀n ∈ N,
∑

j∈Z

∆x(|f+
j,n+1|+ |f−

j,n+1|) ≤
∑

j∈Z

∆x(|f+
j,n|+ |f−

j,n|).

For nonnegative initial data (f±
j,n=0)j∈Z, it preserves both positivity and total mass.

Proof. The dissipation is a direct consequence of the fact ‖Sn
j− 1

2

‖ℓ1 = 1 in (3.5).

The positivity-preserving property results from convex combination arguments.
At this point, we left behind the issue of defining a value of an

j− 1

2

, able to compute

correctly products of the type an
j− 1

2

· f±, likely to become singular as ε → 0. Without

a specific treatment, the Vol’Pert product (2.1) is usually not recovered numerically,
as shown in our Fig. 7.1.
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3.2. VPFP model. As above, let an uniform grid in the space variable be xj ,
j ∈ Z, together with a discretization vk, k ∈ Z, in the velocity domain. One starts
again with stationary equations and incoming boundary conditions, in (xj−1, xj):

εv∂xf = 1
θ∂v

(
(v − θE)f − κ∂vf

)
,

f(0, v) = fj−1(v), f(∆x,−v) = fj(−v), for v > 0.
(3.6)

At this early stage, let the field be a constant value E, given. Plugging the usual
“separated variables” ansatz f(x, v) = exp(−λx)ϕλ(v), one recovers a Sturm-Liouville
problem, [6, 21, Chapter 12.3]. To the null eigenvalue λ = 0, are associated two non-
damped modes Ψ±

0 (“diffusion solutions” in the sense of [15]), and f expands into

f(x, v) = γ+Ψ+
0 (x, v) + γ−Ψ−

0 (x, v) +
∑

ℓ∈N∗

γ±
ℓ Ψ±

ℓ (x, v),

Coefficients γ±
ℓ in this full-range expansion follow from incoming boundary condi-

tions in (3.6), therefore they depend only on incoming boundary condition and are
constants. In particular, for ℓ > 0, damped modes Ψ±

ℓ may be considered as bound-
ary layers, hence negligible away from the boundaries. Hereafter, we shall restrict
ourselves to the diffusion solutions, ℓ = 0, so f(x, v) ≈ γ+Ψ+

0 (x, v) + γ−Ψ−
0 (x, v).

Beside simplicity, a reason for such a simplification is that none of the damped modes
Ψ±

ℓ carries net macroscopic flux, as is seen from the relation, [21, Remark 12.4]

∫

R

vΨ±ℓ(0, v)Ψ±ℓ′(0, v) exp((v − θE)2/2κ)dv = C · δℓ,ℓ′ , ℓ, ℓ′ ∈ Z
2,

inside which one picks a space-homogeneous mode Ψ±
0 , explicitly given in [21, p. 251]:

• when E > 0,

Ψ+
0 (x, v) = exp(− (v − |θE|)2

2κ
); Ψ−

0 (x, v) = exp(−|θE|2
2κ

) exp(
Ex

εκ
− v2

2κ
);

(3.7)
• when E < 0,

Ψ+
0 (x, v) = exp(−|θE|2

2κ
) exp(

Ex

εκ
− v2

2κ
); Ψ−

0 (x, v) = exp(− (v + |θE|)2
2κ

).

(3.8)
Accordingly, (3.6) reduces to a two-stream system by restricting the velocity space
to a pair {−v1, v1} (belonging to a Gauss-Hermite quadrature), so that γ± ∈ R

2 in

f(x,±v1) = γ+Ψ+
0 (x,±v1) + γ−Ψ−

0 (x,±v1), (3.9)

are uniquely determined by the data of incoming boundary conditions,

f(0, v1) = fj−1(v1) = γ+Ψ+
0 (0, v1) + γ−Ψ−

0 (0, v1),

f(∆x,−v1) = fj(−v1) = γ+Ψ+
0 (∆x,−v1) + γ−Ψ−

0 (∆x,−v1),

through an easily invertible 2× 2 linear system. Denoting

M =

(
Ψ+

0 (0, v1) Ψ−
0 (0, v1)

Ψ+
0 (∆x,−v1) Ψ−

0 (∆x,−v1)

)
,

(
γ+

γ−

)
= M−1

(
fj−1(v1)
fj(−v1)

)
,
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corresponding outward values of f follow thanks to (3.9),

f(∆x, v1) = γ+Ψ+
0 (∆x, v1) + γ−Ψ−

0 (∆x, v1),

f(0,−v1) = γ+Ψ+
0 (0,−v1) + γ−Ψ−

0 (0,−v1),

which can be rephrased as

M̃ =

(
Ψ+

0 (∆x, v1) Ψ−
0 (∆x, v1)

Ψ+
0 (0,−v1) Ψ−

0 (0,−v1)

)
,

(
f(∆x, v1)
f(0,−v1)

)
= M̃M−1

(
fj−1(v1)
fj(−v1)

)
. (3.10)

Tedious computations, using expressions (3.7)–(3.8), lead to

M̃M−1 =

(
s1 s2

1− s1 1− s2

)
,

with

s1 =
1− e−2|θE| v

κ

1− e−2|θE| v
κ
−|E|∆x

εκ

, s2 =
1− e−2|E|∆x

εκ

1− e−2|θE| v
κ
−|E|∆x

εκ

, if E > 0;

s1 =
e−|E|∆x

εκ (1− e−2|θE| v
κ )

1− e−2|θE| v
κ
−|E|∆x

εκ

, s2 =
e−2|θE| v

κ (1− e−2E ∆x
εκ )

1− e−2|θE| v
κ
−|E|∆x

εκ

, if E < 0.

The issue of determining a reliable discretization of the Poisson force field has been
left apart since we assumed in all this section that the value E was given.

4. Scattering algorithm involving discontinuous velocities. When ρ is
endowed with atoms, one must get rid of standard discretizations (like the ones in
[19, 21]) because they produce wrong dynamics, as illustrated in Fig. 7.1 or in [40].

4.1. Derivation of the numerical process for (1.1). Here, the resolution of
this stationary problem (3.2) proceeds by splitting into 2 contributions, one coming
from the left with velocity an

j− 1

2
,L

and another coming from the right with velocity

an
j− 1

2
,R
, the precise values of which will be given later in §4.2.
• The first step consists in replacing the BVP (3.2) by two Cauchy problems
on (0,∆x). The flux J̄ defined in (3.3) is constant and can be decomposed
as J̄ = JL + JR by means of two constants JL and JR, standing for left
and right fluxes, respectively. Accordingly, ρ̄(x) = ρL(x) + ρR(x) such that
ρ(0) = ρL(0) and ρ(∆x) = ρR(∆x). Thus, ρR(0) = 0 and ρL(∆x) = 0.

• The BVP (3.2) is reformulated as two Cauchy problems on (0,∆x) :

ε
d

dx
ρL = aj− 1

2
,LρL − JL, ρL(∆x) = 0, (4.1)

ε
d

dx
ρR = aj− 1

2
,R ρR − JR, ρR(0) = 0. (4.2)

Moreover,

J = JL + JR, ρ(0) = ρL(0), ρ(∆x) = ρR(∆x). (4.3)

The unknowns of this system are JL, JR, f
−(0) and f+(∆x).
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Lemma 4.1. For any j, n ∈ Z×N, the scattering matrix Sn
j−1/2 has the expression,

Sn
j−1/2 =




2cL
1− cR + cL

1 + cR + cL
1− cR + cL

1− cR − cL
1− cR + cL

−2cR
1− cR + cL


 , (4.4)

with the signed coefficients (an
j− 1

2
,L

and an
j− 1

2
,R

may be equal) :

cR =
an
j− 1

2
,R

1− exp(an
j− 1

2
,R
∆x/ε)

≤ 0, cL =
an
j− 1

2
,L

1− exp(−an
j− 1

2
,L
∆x/ε)

≥ 0. (4.5)

Under the discrete sub-characteristic condition,

sup
j,n∈Z×N

|anj− 1

2
,L/R| ≤ 1, (4.6)

the matrix Sn
j−1/2 is left-stochastic.

Proof. The quantities JR, JL, a
n
j− 1

2
,R

and an
j− 1

2
,L

are constant across each inter-

face xj−1/2, i.e. on (0,∆x), so both (4.1), (4.2) are solved explicitly:

aj− 1

2
,L ρL(0) = JL

(
1− e

−an

j− 1
2
,L

∆x/ε)
, aj− 1

2
,R ρR(∆x) = JR

(
1− e

an

j− 1
2
,R

∆x/ε)
.

Hence, using the notations of (4.5),

JL = cL(f
+
j−1 + f̄−(0)), JR = cR(f̄

+(∆x) + f−
j ). (4.7)

Moreover, since the total flux J = f̄+ − f̄− is constant, f̄+(∆x)− f−
j = f+

j−1 − f̄−(0)

which gives a 2× 2 system of unknowns f̄−(0), f̄+(∆x)

f̄+(∆x)− f−
j = f+

j−1 − f̄−(0), f̄+(∆x)− f−
j = JL + JR. (4.8)

Recombining equations (4.8) with (4.7) gives

f̄+(∆x) + f̄−(0) = f+
j−1 + f−

j

f̄+(∆x)− f−
j = cR

(
f−
j + f̄+(∆x)

)
+ cL

(
f+
j−1 + f̄−(0)

)
,

which rewrites as,

f̄−(0)
(
1− cR + cL

)
= −2cRf

−
j +

(
1− cR − cL

)
f+
j−1,

f̄+(∆x)
(
1− cR + cL

)
= f−

j

(
1 + cR + cL

)
+ 2cLf

+
j−1.

These equalities can be written in matrix form as in (4.4). At last, under the sub-
characteristic condition, one checks easily that cL ≥ 0, cR ≤ 0 and cL + cR ≤ 1, so
that the sum of each column’s (nonnegative) entries in the scattering matrix Sn

j−1/2

equals 1, that is Sn
j−1/2 is left-stochastic.

4.2. Specific handling of the asymptoticly singular product. As formerly
explained, careful values an

j− 1

2
,L/R

must be devised in order to recover the correct

behavior as ε → 0. Accordingly, when put altogether, both values ρL and ρR at each
interface induce sequences (ρj− 1

2
,L)j and (ρj− 1

2
,R)j , (we drop the time index n)

∀j ∈ Z, ρj− 1

2
,L = f+

j−1 + f−
j− 1

2

, ρj− 1

2
,R = f+

j− 1

2

+ f−
j .
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Then from the expression of Sn
j−1/2 given in Lemma 4.1 we deduce,

ρj− 1

2
,L =

2(1− cR)

1− cR + cL
f+
j−1 −

2cR
1− cR + cL

f−
j , (4.9)

ρj− 1

2
,R =

2cL
1− cR + cL

f+
j−1 +

2(1 + cL)

1− cR + cL
f−
j . (4.10)

These densities induce corresponding potentials SL and SR solving each elliptic prob-
lem, −∂xxSL +SL = ρL and −∂xxSR +SR = ρR. Standard centered finite differences
furnish approximations Sj− 1

2
,L and Sj− 1

2
,R, respectively,

−
Sj+ 1

2
,L/R − 2Sj− 1

2
,L/R + Sj− 3

2
,L/R

∆x2
+ Sj− 1

2
,L/R = ρj− 1

2
,L/R , . (4.11)

Centered discretizations of partial derivatives of SL/R read

∂xSj,L =
Sj+ 1

2
,L − Sj− 1

2
,L

∆x
and ∂xSj,R =

Sj+ 1

2
,R − Sj− 1

2
,R

∆x
.

Yet, left and right values at any interface xj− 1

2

of the macroscopic velocity are com-
puted thanks to the Vol’pert discretization :

aj− 1

2
,L =





A(∂xSj,L)−A(∂xSj−1,L)

∂xSj,L − ∂xSj−1,L
, if ∂xSj,L 6= ∂xSj−1,L ;

0, else ;

(4.12)

aj− 1

2
,R =





A(∂xSj,R)−A(∂xSj−1,R)

∂xSj,R − ∂xSj−1,R
, if ∂xSj,R 6= ∂xSj−1,R ;

0, else ;

(4.13)

We notice that according to assumption (1.3), the macroscopic velocities above satisfy
the sub-characteristic condition (4.6) given in Lemma 4.1. In practice, computing
velocities aj− 1

2
,L/R consists in iteratively solving a nonlinear system for (Sj− 1

2
,L)j∈Z

and (Sj− 1

2
,R)j∈Z: namely, equations (4.5)-(4.9)-(4.10)-(4.11)-(4.12)-(4.13).

See our Appendix A for some implementations details.

4.3. A similar handling of (VPFP). In a quite similar way, there holds:
Lemma 4.2. For any j, n ∈ Z × N, the scattering matrix Sn

j−1/2 still has the

expression (4.4), yet with more involved coefficients

cL =
tanh

(
v1

κ |θEj− 1

2
,L|
)

ω1(1− exp(−|Ej− 1

2
,L|∆x

εκ ))

(
1E

j− 1
2
,L

>0 + e
−|E

j− 1
2
,L

|∆x
εκ 1E

j− 1
2
,L

<0

)
≥ 0,

cR =
− tanh

(
v1

κ |θEj− 1

2
,R|
)

ω1(1− exp(−|Ej− 1

2
,R|∆x

εκ ))

(
e
−|E

j− 1
2
,R

|∆x
εκ 1E

j− 1
2
,R

>0 + 1E
j− 1

2
,R

<0

)
≤ 0,

(4.14)
where we recall that v1 is the first node in the Gauss-Hermite quadrature and ω1 the
associated weight. The matrix Sn

j−1/2 is left-stochastic.
Again, an appropriate discretization of the macroscopic force fields Ej− 1

2
,L and

Ej− 1

2
,R will be provided in the forthcoming §4.4.
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Proof. From (3.10), it comes,

fj−1(v1)− f(∆x,−v1) = f(0, v1)− fj(−v1) = s1fj−1(v1) + (s2 − 1)fj(−v1),

so that the corresponding flux reads,

Jj−1/2 = v1ω1(s1fj−1(v1) + (s2 − 1)fj(−v1)). (4.15)

Following the idea in §4, we introduce the following macroscopic densities

ρj− 1

2
,L = ω1(fj−1(v1) + f(0,−v1)), ρj− 1

2
,R = ω1(f(∆x, v1) + fj(−v1)). (4.16)

From equation (3.10), one deduces
{

ρj− 1

2
,L = ω1((2− s1)fj−1(v1) + (1− s2)fj(−v1)),

ρj− 1

2
,R = ω1(s1fj−1(v1) + (1 + s2)fj(−v1)).

(4.17)

Combining (4.15) and (4.17), and after straightforward computations,

Jj− 1

2

= v1

(
s1

1− s1 + s2
ρj− 1

2
,L +

s2 − 1

1− s1 + s2
ρj− 1

2
,R

)
. (4.18)

Following §4, we define the flux generated by the left boundary Jj− 1

2
,L as the flux

obtained for E = Ej− 1

2
,L, such that ρj− 1

2
,L = ρj−1 = ω1(fj−1(v1) + f(0,−v1)) and

ρj− 1

2
,R = 0. Respectively, we define the flux generated by the right boundary Jj− 1

2
,R

as the one obtained for E = Ej− 1

2
,R, such that ρj− 1

2
,R = ρj = ω1(f(∆x, v1)+fj(−v1))

and ρj− 1

2
,L = 0. Replacing s1 and s2 by their respective values in (4.18) yield,

Jj− 1

2
,L = v1ω1 · cLρj−1, Jj− 1

2
,R = v1ω1 · cRρj , (4.19)

where cL and cR are given in (4.14). The total flux reads Jj−1/2 = Jj−1/2,L+Jj−1/2,R,
so that (f(0,−v1), f(∆x, v1)) solve the following 2× 2 system:

f(∆x, v1)− fj(−v1) = fj−1(v1)− f(0,−v1),

v1ω1 · (f+(∆x)− f−
j ) = Jj−1/2,L + Jj−1/2,R.

The first equation expresses flux conservation. Recombining and using (4.19),

f(∆x, v1) + f(0,−v1) = fj−1(v1) + fj(−v1),
f(∆x, v1)− fj(−v1) = cL

(
fj(−v1) + f(∆x, v1)

)
+ cR

(
fj−1(v1) + f(0,−v1)

)
.

This is the same system as the one in the proof of Lemma 4.1 so we are done.

4.4. Discretization of Vol’pert product in (VPFP). The scope is now the
discretization of the macroscopic force fields EL and ER, as used in Lemma 4.2. Again,
it heavily relies on Vol’pert calculus so as to handle correctly the nonconservative
product ρE at the singular limit. By definition (4.16),

ρj− 1

2
,L = ω1 · (fj−1(v1) + f(0,−v1)), ρj− 1

2
,R = ω1 · (fj(−v1) + f(∆x, v1)).

Using the scattering matrix (4.4) to compute f(0,−v1) and f(∆x, v1), it comes

ρj− 1

2
,L = ω1

(
2(1− cR)

1− cR + cL
fj−1(v1)−

2cR
1− cR + cL

fj(−v1)

)
,

ρj− 1

2
,R = ω1

(
2cL

1− cR + cL
fj−1(v1)−

2(1 + cL)

1− cR + cL
fj(−v1)

)
,

(4.20)
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so that potentials φj− 1

2
,L and φj− 1

2
,R follow by solving finite-differences:

−
φj+ 1

2
,L/R − 2φj− 1

2
,L/R + φj− 3

2
,L/R

∆x2
= ρj− 1

2
,L/R, for j ∈ Z. (4.21)

Finally, our discretization of the electric field is defined by

Ej− 1

2
,L/R =

1

2
(Ej−1,L/R + Ej,L/R), where Ej,L/R =

φj+ 1

2
,L/R − φj− 1

2
,L/R

∆x
. (4.22)

In summary, knowing fj−1(v1) and fj(−v1), the discrete force fields EL and ER are
computed by solving the nonlinear problem (4.14)-(4.20)-(4.21)-(4.22). Finally,

(
fn+1
j (v1)

fn+1
j−1 (−v1)

)
= (1− v1

∆t

∆x
)

(
fn
j (v1)

fn
j−1(−v1)

)
+ v1

∆t

∆x
S∆x
j−1/2

(
fn
j−1(v1)

fn
j (−v1)

)
, (4.23)

where S∆x
j−1/2 is given in Lemma 4.2. Obviously, the CFL restriction of Lemma 3.1

should be changed to v1∆t ≤ ∆x.

5. Consistency and asymptotic properties.

5.1. Hydrodynamic behavior (AP property) of (1.1). Standard notation
for both the macroscopic density and flux at the cell’s center reads

∀j, n ∈ Z× N, ρnj = f+
j,n + f−

j,n, Jn
j = f+

j,n − f−
j,n.

Proposition 5.1. In (5.2) the flux Jn
j+1/2 satisfies, as ε → 0: ∀ j, n ∈ Z× N,

Jn
j−1/2 → max

(
0, anj− 1

2
,L

)
ρnj− 1

2
,L +min

(
0, anj− 1

2
,R

)
ρnj− 1

2
,R . (5.1)

Proof. Notice that we get from (4.8)

f+
j− 1

2
,n

− f−
j,n = Jn

j−1/2 = f+
j−1,n − f−

j− 1

2
,n
,

that can be inserted into (3.5) in order to produce,

f+
j,n+1 = f+

j,n − ∆t
∆x

(
f+
j,n − f−

j,n − Jn
j−1/2

)

f−
j−1,n+1 = f−

j−1,n − ∆t
∆x

(
f−
j−1,n − f+

j−1,n + Jn
j−1/2

)

Adding both lines, the second being shifted at xj (instead of xj−1), we get :

ρn+1
j = ρnj − ∆t

∆x

(
Jn
j+1/2 − Jn

j−1/2

)
, (5.2)

where, using (4.8),

Jn
j− 1

2

= cL(f
+
j−1,n + f−

j− 1

2

) + cR(f
+
j− 1

2

+ f−
j,n).

According to the definitions (4.9)-(4.10), this rewrites

Jn
j− 1

2

= cL ρnj− 1

2
,L + cR ρnj+ 1

2
,R .
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By (4.5), as ε → 0, cR → min(0, aj− 1

2
,R) and cL → max(0, aj− 1

2
,L).

The asymptotic scheme (5.1)–(5.2) is reminiscent of the upwind schemes studied in
[24] (see §4.2): conventional (centered) discretizations like the ones used in [31] yield a
more diffusive Lax-Friedrichs scheme in the hydrodynamical limit. Our discretization
of the macroscopic velocity using Vol’pert calculus is consistent with nonconservative
products as in Definition 2. Indeed, both (4.11) and (4.12) yield,

anj− 1

2
,L ρnj− 1

2
,L = −

A(∂xS
n
j,L)−A(∂xS

n
j−1,L)

∆x
+ anj− 1

2
,LS

n
j− 1

2
,L,

and the analogue for an
j− 1

2
,R

ρn
j− 1

2
,R
. In other words, this definition of the macroscopic

velocity is a discretization of the Vol’pert calculus (chain rule for BV functions) :

−∂x(A(∂xSL)) = âL(ρL − SL), with âL = a(∂xS) a.e. ,

where we systematically use the fact that −∂xxSL + SL = ρL. If ρ(t, ·) is continuous,
left/right values an

j− 1

2
,L/R

are very close to each other, so this construction is consistent

with a standard finite-differences approximation an
j− 1

2

= φ(
Sn
j −Sn

j−1

∆x ).

5.2. Burgers-Hopf limit of (VPFP). Since the scattering matrix is very sim-
ilar, computations in §5.1 with ρj = ω1 · (fj(v1) + fj(−v1)), ω1 being the weight
associated to v1 in e.g. (4.15) or (4.16), yield now

ρn+1
j = ρnj − ∆t

∆x
(Jn

j+ 1

2

− Jn
j− 1

2

), Jn
j− 1

2

= cLρ
n
j− 1

2
,L + cRρ

n
j− 1

2
,R.

From (4.14) a suffucient condition for consistency to hold is v1θ/κ ≪ 1. Accordingly,
when ε → 0,

cL → max

(
0,

tanh( v1θ
κ Ej− 1

2
,L)

ω1

)
and cR → min

(
0,

tanh( v1θ
κ Ej− 1

2
,R)

ω1

)
,

and this leads to an asymptotic behavior similar to the one in Proposition 5.1.
Remark 1. Thanks to this discretization of the field, (4.22)-(4.21) imply that

Ej− 1

2
,L/R · ρj− 1

2
,L/R =

1

2∆x

((
Ej,L/R

)2 −
(
Ej−1,L/R

)2)
,

the right hand side being a discretization of 1
2 |∂xE|2. Hence our definition of the dis-

crete velocity field is consistent with the product ρE as defined in Theorem 2. More-
over, it correctly handles that product even if ρ contains Dirac atoms.

6. Hybrid scheme mixing scattering and time-splitting. As the previ-
ous scheme’s CPU cost mainly comes from solving the “nonlinear system” (4.5)-
(4.9)-(4.10)-(4.11)-(4.12)-(4.13), we now follow [22] and select a discretization of the
macroscopic velocity such that an

j− 1

2

depends only on a sole interface value ρn
j− 1

2

.

A time-splitting pre-processing, when applied to VPFP system leads to macroscopic
equations, where κ disappeared while integrating in the v variable,

∂tρ = 0, ∂tJ =
1

θε
(θρE − J).
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6.1. A simpler handling of the nonconservative product. To proceed, we
first propose a discretization based on the Vol’pert calculus by setting :

∀j ∈ Z, anj− 1

2

=
A(∂xS

n
j )−A(∂xS

n
j−1)

∂xSn
j − ∂xSn

j−1

, if ∂xS
n
j 6= ∂xS

n
j−1, (6.1)

where the centered divided difference reads ∂xS
n
j = (Sn

j+ 1

2

−Sn
j− 1

2

)/∆x. The potential

Sn
j− 1

2

being solution of the discretized elliptic problem,

∀n ∈ N, −
Sn
j+ 1

2

− 2Sn
j− 1

2

+ Sn
j− 3

2

∆x2
+ Sn

j− 1

2

= ρnj− 1

2

. (6.2)

From (6.1)-(6.2), we deduce that

(a · ρ)nj− 1

2

= −
A(∂xS

n
j )−A(∂xS

n
j−1)

∆x
+ anj− 1

2

Sn
j− 1

2

. (6.3)

This value is consistent with the non-conservative product a · ρ when the density
contains Dirac atoms. However, the “interface value” ρn

j− 1

2

must be made explicit.

6.2. A time-splitting (TS) pre-processing procedure. Hereafter we shall
use the shorthand notation, L(f±) =

(
1+a

)
f−−

(
1−a

)
f+. Moreover, for 0 < ε ≪ 1

small enough, we define two complementary parameters εWB and εTS such that,

1

ε
=

1

εWB
+

1

εTS
, εTS =

ε · εWB

max(0, εWB − ε)
∈ (0,+∞].

Accordingly the kinetic system (1.1) is treated by decomposing the collision term into

∂tf
± ∓ L(f±)

εTS
= ∓∂xf

± ± L(f±)

εWB
(6.4)

The left part of (6.4) is intended to be handled by time-splitting; the right part, by
applying a scattering matrix as in the previous section. At each interface xj− 1

2

, its
“incoming states” are modified by means of the mass-preserving differential equation,

d

dt
f̃±(t) = ± 1

εTS
L
(
f̃±(t)

)
, x ∈ (xj−1, xj), t ∈ (tn, tn+1).

The unknowns of this system are the distribution functions (f+
j−1, f

−
j ) entering into

(xj−1, xj) (or equivalently, approaching in the sense of Glimm the discontinuity at
xj− 1

2

), so it rewrites as, (we now drop the time index n since there is no ambiguity)

df̃+
j−1(t)

dt
=

1

2εTS

(
aj− 1

2

ρ̃j− 1

2

− J̃j− 1

2

)
,

df̃−
j (t)

dt
= − 1

2εTS

(
aj− 1

2

ρ̃j− 1

2

− J̃j− 1

2

)
,

where we switched to the macroscopic variables,

ρ̃j− 1

2

(t) = f̃+
j−1(t) + f̃−

j (t), and J̃j− 1

2

(t) = f̃+
j−1(t)− f̃−

j (t). (6.5)

Adding and taking the difference, the later system is equivalent to

d

dt
ρ̃j− 1

2

(t) = 0,
d

dt
J̃j− 1

2

(t) =
1

εTS

(
aj− 1

2

· ρ̃j− 1

2

− J̃j− 1

2

(t)
)
,
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so ρ̃j− 1

2

is a constant, implying that aj− 1

2

is a constant, too. Then we can solve
exactly the second equation and get

J̃j− 1

2

(t+∆t) = aj− 1

2

ρ̃j− 1

2

+
(
J̃j− 1

2

(t)− aj− 1

2

ρ̃j− 1

2

)
e−∆t/εTS .

So, f̃+
j−1 := f̃+

j−1(t+∆t) and f̃−
j := f̃+

j (t+∆t) solve a linear algebraic system:





f̃+
j−1 + f̃−

j = f+
j−1 + f−

j ,

f̃+
j−1 − f̃−

j = aj− 1

2

(f+
j−1 + f−

j ) +
(
f+
j−1 − f−

j − aj− 1

2

(f+
j−1 + f−

j )
)
e−∆t/εTS .

After straightforward computations, a matrix formulation comes out:

(
f̃+
j−1

f̃−
j

)
= O∆t

j− 1

2

(
f+
j−1

f−
j

)
, (6.6)

where we used the notation,

O∆t
j− 1

2

=
1

2

(
1 + aj− 1

2

+ (1− aj− 1

2

)e−∆t/εTS (1 + aj− 1

2

)
(
1− e−∆t/εTS

)

(1− aj− 1

2

)
(
1− e−∆t/εTS

)
1− aj− 1

2

+ (1 + aj− 1

2

)e−∆t/εTS

)
.

Observe that when εTS → 0, it simply reduces to,

f̃+
j−1 =

1 + aj− 1

2

2

(
f+
j−1 + f−

j

)
, f̃−

j =
1− aj− 1

2

2

(
f+
j−1 + f−

j

)
. (6.7)

6.3. Complementary well-balanced (WB) discretization. In a second step,
we consider the right hand side part of (6.4) and solve

∂tf
± = ∓∂xf

± ± L(f±)

εWB

We proceed in the same way as in §4.1 so we will not repeat similar arguments.
Stationary equations at each interface xj− 1

2

, with incoming boundary conditions on

(xj−1, xj) read, in macroscopic variables,

ε∂xρ = aj− 1

2

ρ− J, ρ = f+ + f−, J = f+ − f−.

As usual, such an equation can be solved explicitly,

J = aj− 1

2

(ρj−1 − e
−a

j− 1
2

∆x/εWB
ρj

1− e
−a

j− 1
2

∆x/εWB

)
. (6.8)

Notations are now adapted to a definition of aj− 1

2

continuous across the interface:

cR =
aj− 1

2

1− e
a
j− 1

2

∆x/εWB
, cL =

aj− 1

2

1− e
−a

j− 1
2

∆x/εWB
, (6.9)

notice the difference with (4.5). Recombining, we derive a formulation similar to (3.4),

(
f+
j,L

f−
j−1,R

)
=

(
f+(∆x)
f−(0)

)
= S∆x

j− 1

2

(
f+
j−1

f−
j

)
,
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where, with the notations (4.5), the scattering matrix S∆x
j− 1

2

is identical to Sj− 1

2

, which

expression is given in (4.4), so the Godunov scheme is a slight variation of (3.5),

(
f+
j

f−
j−1

)n+1

=

(
f̃+
j

f̃−
j−1

)n

− ∆t

∆x



(

f̃+
j

f̃−
j−1

)n

− S∆x
j− 1

2

(
f̃+
j−1

f̃−
j

)n
 . (6.10)

From (6.9), one sees that, when εWB → 0,

cR → min(0, aj− 1

2

) ≤ 0 and cL → max(0, aj− 1

2

) ≥ 0,

and so the scheme (6.10) becomes, with f̃± given by (6.6),




f+,n+1
j = f̃+,n

j − ∆t
∆x

(
f̃+,n
j − f̃−,n

j

)
+ ∆t

∆x

(
2cR

1−cR+cL
f̃−,n
j + 2cL

1−cR+cL
f̃+,n
j−1

)
,

f−,n+1
j−1 = f̃−,n

j−1 − ∆t
∆x

(
f̃−,n
j−1 − f̃+,n

j−1

)
− ∆t

∆x

(
2cR

1−cR+cL
f̃−,n
j + 2cL

1−cR+cL
f̃+,n
j−1

)
.

(6.11)

6.4. Asymptotic behavior of the resulting scheme as ε → 0. Let,

J̃n
j− 1

2

=
2cR

1− cR + cL
f̃−,n
j +

2cL
1− cR + cL

f̃+,n
j−1 .

Proposition 6.1. When both εWB → 0 and εTS → 0, ∀j, n ∈ Z× N,

ρn+1
j− 1

2

=
(
1− ∆t

∆x

)
ρnj− 1

2

+
∆t

2∆x

(
ρnj−3/2 + ρnj+ 1

2

)
− ∆t

2∆x

(
anj+ 1

2

ρnj+ 1

2

− anj−3/2ρ
n
j−3/2

)
.

(6.12)

Proof. Letting εWB → 0 we deduce from the definitions (6.9) that

J̃n
j− 1

2

→
2min(0, aj− 1

2

)

1−min(0, aj− 1

2

) + (max(0, aj− 1

2

)
f̃−,n
j +

2max(0, (aj− 1

2

)

1−min(0, aj− 1

2

) + max(0, (aj− 1

2

)
f̃+,n
j−1 .

(6.13)
Then, letting εTS → 0 we use (6.7) to pass to the limit in (6.13),

J̃n
j− 1

2

→ min(0, aj− 1

2

)ρnj− 1

2

+max(0, aj− 1

2

)ρnj− 1

2

= aj− 1

2

ρnj− 1

2

. (6.14)

From (6.11), we deduce that at the limit ε → 0,

f+,n+1
j =

(
1− ∆t

∆x

)
f̃+,n
j +

∆t

∆x
f̃−,n
j +

∆t

∆x
aj− 1

2

ρnj− 1

2

,

f−,n+1
j−1 =

(
1− ∆t

∆x

)
f̃−,n
j−1 +

∆t

∆x
f̃+,n
j−1 − ∆t

∆x
aj− 1

2

ρnj− 1

2

,

and using (6.7),

f+,n+1
j =

(
1− ∆t

∆x

)
f̃+,n
j +

∆t

2∆x

(
1 + aj− 1

2

)
ρnj− 1

2

,

f−,n+1
j−1 =

(
1− ∆t

∆x

)
f̃−,n
j−1 +

∆t

2∆x

(
1− aj− 1

2

)
ρnj− 1

2

.

It easily follows that,

f+,n+1
j−1 =

(
1− ∆t

∆x

)
f̃+,n
j−1 +

∆t

2∆x

(
1 + aj−3/2

)
ρnj−3/2,

f−,n+1
j =

(
1− ∆t

∆x

)
f̃−,n
j +

∆t

2∆x

(
1− aj+ 1

2

)
ρnj+ 1

2

.
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Summing these equalities and recalling ρ̃n
j− 1

2

= ρn
j− 1

2

, gives the conclusion.

We recognize in (6.12) a Lax-Friedrichs discretization of the aggregation equation,
on a staggered grid, though, since it acts on the nodal variables ρn

j+ 1

2

as defined in

(6.5). From these discrete data (on each staggered interval (xj−1, xj)), a piecewise
constant approximation is built for which convergence toward the unique duality
solution of the aggregation equation was proved in [31], as ∆t ≤ ∆x → 0.

7. Numerical validations and benchmarks. In this Section, practical com-
parisons between previously introduced schemes for the simulation of both systems
(1.1)–(1.2) and (1.6) are achieved.

7.1. Concentrations in the two-stream chemotaxis model. The problem
is posed on a computational domain x ∈ (−2.5, 2.5) with an uniform Cartesian grid
of 28 nodes (the CFL restriction is taken as ∆t = 0.9∆x), ∆x ≃ 0.02. A regularized,
but sharply varying, Heaviside-type function reads a(x) = 2φ(x) = 2

π arctan(50x): it
satisfies the sub-characteristic condition (1.3), too. Initial data was chosen as,

ρ0(x) = e−10(x−1.25)2 + 0.8e−20x2

+ e−10(x+1)2 .

The kinetic equation (1.1) is complemented with specular reflection, whereas the ellip-
tic equation (1.2), with Neumann (zero-flux) boundary conditions. These parameters
correspond to the ones in [31], where a centered time-splitting scheme was set up,
that we intend to compare to ours. Before going into details, one may question the
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Fig. 7.1. Macroscopic density ρ with ε = 0.1 (left), ε = 0.005 (right): aggregates’ numerical
velocity are flawed when ε ≪ ∆x without a specific treatment.

importance of the careful treatment of nonconservative products that is advocated.
Especially (see e.g. [41]) the kinetic equation, for bounded tumbling kernel, propagates
in time the smoothness of its initial data. Hence, at the kinetic level, all quantities
involved are well-defined and there seems to be no nonconservative product. However,
to illustrate the importance of having a good definition of the macroscopic velocity
at the numerical level, even in this kinetic realm, the algorithm of §4 is implemented
with anj−1/2,L = anj−1/2,R = a

(
(Sn

j+1 − Sn
j )/∆x

)
: numerical results are displayed in

Figure 7.1. As previously observed by Twarogowska on a related model [40], the dy-
namics of ρ are correct for ε = 0.1 (left) but spurious for ε = 0.005 (right). Indeed, for
ε = 0.1, the macroscopic density forms a single aggregate in finite time. Oppositely,
when ε = 0.005, 3 aggregates quickly appear, but remain static and neither interact
nor glue altogether, as expected. In particular, there seems to be non continuity as
ε is decreased so that ε ≪ ∆x. Even in a kinetic setup, the concentration process
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is so strong that, without an appropriate (numerical) handling of nonconservative
products, numerical results are flawed, unless ∆x ≪ ε, an unacceptable restriction.
This is a consequence of the non-uniqueness of solution for the aggregation equation
when the nonconservative product is not defined correctly (we refer the reader to [30,
Section 5] where counter examples of uniqueness are given).

7.1.1. Comparison with centered time-splitting scheme. Numerical re-
sults obtained by means of the process described in §4 are now compared to the
ones obtained by the time-splitting scheme in [31], see Fig. 7.2 for ε = 10−5. The
top line of Fig. 7.2 displays the outcome of [31] with same parameters. As ex-

-0.060

0.287

0.633

0.980

1.327

1.673

2.020

2.367

2.713

3.060

-2.520 -1.960 -1.400 -0.840 -0.280 0.280 0.840 1.400 1.960 2.520

posit ion (x)

ti
m

e
 (

s)

8.2e-11

9

18

27

36

-40

-30

-20

-10

0

10

20

30

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

posit ion (x)

fl
u

x

-0.060

0.287

0.633

0.980

1.327

1.673

2.020

2.367

2.713

3.060

-2.520 -1.960 -1.400 -0.840 -0.280 0.280 0.840 1.400 1.960 2.520

posit ion (x)

ti
m

e
 (

s)

0

14

27

41

54

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

posit ion (x)

fl
u

x

Fig. 7.2. Macroscopic ρ (left) and J (right), ε = 10−5: time-split (top) and WB (bottom).

pected, the behavior of ρ is (roughly) the same for both numerical schemes. The
3 initial bumps quickly collapse into numerical Dirac masses. Then, dynamics af-
ter blowup see these 3 atoms aggregate into one. As noticed in [31] (see also [8] in
several dimensions), this suggests that two different time-scales co-exist: a first one
corresponding to initial blowups into individual atoms, and a second one, to these
atoms interacting with each other. Let us stress that our new algorithm produces
a stronger aggregation numerical process, as the maximal value of ρ is 54 instead of
36 for centered time-splitting. Moreover, a big difference shows up in the macro-
scopic flux J : at equilibrium, a comparison is displayed in Fig. 7.2 (right). For
the time-splitting algorithm, it varies strongly across the Dirac mass, whereas the
order of magnitude of the WB flux is ≃ 10−2. Yet, taking mirrored initial data, i.e.
ρ0(x) = e−10(x+1.25)2 +0.8e−20x2

+ e−10(x−1)2 , produces just opposite values (see Fig.

7.3). Other initial data, ρ0(x) = 1
2 (e

−10(x−0.7)2 + e−10(x+0.7)2), allows to generate an
equilibrium endowed with a macroscopic flux with an order of magnitude of 10−10

(see Fig. 7.4), which is remarkable. Boundary conditions probably have an influence
on J , even if the Dirac mass stabilizes far from the edges of the domain.



18 L. Gosse and N. Vauchelet

-0.060

0.287

0.633

0.980

1.327

1.673

2.020

2.367

2.713

3.060

-2.520 -1.960 -1.400 -0.840 -0.280 0.280 0.840 1.400 1.960 2.520

posit ion (x)

ti
m

e
 (

s)

0

14

27

41

54

-0.016

-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

posit ion (x)

fl
u

x

Fig. 7.3. Macroscopic density ρ (left) and flux J (right): mirror data and opposite fluxes.
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Fig. 7.4. Macroscopic density ρ (left) and flux J (right): WB scheme and symmetric data.

7.1.2. Hybrid scheme vs. time-splitting scheme. Figure 7.5 displays a
comparison between the hybrid scheme of §4 and the time-splitting one of [31]. Both
algorithms recover a Lax-Friedrichs kind of discretization when ε → 0. Then numeri-
cal diffusion is stronger than in previous subsection. Although the equilibrium flux is
piked with both schemes, numerical values for the hybrid algorithm are twice smaller.
Its CPU cost is lighter since no iterative resolution of a nonlinear problem involved.
More precisely the CPU time to obtain Fig. 7.5 (bottom) is 15 s, whereas the CPU
time to run the simulation on SciLab software of Fig. 7.2 (bottom) is 65.5 s. However,
even if we recover a similar dynamics for the macroscopic density, the hybrid scheme
cannot generate macroscopic fluxes of such high quality as in Fig. 7.4.

7.2. Numerical results for VPFP model. The computational domain in
space is now x ∈ (−4, 4) gridded with 28 nodes; for the discretization of the velocity
domain, a Gauss-Hermite quadrature rule is chosen, v1 =

√
κ with a weight ω1 =√

κπ/2. The time-step is such that v1∆t = 0.95∆x, ∆x = 1/32. Finally, θ = 1,
κ = 0.5 and the same iterative procedure (as described in Appendix A) to solve
iteratively the nonlinear problem is used. Fig. 7.6 displays the results obtained with
the initial data ρ0(x) = 1

2 (e
−5(x−2)2 + e−5(x+2)2) for ε = 0.1 (top) and for ε = 10−5

(bottom). The order of magnitude of the flux is 10−10, which is negligible; this
confirms that the well-balanced property is numerically satisfied, even in presence of
a Dirac atom in ρ. Theorem 2 states that, if ε ≪ 1, the field E approaches a solution
of Burgers-Hopf equation (2.5). Accordingly, to numerically check this property, it
is interesting to compare numerical results obtained with our algorithm with the
outcome of a standard Godunov scheme on the Burgers law. Such a comparison is
provided in Fig. 7.7, where 4 successive snapshots for ε = 10−5 ≪ ∆x are plotted: a
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Fig. 7.5. Macroscopic densities ρ (left) and fluxes J (right): centered (top), hybrid (bottom).
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Fig. 7.6. Macroscopic densities ρ (left), fluxes J (right) for ε = 0.1 (top), ε = 10−5 (bottom).

satisfying behavior is observed.

Finally, similar results are displayed in Fig. 7.8 and 7.9 where we chose a non-
symmetric initial data: ρ0(x) = 0.75e−5(x−1.5)2 + 0.4e−5(x+0.5)2 + 0.85e−5(x+2.5)2 . In
this numerical simulation we have taken ε = 10−5. The order of magnitude of the flux
at final time in Fig. 7.8-right is 10−6 which is very small, even in the presence of a
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Fig. 7.7. Comparison E = ∂xφ for ε = 10−5 vs. a Godunov scheme on Burgers equation (2.5).

Dirac delta in the density (see Fig. 7.8-left). A comparison with the Godunov scheme
for the Burgers-Hopf equation in Fig. 7.9 illustrates numerically the good behaviour
of the scheme when ε ≪ 1.

-0.04

1.75

3.54

5.33

7.12

8.91

10.71

12.50

14.29

16.08

-4.03 -3.14 -2.24 -1.34 -0.45 0.45 1.34 2.24 3.14 4.03

position (x)

tim
e 

(s
)

9.6e-15

8.9

18

27

36

-5.0e-07

0.0e+00

5.0e-07

1.0e-06

1.5e-06

2.0e-06

2.5e-06

3.0e-06

3.5e-06

-4 -3 -2 -1 0 1 2 3 4

position (x)

flu
x

Fig. 7.8. Macroscopic densities ρ (left), fluxes J (right) for ε = 10−5 with a non-symmetric
initial data.

8. Conclusion and outlook. We developped in this paper a new strategy to
deal with numerical resolution of two-stream kinetic models in strongly aggregative
setting. The main difficulty is due to the finite-time blow-up of solutions to the
limiting model, which involves the treatment of possible Dirac deltas at the limit.
This implies a nonconservative product which should be treated with care, here we
use a careful discretization of the Vol’pert calculus as explained in §4. We propose two
strategies, a hybrid scheme and a full well-balanced scheme. Although the full well-
balanced scheme has a large computational cost, it has the advantage to produce a
numerical flux of high quality even at the locations of Dirac deltas in the macroscopic
density.
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Fig. 7.9. Comparison E = ∂xφ for ε = 10−5 vs. a Godunov scheme on Burgers equation (2.5)
for a non symetric initial data.

A drawback inherent to the present study lies in its limitation to two-stream
kinetic models, for which the number of macroscopic and microscopic variables is
equal. For the VPFP model, such a reduction implies that the limiting macroscopic
velocity is only an hyperbolic tangent (see §5.2). Accordingly, the resulting numerical
process may underestimate this velocity for large fields E (or θ). This discrepancy
finds its origin into an Hermite quadrature involving only two discrete velocities. So,
it appears logical to try to extend our present results toward continuous (at least,
larger) velocity models for which strong aggregation occurs, see e.g. [13, 17, 20, 39].
Relying either on “Caseology” methods [1] or on approximations [21, §10.3-4], it is
still possible to derive scattering matrices Sn

j− 1

2

and to set up a scheme of the form

(3.5). However, such a roadmap will again prove inefficient if confronted to strong
confinement and its corresponding singular limits (for which nonconservative products
appear), as illustrated on Fig.7.1.
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Appendix A. Nonlinear iterative process. The algorithm, described in §4,
involves the resolution of a nonlinear problem. Let us assume that (f+

j,n)j and (f−
j,n)j

are known at time tn. Then, at time tn+1, the distribution functions are computed
thanks to (3.5) with the scattering matrix (4.4)-(4.5), provided the macroscopic ve-
locities anj−1/2,L/R are known. To do so, we implement the following process:

1. For (Sj− 1

2
,L)j and (Sj− 1

2
,R)j given, aj− 1

2
,L and aj− 1

2
,R are computed thanks

to the relations (4.12) and (4.13) respectively.
2. Then with (4.5) and (4.9)-(4.10), right/left densities (ρj− 1

2
,L)j and (ρj− 1

2
,R)j

are computed.
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3. Solving Poisson equation (4.11) yields updated values (S̃j− 1

2
,L)j , (S̃j− 1

2
,R)j .

4. Let the error be ǫ = ‖Sj− 1

2
,L − S̃j− 1

2
,L‖∞ + ‖Sj− 1

2
,R − S̃j− 1

2
,R‖∞. While

this quantity is bigger than a threshold value ǫr, we set Sj− 1

2
,L = S̃j− 1

2
,L,

Sj− 1

2
,R = S̃j− 1

2
,R and come back to step 1. In our examples, ǫr = 10−3.

5. If the error ǫ is less than ǫr, we set Sn
j− 1

2
,L

= S̃j− 1

2
,L, Sn

j− 1

2
,R

= S̃j− 1

2
,R,

and compute an
j− 1

2
,L/R

with (4.12) and (4.13). Then (f+
j,n+1)j and (f−

j,n+1)j

follow with (3.5) where the scattering matrix is given by (4.4)-(4.5)

REFERENCES

[1] R.E. Aamodt, K.M. Case, Useful identities for half-space problems in linear transport theory,
Ann. Physics 21 (1963) 284–301.

[2] D. Amadori, L. Gosse, Stringent error estimates for one-dimensional, space-dependent 2×2 re-
laxation systems, Ann. IHP (C) Nonlinear Anal. (2015), DOI: 10.1016/j.anihpc.2015.01.001

[3] A.L. Bertozzi, J.A. Carrillo, T. Laurent, Blow-up in multidimensional aggregation equation
with mildly singular interaction kernels, Nonlinearity 22 (2009), 683–710.

[4] F. Bouchut, F. James, One-dimensional transport equations with discontinuous coefficients,
Nonlinear Analysis TMA, 32 (1998), no 7, 891–933.

[5] G. Bretti, R. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: a
numerical study, ESAIM: M2AN 48 231–258 (2014).

[6] M.A. Burschka, U.M. Titulaer; The Kinetic Boundary Layer for the Fokker-Planck Equation:
A Brownian Particle in a Uniform Field. Physica 112A, 315–330 (1982).

[7] J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepčev, Global-in-time weak measure
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