
HAL Id: hal-01233213
https://hal.science/hal-01233213

Submitted on 24 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semiclassical Dynamics with Exponentially Small Error
Estimates

George A. Hagedorn, Alain Joye

To cite this version:
George A. Hagedorn, Alain Joye. Semiclassical Dynamics with Exponentially Small Error Estimates.
Communications in Mathematical Physics, 1999, 207 (2), pp.439-465. �10.1007/s002200050732�. �hal-
01233213�

https://hal.science/hal-01233213
https://hal.archives-ouvertes.fr


Semiclassical Dynamics with Exponentially Small Error

Estimates

George A. Hagedorn∗

Department of Mathematics and

Center for Statistical Mechanics and Mathematical Physics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061-0123, U.S.A.

Alain Joye†

Institut Fourier
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Abstract

We construct approximate solutions to the time–dependent Schrödinger equation

i h̄
∂ψ

∂t
= − h̄2

2
∆ψ + V ψ

for small values of h̄. If V satisfies appropriate analyticity and growth hypotheses
and |t| ≤ T , these solutions agree with exact solutions up to errors whose norms are
bounded by

C exp {− γ/h̄ } ,
for some C and γ > 0. Under more restrictive hypotheses, we prove that for sufficiently
small T ′, |t| ≤ T ′ | log(h̄)| implies the norms of the errors are bounded by

C ′ exp
{
− γ′/h̄σ

}
,

for some C ′, γ′ > 0, and σ > 0.
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1 Introduction

In this paper, we construct exponentially accurate semiclassical approximations ψ(x, t, h̄) to
certain normalized exact solutions Ψ(x, t, h̄) of the d–dimensional time–dependent Schröd-
inger equation

i h̄
∂Ψ

∂t
= − h̄2

2
∆Ψ + V Ψ. (1.1)

More precisely, our main result is that for |t| ≤ T and small values of h̄, these approximations
satisfy error estimates of the form

‖ψ(x, t, h̄) − Ψ(x, t, h̄) ‖L2(IRd) ≤ C exp {− γ/h̄ } , (1.2)

where γ > 0.
Our construction of ψ(x, t, h̄) is technically complicated, but quite explicit. It uses a

particular collection of semiclassical wave packets {ϕj(A, B, h̄, a, η, · ) } that are defined
in [6], [7], and the next section. Here A and B are d × d complex matrices that satisfy
certain conditions. The quantities a and η are elements of IRd. For fixed A, B, h̄, a, and η,
{ϕj(A, B, h̄, a, η, · ) } is an orthonormal basis of L2(IRd) as j ranges over all d-dimensional
multi-indices.

The function ϕj(A, B, h̄, a, η, · ) is concentrated near position a, and its Fourier trans-
form is concentrated near momentum η. Its position and momentum uncertainties are pro-
portional to

√
h̄. The position uncertainty is determined by the matrix |A| =

√
AA∗, and

the momentum uncertainty is determined by |B| =
√
BB∗.

We construct ψ(x, t, h̄) by applying the idea of “optimal truncation” of an asymptotic
expansion. For initial conditions of the form

Ψ(x, 0, h̄) =
∑

|j|≤J

cj ϕj(A(0), B(0), h̄, a(0), η(0), x), (1.3)

with
∑

|j|≤J |cj |2 = 1, there exist ([5], [6]) approximate solutions

ψl(x, t, h̄) = eiS(t)/h̄
∑

|j|≤J̃(l)

cj(l, t, h̄)ϕj(A(t), B(t), h̄, a(t), η(t), x), (1.4)

that satisfy

sup
t∈[−T,T ]

‖ψl(x, t, h̄)−Ψ(x, t, h̄)‖L2(IRd) ≤ C(l) hl/2 (1.5)

for some constant C(l). Here J̃(l) = J + 3l − 3, and A(t), B(t), a(t), η(t), and S(t) are
solutions to the classical equations of motion

ȧ(t) = η(t),

η̇(t) = −∇V (a(t)),

Ȧ(t) = i B(t), (1.6)

Ḃ(t) = i V (2)(a(t))A(t),

Ṡ(t) =
η(t)2

2
− V (a(t)),
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where V (2) denotes the Hessian matrix for V , and the initial conditions A(0), B(0), a(0),
η(0), and S(0) = 0 satisfy

At(0)B(0) − Bt(0)A(0) = 0, (1.7)

A∗(0)B(0) + B∗(0)A(0) = 2 I. (1.8)

The cj(l, t, h̄) satisfy a linear system of ordinary differential equations that we describe in
the next section.

We carefully estimate the l–dependence of C(l) in (1.5). Then, for each h̄, we choose l(h̄)
to minimize the error C(l(h̄)) h̄l(h̄)/2 over all choices of l. It turns out that l(h̄) behaves like
a constant times 1/h̄. We define ψ(x, t, h̄) = ψl(h̄)(x, t, h̄) and prove that (1.2) is satisfied.

For t in a fixed compact interval, the precise statement of our results is the following:

Theorem 1.1 Suppose V is a real-valued function on IRd that is bounded below and has an
analytic continuation to the set

D = { z ∈ ICd : |Im zj | < δ, j = 1, 2, · · · , d }. (1.9)

Suppose further that there exist M > 0 and τ > 0, such that

| V (z) | ≤ M exp(τ |z|2), for all z ∈ D, (1.10)

where |z|2 =
∑d

j=1 |zj |2. Suppose initial conditions A(0), B(0), a(0), η(0), S(0) = 0, and
cj for |j| ≤ J are specified that satisfy (1.7) and

∑
|j|≤J |cj |2 = 1. Then for any T > 0,

there exist C and γ > 0, such that the difference between the semiclassical approximation
ψ(x, t, h̄) and the exact solution Ψ(x, t, h̄) to the Schrödinger equation (1.1) with initial
condition (1.3) satisfies

‖ψ(x, t, h̄) − Ψ(x, t, h̄) ‖L2(IRd) ≤ C exp {− γ/h̄ } ,

whenever |t| ≤ T .

Remarks 1. Theorem 1.1 can be generalized to allow time–dependent potentials. For
example, suppose a potential V (x, t) depends smoothly on t, is bounded below, and satisfies

1

m!
|DmV (x, t))| ≤ M exp(τ |x|2)

δ|m|
,

for |t| ≤ T for all multi-indices m. Suppose further that a classical solution (a(t), η(t)) to
Newton’s equations with potential V (x, t) is bounded for |t| ≤ T . Then the conclusion to
Theorem 1.1 holds.

2. Our results can also be extended to obtain weaker error estimates of the form
C exp {− γ/h̄σ } for some σ ∈ (0, 1), when the potential belongs to a Gevrey class.

3. Theorem 1.1 is optimal in the sense that the conclusion fails if the hypotheses are relaxed
slightly. For example, consider the one-dimensional potential V (x) = exp(−1/xu), for x > 0,
and V (x) = 0 for x ≤ 0, where u > 0. It is shown in [8] that this potential belongs to the
Gevrey class of order 1 + 1/u. For initial conditions a(0) = 0, η(0) = 0, A(0) = B(0) = 1,
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S(0) = 0, and cj(0) = δj,0, our approximation yields ϕ0(1 + it, 1, h̄, 0, 0), for all times. This
function is very simple, and we can write the error term explicitly. By steepest descent
analysis, we can show that there exist δ > 0 and Σ1 > Σ2 > 0, such that t ∈ (0, h̄δ) implies

exp(−Σ1/h̄
u/(1+u)) ≤ ‖ e−itH(h̄)/h̄ ϕ0(1, 1, h̄, 0, 0, ·) − ϕ0(1 + it, 1, h̄, 0, 0, ·) ‖

≤ exp(−Σ2/h̄
u/(1+u)).

Note also that if we choose a(0) = −a < 0 and η(0) = η > 0, it is easy to check that the
error term is O(exp(−γ/h̄)), for each t < a/η.

4. For all practical purposes, we can replace the cj ’s by the corresponding Dyson expansion
up to order l(h̄) (see (2.26)–(2.28)) without spoiling our exponential estimate. The normal-
ization of the approximation, however, will be lost.

5. One cannot expect to get better agreement with the exact solution when constructing an
approximation using wave packets associated with a single classical path. Such wave packets
do not describe tunneling, which is an exponentially small effect in h̄.

Theorem 1.1 can also be generalized to allow time intervals that grow like | log(h̄)| as h̄
tends to zero. However, we obtain a somewhat weaker conclusion. Our precise results are
summarized by the following theorem.

Theorem 1.2 Suppose V is bounded below and analytic in

D = { z ∈ ICd : |Im zj | < δ, j = 1, 2, · · · , d }. (1.11)

Suppose further that there exist M > 0 and τ > 0, such that

| V (z) | ≤ M exp(τ |z|), for all z ∈ D. (1.12)

Suppose initial conditions A(0), B(0), a(0), η(0), S(0) = 0, and cj for |j| ≤ J are specified
that satisfy (1.7) and

∑
|j|≤J |cj|2 = 1, and further assume there exist N > 0 andλ > 0, such

that

‖A(t)‖ ≤ N exp(λ|t|). (1.13)

Then for sufficiently small T ′ > 0, there exist C ′, γ′ > 0, and σ > 0, such that the difference
between the semiclassical approximation ψ(x, t, h̄) and the exact solution Ψ(x, t, h̄) to the
Schrödinger equation (1.1) with initial condition (1.3) satisfies

‖ψ(x, t, h̄) − Ψ(x, t, h̄) ‖L2(IRd) ≤ C ′ exp {− γ′/h̄σ } ,

whenever |t| ≤ T ′ | log(h̄)|.

Remark Standard existence and uniqueness theorems for systems of ODE’s show that
condition (1.13) is satisfied if the norm of the Hessian V (2)(a(t)) is uniformly bounded. That
is the case if V is the sum of a quadratic polynomial plus an analytic function bounded on
D. It is also the case if E denotes the energy of the considered trajectory and ‖V (2)(x)‖
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is bounded on the connected component of the classically allowed region DE = {x ∈ IRd :
V (x) ≤ E} that contains a(t). This is satisfied for all confining potentials.

It is easily deduced from the proof that if τ can be chosen arbitrarily small, then we can
take T ′ = (1

6
− ǫ) 1

λ
with ǫ arbitrarily small. This yields exponential control over the same

time intervals as in [3].

The propagation of coherent states is also considered by Combescure and Robert in [3],
see also [9], using an approximation given by a linear combination of squeezed states. (The
squeezed states coincide with our semiclassical wave packets, although the notation is quite
different.) Their emphasis is on the long time behavior of this approximation. The bound
on the error term is of the form Cl(t)h̄

l/2, with explicit control of the time-dependence of
Cl(t) in terms of classical quantities. The l behavior is however not investigated.

Results of a flavor similar to ours can be found in the work of Yajima [12]. They are
obtained by means of the pseudo-differential techniques developed in the analytic context
by Sjöstrand in [10]. These results concern the propagation of wave packets of the form
ϕ(x) = eiS(x)/h̄f(x), where S is analytic and f belongs to the set of compactly supported
Gevrey functions of order s > 1. Assuming the potential V is analytic, Yajima constructs
approximations to the actual evolution of such wave packets that are valid up to an error,
whose L2(IRd) norm is of order e−γ/h̄1/(2s−1)

, with γ > 0 (see Theorems 1.2, 1.2 and Lemma
2.5 in [12]). However, it should be possible to make use of the theory [10] to recover our
results.

Similar issues have been dealt with by Bambusi, Graffi and Paul in [2]. They focus on
the validity for large times of the semiclassical approximation of the Heisenberg evolution of
a smooth observable, under analyticity assumptions on the hamiltonian. They prove that
the semiclassical approximation remains useful for times up to order | ln(h̄)|, the Ehrensfest
time scale. However, the Hamiltonians they can accomodate consist more or less of analytic
perturbations of the harmonic oscillator that decay as x and p tend to infinity.

The paper is organized as follows: In the Section 2, we prove Theorem 1.1 under the
assumption that two types of error terms satisfy certain bounds. We prove the two required
bounds in Sections 3 and 4. In Section 5 we describe the proof of Theorem 1.2.

2 Proof of Theorem 1.1

We begin this section by presenting the definition of the semiclassical wave packets
ϕj(A, B, h̄, a, η, x) that is given in [7]. A more explicit, but more complicated definition is
given in [6]. Since [7] provides a detailed discussion of these wave packets, we do not prove
all their properties here.

We adopt the standard multi-index notation. A multi-index j = (j1, j2, . . . , jd) is a
d-tuple of non-negative integers. We define |j| = ∑d

k=1 jk, j! = (j1!)(j2!) · · · (jd!),

xj = xj11 x
j2
2 · · ·xjdd , and Dj =

∂|j|

(∂x1)j1(∂x2)j2 · · · (∂xd)jd
.

Throughout the paper we assume a ∈ IRd, η ∈ IRd and h̄ > 0. We also assume that A
and B are d× d complex invertible matrices that satisfy

AtB − BtA = 0, (2.1)
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A∗B + B∗A = 2 I. (2.2)

These conditions guarantee that both the real and imaginary parts of BA−1 are symmetric.
Furthermore, ReBA−1 is strictly positive definite, and (ReBA−1 )

−1
= AA∗. We note that

conditions (2.1) and (2.2) are preserved under the dynamics generated by (1.6).
Our definition of ϕj(A, B, h̄, a, η, x) is based on the following raising operators that are

defined for m = 1, 2, . . . , d.

Am(A,B, h̄, a, η)
∗ =

1√
2h̄

[
d∑

n=1

Bnm (xn − an) −
d∑

n=1

Anm (−ih̄∂
∂xn

− ηn)

]
.

Definition For the multi-index j = 0, we define the normalized complex Gaussian wave
packet (modulo the sign of a square root) by

ϕ0(A, B, h̄, a, η, x) = π−d/4 h̄−d/4 (det(A))−1/2

× exp
{
−〈 (x− a), B A−1 (x− a) 〉/(2h̄) + i 〈 η, (x− a) 〉/h̄

}
. (2.3)

Then, for any non-zero multi-index j, we define

ϕj(A, B, h̄, a, η, · ) =
1√
j!

(A1(A,B, h̄, a, η)
∗)j1 (A2(A,B, h̄, a, η)

∗)j2 · · ·

× (Ad(A,B, h̄, a, η)
∗)jd ϕ0(A ,B, h̄, a, η, · ).

Remarks 1. For A = B = I, h̄ = 1, and a = η = 0, the ϕj(A, B, h̄, a, η, · ) are just the
standard Harmonic oscillator eigenstates with energies |j|+ d/2.

2. For each A, B, h̄, a, and η, the set {ϕj(A, B, h̄, a, η, · ) } is an orthonormal basis for
L2(IRd).

3. The raising operators can also be given by another formula that was omitted from [7] in
the multi-dimensional case. If we set

g(A, B, h̄, a, x) = exp
{
−〈 (x− a),

(
BA−1

)∗
(x− a) 〉/(2h̄) − i 〈 η, (x− a) 〉/h̄

}
,

then we have

(Am(A,B, h̄, a, η)
∗ ψ ) (x) = −

√
h̄

2

1

g(A, B, h̄, a, x)

d∑

n=1

Anm
∂

∂xn
( g(A, B, h̄, a, x)ψ(x) ) .

4. In [6], the state ϕj(A, B, h̄, a, η, x) is defined as a normalization factor times

Hj(A; h̄
−1/2 |A|−1 (x− a)) ϕ0(A, B, h̄, a, η, x).

Here Hj(A; y) is a |j|th order polynomial in y that depends on A only through UA, where
A = |A|UA is the polar decomposition of A.

5. By the argument on page 370 of [6] or by scaling out the |A| and h̄ dependence and
using Remark 3 above, one can show that Hj(A; y) e

−y2/2 is an (unnormalized) eigenstate of
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the usual Harmonic oscillator with energy |j|+ d/2.

6. When the dimension d is 1, the position and momentum uncertainties of the

ϕj(A, B, h̄, a, η, · ) are
√
(j + 1/2)h̄ |A| and

√
(j + 1/2)h̄ |B|, respectively. In higher dimen-

sions, they are bounded by
√
(|j|+ d/2)h̄ ‖A‖ and

√
(|j|+ d/2)h̄ ‖B‖, respectively.

7. When we approximately solve the Schrödinger equation, the choice of the sign of the
square root in the definition of ϕ0(A, B, h̄, a, η, · ) is determined by continuity in t after an
arbitrary initial choice.

The proof of the theorem depends on the following abstract lemma, whose proof is an
easy application of Duhamel’s formula (see e.g. [7]).

Lemma 2.1 Suppose H(h̄) is a family of self-adjoint operators for h̄ > 0. Suppose ψ(t, h̄)
belongs to the domain of H(h̄), is continuously differentiable in t, and approximately solves
the Schrödinger equation in the sense that

i h̄
∂ψ

∂t
(t, h̄) = H(h̄)ψ(t, h̄) + ξ(t, h̄), (2.4)

where ξ(t, h̄) satisfies

‖ ξ(t, h̄) ‖ ≤ µ(t, h̄). (2.5)

Then, for t > 0,

‖ e−itH(h̄)/h̄ ψ(0, h̄) − ψ(t, h̄) ‖ ≤ h̄−1
∫ t

0
µ(s, h̄) ds. (2.6)

The analogous statement holds for t < 0.

Because V is smooth and bounded below, there exist global solutions to the first two
equations of the system (1.6) for any initial condition. It then follows immediately that the
remaining three equations of the system (1.6) have global solutions. Furthermore, it is not
difficult ([5], [6]) to prove that (2.1) and (2.2) are preserved by the flow.

As mentioned in the introduction, it is proved in [5] and [6] that initial conditions of the
form (1.3) give rise to approximate solutions of the form

ψl(x, t, h̄) = eiS(t)/h̄
∑

|j|≤J̃(l)

cj(l, t, h̄)ϕj(A(t), B(t), h̄, a(t), η(t), x),

with errors whose norms are of order h̄l/2. Here J̃(l) = J +3l− 3, and A(t), B(t), a(t), η(t),
and S(t) satisfy (1.6). The coefficients cj(l, t, h̄) satisfy the linear system

i h̄ ċk(l, t, h̄) =
∑

|j|≤J̃(l)

Kk j(l, t, h̄) cj(l, t, h̄), |k| = 0, 1, . . . , J̃(l), (2.7)

with initial conditions cj(l, 0, h̄) = cj, for |j| ≤ J in accordance with (1.3) and cj(l, 0, h̄) = 0
for |j| > J .
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To specify the (J +3l− 2)× (J +3l− 2) matrix K(l, t, h̄) that appears in (2.7), we first
decompose the potential as

V (x) = Wa(x) + Za(x) ≡Wa(x) + (V (x)−Wa(x)), (2.8)

where Wa(x) denotes the second order Taylor approximation (with the obvious abuse of
notation)

Wa(x) ≡ V (a) + V (1)(a) (x− a) + V (2)(a) (x− a)2/2, (2.9)

Next (reverting to multi-index notation), we approximate Za(x) by its Taylor approximation
of order l + 1,

Z [l]
a (x) =

∑

3≤|m|≤l+1

(DmV )(a)

m!
(x− a)m, (2.10)

and define the infinite matrix

K̃k j(l, t, h̄) =

〈ϕk(A(t), B(t), h̄, a(t), η(t), x), Z
[l]
a(t)(x)ϕj(A(t), B(t), h̄, a(t), η(t), x) 〉. (2.11)

Then, we obtain the matrix K(l, t, h̄) from K̃(l, t, h̄) by restricting the indices to |j| ≤ J̃(l)
and |k| ≤ J̃(l).

The general strategy [5], [6], [7] to show that ψl(x, t, h̄) is an approximation to the actual
solution Ψ(x, t, h̄) of (1.1) and (1.3) up to order h̄l/2 is as follows: From [7], we know that
for all multi-indices j,

i h̄
∂

∂t

[
eiS(t)/h̄ ϕj(A(t), B(t), h̄, a(t), η(t), x)

]

=

(
− h̄2

2
∆ + Wa(t)(x)

) [
eiS(t)/h̄ ϕj(A(t), B(t), h̄, a(t), η(t), x)

]
. (2.12)

Thus, the ϕj take into account the kinetic energy and Wa(t)(x) parts of the Hamiltonian.
Next, we expand the exact solution as

Ψ(x, t, h̄) =
∑

j

bj(h̄, t) e
iS(t)/h̄ ϕj(A(t), B(t), h̄, a(t), η(t), x),

where the bj(h̄, t) satisfy an infinite linear system of ordinary differential equations whose
matrix is obtained from the Za(t)(x) term in the Hamiltonian. In that system, we make a first

approximation by replacing the function Za(t)(x) by its Taylor approximation Z
[l]
a(t)(x). This

yields an infinite linear system whose matrix is K̃(l, t, h̄). Its entries are time dependent
polynomials in h̄1/2 of order l − 1. We make a second approximation by truncating the
infinite system to obtain (2.7) that is satisfied by the cj(l, t, h̄). The result (1.5) is proved
by using Lemma 2.1 to show that the errors generated by the Taylor approximation and the
truncation approximation are of order h̄l/2.
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As described in the introduction, we construct the exponentially accurate approximate
solution ψ(x, t, h̄) = ψl(h̄)(x, t, h̄), by keeping track of the l–dependence of C(l) in (1.5)
and then choosing l(h̄) in order to minimize the error.

In the remainder of this section, we prove Theorem 1.1 under the assumption that the
following three technical lemmas are true. We prove the first lemma in Section 3. It estimates
errors that arise from our replacement of Za(t)(x) by Z

[l]
a(t)(x). The second and third lemmas

are proved in Section 4. They bound certain matrix elements and combinatorial quantities
that arise from the truncation approximation discussed above.

Lemma 2.2 Suppose V satisfies the hypotheses of Theorem 1.1, |m| = l+2, J̃(l) = J+3l−3,
and

ψl(x, t, h̄) = eiS(t)/h̄
∑

|j|≤J̃(l)

cj(l, t, h̄)ϕj(A(t), B(t), h̄, a(t), η(t), x),

with
∑

|j|≤J̃(l)
|cj(l, t, h̄)|2 = 1.

Let ζ(x, a(t)) = (a(t) + θx,a(t)(x− a(t))) ∈ IRd, with θx,a(t) ∈ (0, 1). There exist constants g0
and g1, that depend on d and J only, such that for sufficiently small h̄,

∥∥∥∥∥
DmV (ζ(x, a(t)))

m!
(x− a(t))m ψl(·, t, h̄)

∥∥∥∥∥

≤ g0M exp(4τ(δ2d+ a(t)2))
(
g1
√
h̄(l + 2) ‖A(t)‖/δ

)l+2

. (2.13)

Lemma 2.3 We define the infinite matrix

X̃m
j k(t, h̄) =

〈ϕj(A(t), B(t), h̄, a(t), η(t), ·), (x− a(t))m ϕk(A(t), B(t), h̄, a(t), η(t), ·) 〉, (2.14)

and then define the finite matrix Xm(l, t, h̄) from X̃m(t, h̄) by restricting its indices to

|j| ≤ J̃(l) and |k| ≤ J̃(l). Then, Xm
j k(l, s, h̄) = 0 and X̃m

j k(s, h̄) = 0 if

∣∣∣∣|j| − |k|
∣∣∣∣ > |m| and,

for each N > 0, there exists D(N) <∞, such that

sup
|k| ≤ J̃(l)

J̃(l) + 1 ≤ |j| ≤ J̃(l) + l + 1

∣∣∣∣
(
X̃m0(t0, h̄)X

m1(l, t1, h̄)X
m2(l, t2, h̄) · · ·Xmq(l, tq, h̄)

)
j k

∣∣∣∣

≤
(
D(N)

√
h̄ J̃(l) sup

t∈{t0,t1,t2,···tq}
‖A(t)‖

)|m0|+|m1|+|m2|···+|mq |

, (2.15)

for any collection m0, m1, . . . , mq of multi-indices that satisfy |mj|/J̃(l) ≤ N .

Lemma 2.4 We define

Fp(n, q) =
∑

1 ≤ |m1|, |m2|, · · · , |mq| ≤ p
|m1|+ |m2|+ · · ·+ |mq| = n

1 (2.16)
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to be the number of distinct sets {m1, m2, . . . , mq }, where each mj is a d–dimensional
multi-index with 1 ≤ |mj| ≤ p and |m1| + |m2| + · · · + |mq| = n. We note that Fp(n, q) is
zero unless q ≤ n ≤ qp. Suppose that a function Lq(l) satisfies

Lq(l) ≤ Cq
1

h̄q q!

q(l+1)∑

n=3l−2

(C2h̄l)
n/2 Fl+1(n, q), (2.17)

where C1 and C2 are constants. Let [[α ]] denote the greatest integer less than or equal to α.
Then there exists g∗ > 0, such that for any g ∈ (0, g∗), there exist positive constants C3, γ1,
and h̄∗, that depend only on g, C1, and C2, such that

0 < h̄ < h̄∗, l(h̄) = [[ g/h̄ ]], and 2 ≤ q ≤ l(h̄) + 2 (2.18)

imply

Lq(l(h̄)) ≤ C3 exp {− γ1/h̄ } . (2.19)

Proof of Theorem 1.1: We define ψl(x, t, h̄) by (1.4), where the cj(l, t, h̄) are determined
by the system (2.7) and initial conditions described above.

To apply Lemma 2.1 we define

ξl(x, t, h̄) = i h̄
∂

∂t
ψl(x, t, h̄) −

(
− h̄2

2
∆ + V (x)

)
ψl(x, t, h̄). (2.20)

By using (2.12), we see that this can be decomposed as a sum of two terms,

ξ
(1)
l (x, t, h̄) =

(
Z

[l]
a(t)(x) − Za(t)(x)

)
ψl(x, t, h̄) (2.21)

and

ξ
(2)
l (x, t, h̄) = −P

{|j|≥J̃(l)}
Z

[l]
a(t)(x)ψl(x, t, h̄), (2.22)

where P{|j|≥l+2} is the orthogonal projection onto the span of the set
{ϕj(A(t), B(t), h̄, a(t), η(t), · ) : |j| ≥ l + 2 }.

By the standard Taylor series error formula,

Za(t)(x) − Z
[l]
a(t)(x) =

∑

|m|=l+2

DmV (ζ(x, a(t)))

m!
(x− a(t))m,

for some ζ(x, a) = (a+ θx,a(x− a)), with θx,a ∈ (0, 1). Thus, by the crude estimate

∑

|m|=n

1 ≤
∑

|m|≤n

1 ≤
d∑

j=1

∑

mj≤n

1

= (n+ 1)d = ed ln(n+1) ≤
(
ed
)n
, (2.23)
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and Lemma 2.2, we obtain
∥∥∥ ξ(1)l (·, t, h̄)

∥∥∥

≤
∑

|m|=l+2

∥∥∥∥∥
DmV (ζ(x, a(t)))

m!
(x− a(t))m ψl(·, t, h̄)

∥∥∥∥∥

≤ g0M exp(4τ(δ2d+ a(t)2))
(
g1
√
h̄(l + 2) ‖A(t)‖/δ

)l+2 (
ed
)l+2

.

Thus, there exist constants C4 and C5, such that |t| ≤ T implies

∥∥∥ ξ(1)l (·, t, h̄)
∥∥∥ ≤ C4

(
C5

√
h̄(l + 2)

)l+2

. (2.24)

The quantity ξ
(2)
l (·, t, h̄) satisfies

〈ϕj(A(t), B(t), h̄, a(t), η(t), x), ξ
(2)
l (x, t, h̄) 〉 = 0, if

{
0 ≤ |j| ≤ J̃(l) or
|j| > J̃(l) + l + 1,

and

〈ϕj(A(t), B(t), h̄, a(t), η(t), x), ξ
(2)
l (x, t, h̄) 〉 =

∑

|k|≤J̃(l)

〈ϕj(A(t), B(t), h̄, a(t), η(t), x), Z
[l]
a(t)(x)ϕk(A(t), B(t), h̄, a(t), η(t), x) 〉 ck(t)

= (K̃(t) c(t))j, if J̃(l) < |j| ≤ J̃(l) + l + 1, (2.25)

where we denote the cj(l, t, h̄) collectively by the vector c(l, t, h̄). We easily verify these

facts by using (2.7), (2.11), (2.12) and Lemma 2.3. To estimate the norm of ξ
(2)
l (·, t, h̄), we

use the Dyson expansion with remainder to decompose

c(l, t, h̄) =
l∑

q=0

c
q(l, t, h̄) + r(l, t, h̄), (2.26)

where (dropping some arguments)

c
q(t) =

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sq−1

0
dsq(ih̄)

−qK(s1)K(s2) · · ·K(sq) c(0), (2.27)

and

r(t) =
∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sl

0
dsl+1(ih̄)

−(l+1)K(s1)K(s2) · · ·K(sl+1) c(sl+1). (2.28)

Using (2.11), (2.10), and (2.14), we see that each c
q(l, t, h̄) is of order h̄q/2 and that r(l, t, h̄)

is of order h̄(l+1)/2.
To estimate the norm of ξ

(2)
l (·, t, h̄) we study the jth component of K̃(t)c(l, t, h̄), with

|j| > J̃(l). Because of (2.26), this coefficient is a sum of two types of terms: those that arise
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from c
q(l, t, h̄) and those that arise from r(l, t, h̄). Using (2.10), we expand K(l, t, h̄) in

(2.27) and (2.28) and K̃(l, t, h̄) in terms of Xm(l, t, h̄) and X̃m(t, h̄), to obtain

K̃(t)cq(t) = (ih̄)−q
(l+1)(q+1)∑

n=3(q+1)

∑

m0,m1, m2, · · · ,mq

|m0|+ |m1|+ · · ·+ |mq| = n
3 ≤ |mj | ≤ l+ 1

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sq−1

0
dsq

Dm0V (a(t))Dm1V (a(s1)) · · ·DmqV (a(sq))

m0!m1!m2! · · ·mq!

× X̃m0(t)Xm1(s1)X
m2(s2) · · ·Xmq(sq) c(0), (2.29)

and

K̃(t)r(t) = (ih̄)−(l+1)
(l+1)(l+2)∑

n=3(l+2)

∑

m0,m1, m2, · · · ,ml+1

|m0|+ |m1|+ · · ·+ |ml+1| = n
3 ≤ |mj | ≤ l + 1

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sl

0
dsl+1

Dm0V (a(t))Dm1V (a(s1)) · · ·Dml+1V (a(sl+1))

m0!m1!m2! · · ·ml+1!

× X̃m0(t)Xm1(s1)X
m2(s2) · · ·Xml+1(sl+1) c(sl+1). (2.30)

The values of mj that occur in both (2.29) and (2.30) satisfy

|mj|/J̃(l) ≤ (l + 1)/(3l − 3) ≤ 1, (2.31)

as long as l ≥ 3. So, we can apply Lemma 2.3 with N = 1.

Recall that Xm
j k(l, s, h̄) = 0 and X̃m

j k(s, h̄) = 0 if
∣∣∣∣|j|− |k|

∣∣∣∣ > |m|. Since ck(0) is non-zero
only for |k| ≤ J , and we need only consider the jth coefficient of K̃(t)c(t) for |j| > J̃(l), the
only relevant values of n in (2.29) must satisfy

n ≥ 3l − 2. (2.32)

This condition is also satisfied for all values of n in (2.30), since the sum begins with n = 3l+6.
To use the analyticity assumptions to get estimates on the derivatives of V , we define

Cδ(x) = {z ∈ ICd : zj = xj + δeiθj , θj ∈ [0, 2π), j = 1, 2, · · · , d}.

If z ∈ Cδ(a(t)), then, for all j = 1, 2, · · · , d,

|zj| ≤ δ + |aj(t)|.

Hence, writing
1

m!
DmV (a(t)) as a d–dimensional Cauchy integral, we get the bound

1

m!
|DmV (a(t))| ≤

supz∈Cδ(a(t))
|V (z)|

δ|m|
≡ v(t)

δ|m|
(2.33)
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where
v(t) ≤ M exp(4τ(δ2d+ a2(t))).

Furthermore, since ‖A(t)‖ depends continuously on t, there exists w(T ), such that

sup
t∈[−T,T ]

‖A(t)‖ ≤ w(T ).

The norm of the vector c(t) is 1 since K(l, t, h̄) is self-adjoint. Thus, the non-zero entries
of c(0) are each bounded by 1, and by a crude estimate, there are at most (J + 1)d of them.
Similarly, c(t) has at most (J̃(l)+1)d non-zero entries, each of which is bounded by 1. Thus,
for l ≥ 3, (2.11), (2.10), (2.14), (2.29), (2.30), (2.32), (2.31), and Lemma 2.3 imply the
following two estimates when j satisfies J̃(l) + 1 ≤ |j| ≤ J̃(l) + l + 1:

∣∣∣ (K̃(t) cq(t))j
∣∣∣

≤ v(t)

(∫ T
0 v(s) ds

)q

h̄qq!

(l+1)(q+1)∑

n=3l−2

(D(1)w(T )/δ)n h̄n/2 J̃(l)n/2 Fl+1(n, q + 1) (J + 1)d

=
v(t)h̄(q + 1)(J + 1)d

∫ T
0 v(s)ds

(∫ T
0 v(s)ds

)q+1

h̄q+1(q + 1)!

(l+1)(q+1)∑

n=3l−2

(D(1)w(T )
√
h̄J̃(l)/δ)nFl+1(n, q + 1)

(2.34)

and ∣∣∣ (K̃(t)r(t))j
∣∣∣

≤ v(t)h̄(l + 2)(J̃(l) + 1)d
∫ T
0 v(s)ds

(∫ T
0 v(s)ds

)l+2

h̄l+2(l + 2)!

(l+1)(l+2)∑

n=3l−2

(D(1)w(T )
√
h̄J̃(l)/δ)nFl+1(n, l + 2),

(2.35)

where Fp(n, q) is defined by (2.16).

By Lemma 2.4, (2.34), and (2.35), both
∣∣∣ (K̃(t) cq(t))j

∣∣∣ and
∣∣∣ (K̃(t)r(t))j

∣∣∣ are bounded by

C3 exp {−γ1/h̄ } for an appropriate choice of l(h̄) = [[ g/h̄ ]] and sufficiently small h̄. Each

of the l + 2 terms in (2.26) contributes a term of this type to ξ
(2)
l (x, t, h̄), so

h̄−1
∥∥∥ ξ(2)l (x, t, h̄)

∥∥∥ ≤ C3 h̄
−1 (l(h̄) + 2) exp {− γ1/h̄ }

≤ C3 exp {− γ2/h̄ } ,
for any γ2 < γ1 when h̄ is sufficiently small.

We shrink g if necessary to make

C2
5 g < 1 (2.36)

and set l = l(h̄) in (2.24). This yields a similar estimate

h̄−1
∥∥∥ ξ(1)l (·, t, h̄)

∥∥∥ ≤ C6 exp {− γ3/h̄ } ,
for some γ3 > 0.

We combine these two estimates and apply Lemma 2.1 to obtain (1.2) with
γ = min {γ2, γ3}. This proves the theorem.
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3 Proof of Lemma 2.2

For simplicity, we drop the t dependence in the notation throughout this section.
To prove Lemma 2.2, we use Hölder’s inequality to see that

∑
|j|≤J̃(l)

|cj(l, h̄)|2 = 1

implies

∑

|j|≤J̃(l)

|cj(l, h̄)| ≤




∑

|j|≤J̃(l)

|cj(l, h̄)|2



1/2 


∑

|j|≤J̃(l)

1




1/2

≤
(
J̃(l) + 1

)d/2
.

Thus, it is sufficient to prove
∥∥∥∥∥
DmV (ζ(x, a))

m!
(x− a)m ϕj(A, B, h̄, a, η, x)

∥∥∥∥∥

≤ g3M exp(4τ(δ2d+ a2))
(
g4
√
h̄(l + 2) ‖A‖/δ

)l+2

, (3.1)

for some g3 and g4, whenever |j| ≤ J̃(l).
We mimic the proof of 2.33 to obtain a bound on DmV (ζ(x, a))/m!. If z ∈ Cδ(ζ(x, a)),

then, for all j = 1, 2, · · · , d,

|zj | ≤ δ + |ζj(x, a)| ≤ δ + |aj|+ |xj − aj |.

Using this and applying (b+c)2 ≤ 2(b2+c2) several times, we see that z ∈ Cδ(ζ(x, a)) implies

| V (z) | ≤ M exp(2τ(x− a)2) exp(4τ(δ2d+ a2)).

Hence, writing
1

m!
DmV (ζ(x, a)) as a d–dimensional Cauchy integral, we easily obtain the

bound

1

m!
|DmV (ζ(x, a))| ≤M

exp(4τ(δ2d+ a2))

δ|m|
exp(2τ(x− a)2). (3.2)

Thus, estimate (3.1) follows from the corresponding estimate on the integral

I =
∫

IRd (x− a)2m exp(4τ(x− a)2) |ϕj(A, B, h̄, a, η, x)|2 dx. (3.3)

Performing the change of variables x 7→ y = |A|−1(x−a)/h̄1/2, and using the explicit formula
for ϕj, we see that

I =
h̄|m|

2|j| j! πd/2

∫

IRd (|A|y)2m exp(−y2 + 4τh̄(|A|y)2) |Hj(A; y)|2 dy, (3.4)

where Hl(A; y) is the polynomial described in Remarks 4 and 5 that immediately follow the
definition of ϕj(A,B, h̄, a, η, x) in Section 2.

We assume henceforth that h̄ is sufficiently small that

4 τ h̄ ‖A‖2 ≤ 1/2. (3.5)
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The estimate (|A|y)2 ≤ ‖A‖2 y2 implies (|A|y)2k ≤ ‖A‖2 y2, for k = 1, 2, · · · , d. From this,
we conclude

I ≤ (h̄ ‖A‖2)|m|

2|j| j! πd/2

∫
y2|m| exp(−y2/2) |Hj(A; y)|2 dy. (3.6)

We next need an estimate on |Hj(A; y)|. By Remark 5 after the definition in Section 2,
(
−∆+ y2

)
Hj(A; y) e

−y2/2 = (2|j|+ d) Hj(A; y) e
−y2/2. (3.7)

This equation states that Hj(A; y) e
−y2/2 is a eigenfunction of −∆+ y2 corresponding to the

eigenvalue 2|j|+ d. Introducing normalization factors, we conclude that

2−|j|/2 (j!)−1/2 π−d/4Hj(A; y) e
−y2/2 =

∑

|k|=|j|

bk ϕk1(y1)ϕk2(y2) · · ·ϕkd(yd), (3.8)

where ϕk(y) = 2−k/2 (k!)−1/2 π−1/4Hk(y) e
−y2/2 is the normalized eigenfunction of −∂

2

∂y2
+y2

corresponding to the eigenvalue 2k + 1, and the coefficients bk satisfy
∑

|k|=|j| |bk|2 = 1. We
can thus deduce an estimate of Hj(A; y) from an estimate for usual Hermite polynomials
Hk(y):

|Hj(A; y)|2 = |
∑

|k|=|j|

bkHk1(y1)Hk2(y2) · · ·Hkd(yd)|2

≤
∑

|k|=|j|

|Hk1(y1)Hk2(y2) · · ·Hkd(yd)|2. (3.9)

The Hermite polynomials, in turn, satisfy the following bounds.

Lemma 3.1 If |y| >
√
2k + 1, then

|Hk(y)| ≤ 2k |y|k, (3.10)

and there exists a numerical constant κ > 0, such that for all y ∈ IR,

|Hk(y)| ≤ κ 2k/2
√
k! ey

2/2. (3.11)

Proof: The second statement is well known. See [1], formula 22.14.17 or [4], formula
8.954.2.

By symmetry, it is sufficient to prove (3.10) for y > 0. It is well known that the kth

eigenfuction of the harmonic oscillator is non-zero in the classically forbidden region |y| >√
2k + 1. It is also well known that Hk(y) = 2kyk + Pk(y) where Pk(y) is a polynomial of

degree k − 2. Thus, we have

Hk(y)/(2
kyk) = 1 +Bk(y),

where Bk satisfies
Bk(y) = O(1/y2) for large y,
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and
Bk(y) > −1 if y >

√
2k + 1.

Using standard properties of the Hermite polynomials, we see that

B′
k(y) = (y H ′

k(y) − kHk(y))/(2
k yk+1)

= (2 k yHk−1(y) − k Hk(y))/(2
k yk+1)

= k (2 y Hk−1(y) − (2 y Hk−1(y) − 2 (k − 1)Hk−2(y)))/(2
k yk+1)

= k (k − 1)Hk−2(y)/(2
k−1 yk+1).

So, if y >
√
2k + 1, we see that B′

k(y) > 0. Thus, y >
√
2k + 1 implies −1 < Bk(y) < 0,

which implies (3.10).

In (3.6), we use the multinomial expansion

(y2)|m| =
∑

|n|=|m|

( |m|
n1 · · · nd

)
y2n1
1 y2n2

2 · · · y2nd
d

to obtain

I ≤ (h̄ ‖A‖2)|m|

2|j| j! πd/2

∑

|n|=|m|

∑

|k|=|j|

( |m|
n1 · · · nd

) d∏

r=1

∫
y2nr
r |Hkr(yr)|2 exp(−y2r/2)dyr.

Using Lemma 3.1, the one dimensional integrals in the final factor here can then be estimated
as follows (without indices):

∫
y2n |Hk(y)|2 exp(−y2/2) dy

≤
∫

y2≤2k+1
κ2 2k k! y2n exp(y2/2) dy +

∫
4k y2(n+k) exp(−y2/2) dy

≤ κ22kk!
2

2n + 1
(2k + 1)n+1/2 exp(k + 1/2) + 4k2(k+n+1/2)

∫
z2(k+n)e−z2dz

=
2k+1

2n + 1
κ2ek+1/2k!(2k + 1)n+1/2 + 4k2(k+n+1/2)π1/2 (2(k + n)− 1)!

22(n+k)−1(k + n− 1)!

=
2k+1

2n + 1
κ2ek+1/2k!(2k + 1)n+1/2 + 2k−n+3/2π1/2 (2(k + n)− 1)!

(k + n− 1)!
. (3.12)

Here we have used

∫
z2(k+n) e−z2 dz = π1/2 1 · 3 · 5 · · · (2(k + n)− 1)

2k+n
.

Now, Stirling’s formula guarantees the existence of a > 0, such that

an nn ≤ n! ≤ nn, (3.13)
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for all integers n ≥ 1. Using this in (3.12), we obtain

∫
y2n |Hk(y)|2 exp(−y2/2) dy ≤ f0 f

k+n
1 (k + n)!,

for some constants f0 and f1. From this we conclude (restoring the indices)

I ≤ (h̄ ‖A‖2)|m|

2|j| j! πd/2

∑

|n|=|m|

∑

|k|=|j|

f d
0 f

|m|+|j|
1

( |m|
n1 · · · nd

)
(k + n)! (3.14)

In this expression, we have

(k + n)! = (|k|+ |n|)!
( |k|+ |n|
k1 + n1 · · · kd + nd

)−1

= (|m|+ |j|)!
( |m|+ |j|
k1 + n1 · · · kd + nd

)−1

≤ (|m|+ |j|)! (3.15)

We further use
∑

|n|=|m|

( |m|
n1 · · · nd

)
= d|m| and (2.23) in (3.14) to obtain

I ≤ (h̄ ‖A‖2)|m|

(
f0√
π

)d

(f1 d)
|m|

(
ed f1
2

)|j|
(|m|+ |j|)!

j!

= (h̄ ‖A‖2)|m|

(
f0√
π

)d

(f1 d)
|m|

(
ed f1
2

)|j| ( |j|
j1 · · · jd

) ( |m|+ |j|
|j|

)
|m|!

≤ (h̄ ‖A‖2)|m|

(
f0√
π

)d

(2 f1 d)
|m| (ed f1)

|j|
( |j|
j1 · · · jd

)
|m|!

≡ (h̄ ‖A‖2d)|m| f d
2 f

|m|
3 f

|j|
4

( |j|
j1 · · · jd

)
|m|!, (3.16)

where f2, f3, f4 are numerical constants.
Estimates (3.2) and (3.16) imply

∥∥∥∥∥
DmV (ζ(x, a))

m!
(x− a)m ϕj(A, B, h̄, a, η, x)

∥∥∥∥∥

≤ M exp(4τ(δ2d+ a2))(h̄‖A‖2(d/δ2)f3)|m|/2f
d/2
2 f

|j|/2
4

√
|m|!

√( |j|
j1 · · · jd

)
.

So, by the Schwarz inequality, (1.4), (3.9), and (3.18),

∥∥∥∥∥
DmV (ζ(x, a))

m!
(x− a)m ψl(x, t, h̄)

∥∥∥∥∥

2
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≤
J̃(l)∑

n=0

∑

|j|=n

∥∥∥∥∥
DmV (ζ(x, a))

m!
(x− a)m ϕj(A, B, h̄, a, η, x)

∥∥∥∥∥

2

≤ M2 exp(8τ(δ2d+ a2))(h̄‖A‖2(d/δ2)f3)|m|f d
2 |m|!

J̃(l)∑

n=0

∑

|j|=n

f
|j|
4

( |j|
j1 · · · jd

)

= M2 exp(8τ(δ2d+ a2)) (h̄‖A‖2(d/δ2)f3)|m| f d
2 |m|!

J̃(l)∑

n=0

fn
4 d

n

= M2 exp(8τ(δ2d+ a2)) (h̄‖A‖2(d/δ2)f3)|m| f d
2 |m|!


 (f4d)

J̃(l)+1 − 1

f4d− 1




≤ M2 exp(8τ(δ2d+ a2)) (h̄‖A‖2(d/δ2)f3)|m| f d
2 |m|! 2 (f4d)J̃(l). (3.17)

The last step depends on the following fact: We can assume without loss that q = f4d ≥ 2,
so that for any positive integer p, we have −1 ≤ qp+1−2qp, and hence, qp+1−1 ≤ 2qp+1−2qp.
Thus,

(qp+1 − 1)/(q − 1) ≤ 2qp. (3.18)

We use the hypothesis |m| = l + 2 and note that |m|! ≤ (l + 2)l+2. We then conclude
that there exist constants g0 and g1, that depend only on d and J , such that (2.13) holds.
This implies the lemma.

4 Proofs of Lemmas 2.3 and 2.4

The proof of Lemma 2.3 relies on two preliminary lemmas.

Lemma 4.1 The matrix elements of (x− a)m satisfy

| 〈ϕj(A, B, h̄, a, η, x), (x− a)m ϕk(A, B, h̄, a, η, x)〉 |

≤ h̄|m|/2 (
√
2d)|m| ‖A‖|m|

√
(|k|+ 1)(|k|+ 2) · · · (|k|+ |m|), (4.1)

and

〈ϕj(A, B, h̄, a, η, x), (x− a)m ϕk(A, B, h̄, a, η, x) 〉 = 0, if

∣∣∣∣|j| − |k|
∣∣∣∣ > |m|.

Proof: For i = 1, 2, · · · , d, we can use equation (3.28) of [7] to express (xi − ai) in terms of
raising and lowering operators. Doing so, we obtain

(xi − ai)ϕk(A, B, h̄, a, η, x) =
√
h̄/2

d∑

p=1

Aip

√
kp + 1ϕk′(p)(A, B, h̄, a, η, x)

+
√
h̄/2

d∑

p=1

Āip

√
kp ϕk′′(p)(A, B, h̄, a, η, x),
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where k′(p) and k′′(p) are constructed from k by replacing the component kp by kp + 1
and kp − 1, respectively. Thus, (xi − ai)ϕk(A, B, h̄, a, η, x) may be written as a sum
of 2d terms, each of which has the form bq ϕq(A, B, h̄, a, η, x), where |q| ≤ |k| + 1 and

|bq| ≤
√
h̄/2 ‖A‖

√
|k|+ 1.

From this and a simple induction, (x−a)m ϕk(A, B, h̄, a, η, x) may be written as a sum
of (2d)|m| terms, each of which has the form bq ϕq(A, B, h̄, a, η, x), where |k|− |m| ≤ |q| ≤
|k|+ |m| and |bq| ≤ (h̄/2)|m| ‖A‖|m|

√
(|k|+ 1)(|k|+ 2) · · · (|k|+ |m|).

This implies the lemma.

In the next lemma we use the shorthand Xm(t) to denote Xm(l, t, h̄) of Lemma 2.3.

Lemma 4.2 For each N > 0, there exists D(N) <∞, such that

sup
{j,k : |j|, |k|≤J̃(l)}

| (Xm1(t1)X
m2(t2) · · · Xmq(tq))j k |

≤
(
D(N)

√
h̄ sup

t∈{t1,t2,···tq}
‖A(t)‖

)|m1|+|m2|···+|mq|

J̃(l)(|m1|+|m2|+···+|mq|)/2, (4.2)

for any collection m1, m2, . . . , mq of multi-indices that satisfy |mj|/J̃(l) ≤ N .

Proof: The matrix Xm is obtained from X̃m by restricting its indices to |j|, |k| ≤ J̃(l).
Using Lemma 4.1, we see that for such values of the indices,

∣∣∣Xm
j k(t)

∣∣∣ ≤ (
√
2h̄ d ‖A(t)‖)|m| J̃(l)|m|/2

√
(1 + 1/J̃(l))(1 + 2/J̃(l))) · · · (1 + |m|/J̃(l)).

Thus, |m|/J̃(l) ≤ N implies

∣∣∣Xm
j k(t)

∣∣∣ ≤ (
√
2h̄ d ‖A(t)‖)|m| (1 +N)|m|/2 J̃(l)|m|/2.

We estimate the absolute value of the j, k matrix element of the product

| (Xm1(t1)X
m2(t2) · · · Xmq(tq))j k |

≤
∑

|pi| ≤ J̃(l), i = 1, · · · , q − 1
|p1 − j| ≤ |m1|, |p2 − p1| ≤ |m2|, · · · , |k− pq−1| ≤ |mq|

∣∣∣Xm1
j p1(t1)X

m2
p1 p2

(t2) · · · Xmq

pq−1 k
(tq)

∣∣∣

(4.3)

by bounding the absolute values of each of the matrix elements Xmi
pi−1 pi

(ti) by

∣∣∣Xmi
pi−1 pi

(ti)
∣∣∣ ≤ (

√
2h̄ d ‖A(ti)‖)|mi| (1 +N)|mi|/2 J̃(l)|mi|/2, (4.4)

and multiplying by a bound on the number of terms.
To estimate the number of terms, we first note that for any multi-index r, the number of

multi-indices indices p that satisfy

∣∣∣∣|p| − |r|
∣∣∣∣ ≤ |m| is equal to the number of vectors v with
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integer components, such that |∑d
i=1 vi| ≤ |m|. This is bounded by the number of vectors

with integer components, such that |vi| ≤ |m| for i = 1, 2, · · · , d, which is (2|m|+ 1)d.
Thus, the number of terms is bounded by

∑

|pi| ≤ J̃(l), i = 1, · · · , q − 1
|p1 − j| ≤ |m1|, |p2 − p1| ≤ |m2|, · · · , |k− pq−1| ≤ |mq|

1

≤ (2|m1|+ 1)d(2|m2|+ 1)d · · · (2|mq|+ 1)d

≤ (e2)d(|m1|+|m2|+···+|mq|). (4.5)

The final inequality follows because 1 + 2|mj| ≤ e2|mj |.
We obtain the lemma by using (4.4) and (4.5) to bound (4.3).

Proof of Lemma 2.3 We mimic the proof of Lemma 4.2. Let m̃ = |m0|+ |m1| + |m2|+
. . .+ |mq|. By Lemmas 4.1 and 4.2,

(√
h̄ sup

t∈{t0,t1,···,tq}
‖A(t)‖

)−m̃ ∣∣∣ (X̃m0(t0)X
m1(t1)X

m2(t2) · · · Xmq(tq))j k
∣∣∣

=

(√
h̄ sup

t∈{t0,t1,···,tq}
‖A(t)‖

)−m̃ ∑

|r|≤J̃(l)

∣∣∣ X̃m0
j r (t0)

∣∣∣ | (Xm1(t1)X
m2(t2) · · · Xmq(tq))r k |

≤
∑

|r| ≤ J̃(l)
|j − r| ≤ |m0|

2|m0|/2
√
(|r|+ 1)(|r|+ 2) · · · (|r|+ |m0|)

×D(N)|m1|+|m2|+...+|mq| J̃(l)(|m1|+|m2|+...+|mq|)/2

≤
∑

|r| ≤ J̃(l)
|j − r| ≤ |m0|

2|m0|/2 J̃(l)|m0|/2
√
(1 + 1/J̃(l))(1 + 2/J̃(l)) . . . (1 + |m0|/J̃(l))

×D(N)|m1|+|m2|+...+|mq| J̃(l)(|m1|+|m2|+...+|mq|)/2

≤
∑

|r| ≤ J̃(l)
|j − r| ≤ |m0|

2|m0|/2 (1 +N)|m0|/2D(N)|m1|+|m2|+...+|mq| J̃(l)(|m1|+|m2|+...+|mq|)/2

≤ 2|m0|/2 (1 +N)|m0|/2D(N)|m1|+|m2|+...+|mq| J̃(l)(|m1|+|m2|+...+|mq|)/2
∑

|j−r|≤|m0|

1.

Since the sum in the last line is (1+2|m0|)d ≤ e2d|m0|, we obtain the desired estimate.

We now turn to the proof of Lemma 2.4. Our first step is to study the combinatorial
factor Fp(n, q) in the one dimensional case.
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Lemma 4.3 Let mj denote positive integers, and let

Gp(n, q) =
∑

1 ≤ m1,m2, · · · , mq ≤ p
m1 +m2 + · · ·+mq = n

1. (4.6)

This quantity is zero if n < q or n > qp. Otherwise, it satisfies

Gp(n, q) ≤





(
n− 1
q − 1

)
if q ≤ n ≤ [q(p+ 1)/2]

(
q(p+ 1)− n− 1

q − 1

)
if [q(p+ 1)/2] + 1 ≤ n ≤ qp.

(4.7)

Proof: If n < q or n > qp, the sum in (4.6) contains no terms, so Gp(n, q) = 0.
The quantity Gp(n, q) is the number of ways that the number n can be decomposed as n =

m1+m2+ . . .+mq with each mj satisfying 1 ≤ mj ≤ p. We uniquely associate to each such
decomposition of n, a corresponding decomposition of n′ = q(p+1)−n = m′

1+m
′
2+ . . .+m

′
q

by setting m′
j = p+ 1−mj. This association is a one-to-one correspondence, so we see that

Gp(n, q) satisfies the symmetry relation

Gp(n, q) = Gp(q(p+ 1)− n, q). (4.8)

As a consequence, the second inequality in (4.7) (with [q(p + 1)/2] + 1 ≤ n ≤ qp) follows
from the first (with q ≤ n ≤ [q(p+ 1)/2]).

To prove the first inequality in (4.7) we drop the condition mj ≤ p and exactly calculate
the resulting function. Dropping the upper bound on the mj , we clearly have Gp(n, q) ≤
G(n, q), where

G(n, q) =
∑

1 ≤ m1,m2, · · · , mq

m1 +m2 + · · ·+mq = n

1.

So, the lemma will be proved once we establish

G(n, q) =
(
n− 1
q − 1

)
. (4.9)

To prove this, we use induction. Formula (4.9) is trivial to verify for all n ≥ 1 when
q = 1 and for all n ≥ 2 when q = 2. Assume (4.9) has been verified whenever n ≥ q− 1, and
suppose n ≥ q. We have

G(n, q) =
n−q+1∑

m1=1

G(n−m1, q − 1) =
n−q+1∑

m1=1

(
n−m1 − 1

q − 2

)
,

so the induction step is complete, since it is known (see [11], p.36) that

n−q+1∑

m1=1

(
n−m1 − 1

q − 2

)
=
(
n− 1
q − 1

)
. (4.10)

This ends the proof of the lemma.

Our next step is to obtain an estimate for Gp(n, q) that depends only on n.
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Lemma 4.4 Let Gp(n, q) be defined by (4.6). There exists a constant C7, such that p ≥ 1,
q ≥ 1, and n ≥ 1 imply

Gp(n, q)) ≤ (C7)
n. (4.11)

Proof: We note that Gp(n, q) is zero unless q ≤ n ≤ qp. Furthermore, Gp(q, q) =
Gp(qp, q) = G2(2, 1) = 1 and G1(n, q) = δn q. So, we need only prove existence of C7,
such that p ≥ 2, q ≥ 1, (p, q) 6= (2, 1) imply

sup
q<n<pq

(Gp(n, q))
1/n ≤ C7. (4.12)

To prove this, we first study the case where q < n ≤ [q(p+ 1)/2]. Since q ≤ n, we have

q1/n = exp(ln(q)/n) ≤ exp(ln(n)/n) ≤ e1/e.

Thus, by (4.7), the condition q < n ≤ [q(p+ 1)/2], and (3.13), we have

(Gp(n, q))
1/n ≤

(
(n− 1)!

(q − 1)! (n− q)!

)1/n

≤ q1/n
(

(n− 1)!

q! (n− q)!

)1/n

≤ e1/e
n

aqq/n (n− q)(n−q)/n
. (4.13)

An explicit computation shows that

∂

∂n

n

qq/n (n− q)(n−q)/n
=

n

qq/n (n− q)(n−q)/n

q

n2
( ln(q)− ln(n− q) ) .

From this, we deduce that the right hand side of (4.13) attains its maximum at n = 2q.
Evaluating that maximum, we obtain

sup
q<n≤[q(p+1)/2]

(Gp(n, q))
1/n ≤ 2

a
e1/e. (4.14)

For [q(p + 1)/2] < n < pq, the number n′ = q(p + 1) − n satisifes q < n′ ≤ [q(p + 1)/2]
and n′/n ≤ 1. Thus, by (4.8) and (4.14), we obtain

(Gp(n, q))
1/n = (Gp(n

′, q))1/n

≤
(
2

a
e1/e

)n′/n

≤ 2

a
e1/e.

Thus,

sup
[q(p+1)/2]<n<pq

(Gp(n, q))
1/n ≤ 2

a
e1/e. (4.15)

Inequalities (4.14) and (4.15) imply the existence of C7 for which (4.12) holds. This
implies (4.11),and the lemma is proved.

We now generalize Lemma 4.4 to the multi-dimensional case.
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Lemma 4.5 Let Fp(n, q) be defined by (2.16). For all p ≥ 1, q ≥ 1, and n ≥ 1, we have

Fp(n, q) ≤ C
(n+qd)
7 , (4.16)

where C7 is the constant of Lemma 4.4.

Proof: With mj temporarily denoting numbers instead of multi-indices, we define

Γp(n, q) =
∑

0 ≤ m1,m2, · · · ,mq ≤ p
m1 +m2 + · · ·+mq = n

1,

which is zero unless 0 ≤ n ≤ pq.
By defining m′

j = mj+1, we see that every decomposition of n as n = m1+m2+ · · ·+mq,
with 0 ≤ mj ≤ p, corresponds uniquely to a decomposition of n + q as n + q = m′

1 +m′
2 +

· · ·+m′
q, with 1 ≤ m′

j ≤ p+ 1. Therefore, we have the identity

Γp(n, q) = Gp+1(n+ q, q). (4.17)

We now let the mj denote multi-indices and let mj(k) denote the kth component of mj .
Then, using (4.17) and Lemma 4.4, we easily obtain

Fp(n, q) ≤
∑

0 ≤ mj(k) ≤ p∑q

j=1

∑d

k=1
mj(k) = n

1 = Γp(n, qd) ≤ C
(qd+n)
7 .

Proof of Lemma 2.4: Suppose 2 ≤ q ≤ l + 2, and let Lq(l) satisfy (2.17), i.e.,

Lq(l) ≤ Cq
1

h̄q q!

q(l+1)∑

n=3l−2

(C2 h̄ l)
n/2 Fl+1(n, q).

By Lemma 4.5 and (3.13), there exist C8 and C9, such that

Lq(l) ≤ (C1C
d
7 )

q

(a h̄ q)q

q(l+1)∑

n=3l−2

(C2 h̄ l)
n/2 Cn

7

≤ Cq
9

(h̄ q)q

q(l+1)∑

n=3l−2

(
C8 h̄

1/2 l1/2
)n
. (4.18)

Note that we can take

C8 = max { 1,
√
C2C7 }, (4.19)

C9 = max { 1, C1C
d
7 }, (4.20)

because we can assume C8 ≥ 1 and C9 ≥ 1 without loss of generality.
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We arbitrarily choose two positive numbers α < 1 and β < 1. We then define

g =
1

C2
8

min

{
α2,

β2

C2
9 C

4
8 e

2/e

}
. (4.21)

We henceforth assume l = l(h̄) is chosen to satisfy (2.18) with this value of g. With this
choice, we have

C8 h̄
1/2 l1/2 ≤ α. (4.22)

By summing a geometric series in (4.18), we see that

Lq(l) ≤ Cq
9

(1− α) (h̄ q)q

(
C8 h̄

1/2 l1/2
)3l−2

=
Cq

9 C
2q
8

(1− α) (h̄ q C2
8)

q

(
C8 h̄

1/2 l1/2
)3l−2

. (4.23)

As a function of q, (
l

q

)q

= exp ( q ln(l/q) )

is maximized at q = l/e, where it has the value el/e. Thus,
(
l

q

)q

≤ el/e.

This, q ≤ l + 2, and h̄ l C2
8 ≤ α2 < 1 imply

1

(h̄ q C2
8)

q
=

1

(h̄ l C2
8)

q

(
l

q

)q

≤ el/e

(h̄ l C2
8)

l+2
.

From this, C8 ≥ 1, and C9 ≥ 1, we conclude

Lq(l) ≤ C l+2
9 C

2(l+2)
8 el/e

(1− α)

(
C8 h̄

1/2 l1/2
)l−6

=
(
e1/e C9C

3
8 h̄

1/2 l1/2
)l C2

9

(1− α) (h̄ l)3C2
8

. (4.24)

By (4.21), we have
e1/e C9C

3
8 h̄

1/2 l1/2 ≤ β < 1.

Since
g

h̄
− 1 ≤ l ≤ g

h̄
,

we see from (4.24) that if h̄ ≤ g/2, then we have

Lq(l) ≤ e−| ln(β)|l C2
9

(1− α) (g − h̄)3C2
8

≤ 23 eC2
9

(1− α) g3C2
8

e−| ln(β) |g/h̄. (4.25)
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Note that the factor 23 can be replaced by (1 + ǫ), with ǫ arbitrarily small, by taking h̄
sufficiently small.

Remark We can choose α and β to satisfy
β

e1/e
≤ α <

1

e1/e
. Then, since

β2

C2
9 C

4
8 e

2/e
≤

β2

e2/e
≤ α2, we obtain the conclusion of Lemma 2.4 with

g =
β2

C2
9 C

6
8 e

2/e
, (4.26)

γ1 =
| ln(β)| β2

C2
9 C

6
8 e

2/e
(4.27)

C3 =
23 e1+6/e C8

9 C
10
8

(1− e−1/e) β6
, (4.28)

where C8 and C9 are related to C1, C2, and C7 by (4.19) and (4.20). Note that C7 is purely
combinatorial and has no time dependence.

5 Proof of Theorem 1.2

To prove Theorem 1.2, we revisit the proof of Theorem 1.1 and make the T dependence
of all constants explicit. We then allow T to grow with h̄ with the restriction that our
approximation remain close to the actual solution as h̄→ 0.

Lemmas 4.3, 4.4, and 4.5 have no time dependence, and the time dependence of Lemmas
2.1, 2.2, 2.3, 3.1, 4.1, and 4.2 has been made explicit in their conclusions.

Since V is bounded below and energy is conserved, |a(t)| grows at most linearly with
time. Thus, there exist v1 > 0 and v0 > 0, such that v(t) defined by (2.33) satisifies

v(t) ≤ v0 exp(v1t). (5.1)

From assumption (1.13), it follows that

w(T ) = sup
0≤|t|≤T

‖A(t)‖ ≤ N exp(λT ). (5.2)

In the sequel, we denote all innessential constants that do not depend on T by the same
symbol c.

Consider Lemma 2.2. For z ∈ Cδ(ζ(x, a(t))), we can prove the existence of ρ > 0 such
that

∥∥∥∥∥
DmV (ζ(x, a(t)))

m!
(x− a(t))m ψl(x, t, h̄)

∥∥∥∥∥

≤ c exp(ρ|t|)
(
c
√
h̄ (l + 2) exp(λ|t|)

)l+2

. (5.3)

Indeed, with our bound on |V (z)| we have

DmV (ζ(x, a(t)))

m!
≤ c exp(ρ|t|) exp(c|x− a(t)|)
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instead of (3.2). With this and the estimate exp(cy) ≤ exp(cy2) + exp(c) for all c > 0 and
y > 0, we see that the estimates in the proof of Lemma 2.2 are still valid. This yields (5.3).
Consequently, the constants C4 and C5 appearing in (2.24) satisfy

C4(T ) = c exp(ρT )

C5(T ) = c exp(λT ),

where ρ > 0. By using estimates (5.1) and (5.2) in (2.34) and (2.35), we see that when we
apply Lemma 2.4, the constants C1 and C2 satisfy

C1(T ) = c exp(ρT )

C2(T ) = c exp(2λT ).

We still must determine the T dependence of C and γ of Theorem 1.1. We do this by
determining the T dependence of g, γ1 and C3 in Lemma 2.4. Equations (4.19) and (4.20)
yield C8 and C9, in terms of which the above constants are determined. We find that

C8(T ) = c exp(λT )

C9(T ) = c exp(ρT ).

Consequently, from (4.26), (4.27) ,(4.28), we have

g(T ) = c exp(−νT ), ν = 2ρ+ 6λ

γ1(T ) = c exp(−νT ),
C3(T ) = c exp(µT ), µ = 8ρ+ 10λ.

To arrive at these conclusions, we imposed various conditions. Those conditions were

(3.5), that now requires h̄ ≤ c exp(−2λT ),

(2.36), than now requires c exp(2λT ) exp(−νT ) < 1, and

h̄ ≤ g(T )/2 used in (4.25), that now requires h̄ ≤ c exp(−νT ).
These are all satisfied, provided we take

T (h̄) ≤ T ′ | ln(h̄)|,

with T ′ > 0 sufficiently small. Using this in our estimate for the error term ξ(t, h̄), we see
that for sufficiently small T ′, |t| ≤ T ′ | ln(h̄)| implies

‖ψ(x, t, h̄)−Ψ(x, t, h̄)‖L2(IRd) ≤ C ′ exp(−γ′/h̄σ),

for some γ′ > 0, σ > 0, and C ′ > 0.
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[10] Sjöstrand, J.: Singularités analytiques microlocales, Astérisque 95, 1982
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