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We construct approximate solutions to the time-dependent Schrödinger equation

for small values of h. If V satisfies appropriate analyticity and growth hypotheses and |t| ≤ T , these solutions agree with exact solutions up to errors whose norms are bounded by

for some C and γ > 0. Under more restrictive hypotheses, we prove that for sufficiently small T ′ , |t| ≤ T ′ | log(h)| implies the norms of the errors are bounded by

for some C ′ , γ ′ > 0, and σ > 0.
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Introduction

In this paper, we construct exponentially accurate semiclassical approximations ψ(x, t, h) to certain normalized exact solutions Ψ(x, t, h) of the d-dimensional time-dependent Schrödinger equation

i h ∂Ψ ∂t = - h2 2 ∆ Ψ + V Ψ. (1.1)
More precisely, our main result is that for |t| ≤ T and small values of h, these approximations satisfy error estimates of the form

ψ(x, t, h) -Ψ(x, t, h) L 2 (I R d ) ≤ C exp { -γ/h } , (1.2) 
where γ > 0.

Our construction of ψ(x, t, h) is technically complicated, but quite explicit. It uses a particular collection of semiclassical wave packets { ϕ j (A, B, h, a, η, • ) } that are defined in [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF], [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF], and the next section. Here A and B are d × d complex matrices that satisfy certain conditions. The quantities a and η are elements of IR d . For fixed A, B, h, a, and η, { ϕ j (A, B, h, a, η, • ) } is an orthonormal basis of L 2 (IR d ) as j ranges over all d-dimensional multi-indices.

The function ϕ j (A, B, h, a, η, • ) is concentrated near position a, and its Fourier transform is concentrated near momentum η. Its position and momentum uncertainties are proportional to √ h. The position uncertainty is determined by the matrix |A| = √ A A * , and the momentum uncertainty is determined by |B| = √ B B * . We construct ψ(x, t, h) by applying the idea of "optimal truncation" of an asymptotic expansion. For initial conditions of the form Ψ(x, 0, h) = |j|≤J c j ϕ j (A(0), B(0), h, a(0), η(0), x), (1.3) with |j|≤J |c j | 2 = 1, there exist ( [START_REF] Hagedorn | Semiclassical Quantum Mechanics III: The Large Order Asymptotics and More General States[END_REF], [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF]) approximate solutions ψ l (x, t, h) = e iS(t)/h |j|≤ J(l) c j (l, t, h) ϕ j (A(t), B(t), h, a(t), η(t), x), (1.4) that satisfy sup t∈[-T,T ]

ψ l (x, t, h) -Ψ(x, t, h) L 2 (I R d ) ≤ C(l) h l/2 (1.5)
for some constant C(l). Here J(l) = J + 3l -3, and A(t), B(t), a(t), η(t), and S(t) are solutions to the classical equations of motion ȧ(t) = η(t), η(t) = -∇V (a(t)), Ȧ(t) = i B(t), (1.6) Ḃ(t) = i V (2) (a(t)) A(t),

Ṡ(t) = η(t) 2 2 -V (a(t)),
where V (2) denotes the Hessian matrix for V , and the initial conditions A(0), B(0), a(0), η(0), and S(0) = 0 satisfy A t (0) B(0) -B t (0) A(0) = 0, (1.7) A * (0) B(0) + B * (0) A(0) = 2 I.

(1.8)

The c j (l, t, h) satisfy a linear system of ordinary differential equations that we describe in the next section.

We carefully estimate the l-dependence of C(l) in (1.5). Then, for each h, we choose l(h) to minimize the error C(l(h)) hl(h)/2 over all choices of l. It turns out that l(h) behaves like a constant times 1/h. We define ψ(x, t, h) = ψ l(h) (x, t, h) and prove that (1.2) is satisfied.

For t in a fixed compact interval, the precise statement of our results is the following:

Theorem 1.1 Suppose V is a real-valued function on IR d that is bounded below and has an analytic continuation to the set

D = { z ∈ I C d : |Im z j | < δ, j = 1, 2, • • • , d }.
(1.9)

Suppose further that there exist M > 0 and τ > 0, such that

| V (z) | ≤ M exp(τ |z| 2 ), for all z ∈ D, (1.10) 
where |z| 2 = d j=1 |z j | 2 . Suppose initial conditions A(0), B(0), a(0), η(0), S(0) = 0, and c j for |j| ≤ J are specified that satisfy (1.7) and |j|≤J |c j | 2 = 1. Then for any T > 0, there exist C and γ > 0, such that the difference between the semiclassical approximation ψ(x, t, h) and the exact solution Ψ(x, t, h) to the Schrödinger equation (1.1) with initial condition (1.3) satisfies ψ(x, t, h) -Ψ(x, t, h) L 2 (I R d ) ≤ C exp { -γ/h } , whenever |t| ≤ T .

Remarks 1. Theorem 1.1 can be generalized to allow time-dependent potentials. For example, suppose a potential V (x, t) depends smoothly on t, is bounded below, and satisfies

1 m! |D m V (x, t))| ≤ M exp(τ |x| 2 ) δ |m| ,
for |t| ≤ T for all multi-indices m. Suppose further that a classical solution (a(t), η(t)) to Newton's equations with potential V (x, t) is bounded for |t| ≤ T . Then the conclusion to Theorem 1.1 holds.

2.

Our results can also be extended to obtain weaker error estimates of the form C exp { -γ/h σ } for some σ ∈ (0, 1), when the potential belongs to a Gevrey class.

3. Theorem 1.1 is optimal in the sense that the conclusion fails if the hypotheses are relaxed slightly. For example, consider the one-dimensional potential V (x) = exp(-1/x u ), for x > 0, and V (x) = 0 for x ≤ 0, where u > 0. It is shown in [START_REF] Jung | Adiabatic Invariance and the Regularity of Perturbations[END_REF] that this potential belongs to the Gevrey class of order 1 + 1/u. For initial conditions a(0) = 0, η(0) = 0, A(0) = B(0) = 1, S(0) = 0, and c j (0) = δ j,0 , our approximation yields ϕ 0 (1 + it, 1, h, 0, 0), for all times. This function is very simple, and we can write the error term explicitly. By steepest descent analysis, we can show that there exist δ > 0 and Σ 1 > Σ 2 > 0, such that t ∈ (0, hδ ) implies

exp(-Σ 1 /h u/(1+u) ) ≤ e -itH(h)/h ϕ 0 (1, 1, h, 0, 0, •) -ϕ 0 (1 + it, 1, h, 0, 0, •) ≤ exp(-Σ 2 /h u/(1+u) ).
Note also that if we choose a(0) = -a < 0 and η(0) = η > 0, it is easy to check that the error term is O(exp(-γ/h)), for each t < a/η.

4. For all practical purposes, we can replace the c j 's by the corresponding Dyson expansion up to order l(h) (see (2.26)-(2.28)) without spoiling our exponential estimate. The normalization of the approximation, however, will be lost.

5. One cannot expect to get better agreement with the exact solution when constructing an approximation using wave packets associated with a single classical path. Such wave packets do not describe tunneling, which is an exponentially small effect in h.

Theorem 1.1 can also be generalized to allow time intervals that grow like | log(h)| as h tends to zero. However, we obtain a somewhat weaker conclusion. Our precise results are summarized by the following theorem.

Theorem 1.2 Suppose V is bounded below and analytic in

D = { z ∈ I C d : |Im z j | < δ, j = 1, 2, • • • , d }. (1.11) 
Suppose further that there exist M > 0 and τ > 0, such that

| V (z) | ≤ M exp(τ |z|),
for all z ∈ D.

(1.12)

Suppose initial conditions A(0), B(0), a(0), η(0), S(0) = 0, and c j for |j| ≤ J are specified that satisfy (1.7) and |j|≤J |c j | 2 = 1, and further assume there exist N > 0 andλ > 0, such that

A(t) ≤ N exp(λ|t|). (1.13)
Then for sufficiently small T ′ > 0, there exist C ′ , γ ′ > 0, and σ > 0, such that the difference between the semiclassical approximation ψ(x, t, h) and the exact solution Ψ(x, t, h) to the Schrödinger equation (1.1) with initial condition (1.3) satisfies

ψ(x, t, h) -Ψ(x, t, h) L 2 (I R d ) ≤ C ′ exp { -γ ′ /h σ } , whenever |t| ≤ T ′ | log(h)|.
Remark Standard existence and uniqueness theorems for systems of ODE's show that condition (1.13) is satisfied if the norm of the Hessian V (2) (a(t)) is uniformly bounded. That is the case if V is the sum of a quadratic polynomial plus an analytic function bounded on D. It is also the case if E denotes the energy of the considered trajectory and

V (2) (x)
is bounded on the connected component of the classically allowed region D E = {x ∈ IR d : V (x) ≤ E} that contains a(t). This is satisfied for all confining potentials. It is easily deduced from the proof that if τ can be chosen arbitrarily small, then we can take T ′ = ( 1 6 -ǫ) 1 λ with ǫ arbitrarily small. This yields exponential control over the same time intervals as in [START_REF] Combescure | Semiclassical Spreading of Quantum Wave Packets and Applications near Unstable Fixed Points of the Classical Flow[END_REF].

The propagation of coherent states is also considered by Combescure and Robert in [START_REF] Combescure | Semiclassical Spreading of Quantum Wave Packets and Applications near Unstable Fixed Points of the Classical Flow[END_REF], see also [START_REF] Robert | Semi-Classical Approximation in Quantum Mechanics[END_REF], using an approximation given by a linear combination of squeezed states. (The squeezed states coincide with our semiclassical wave packets, although the notation is quite different.) Their emphasis is on the long time behavior of this approximation. The bound on the error term is of the form C l (t)h l/2 , with explicit control of the time-dependence of C l (t) in terms of classical quantities. The l behavior is however not investigated.

Results of a flavor similar to ours can be found in the work of Yajima [START_REF] Yajima | Gevrey Frequency Set and Semi-classical Behavior of Wave Packets[END_REF]. They are obtained by means of the pseudo-differential techniques developed in the analytic context by Sjöstrand in [START_REF] Sjöstrand | Singularités analytiques microlocales[END_REF]. These results concern the propagation of wave packets of the form ϕ(x) = e iS(x)/h f (x), where S is analytic and f belongs to the set of compactly supported Gevrey functions of order s > 1. Assuming the potential V is analytic, Yajima constructs approximations to the actual evolution of such wave packets that are valid up to an error, whose L 2 (IR d ) norm is of order e -γ/h 1/(2s-1) , with γ > 0 (see Theorems 1.2, 1.2 and Lemma 2.5 in [START_REF] Yajima | Gevrey Frequency Set and Semi-classical Behavior of Wave Packets[END_REF]). However, it should be possible to make use of the theory [START_REF] Sjöstrand | Singularités analytiques microlocales[END_REF] to recover our results.

Similar issues have been dealt with by Bambusi, Graffi and Paul in [START_REF] Bambusi | Long Time Semiclassical Approximation of Quantum Flows: A Proof of Ehrenfest Time[END_REF]. They focus on the validity for large times of the semiclassical approximation of the Heisenberg evolution of a smooth observable, under analyticity assumptions on the hamiltonian. They prove that the semiclassical approximation remains useful for times up to order | ln(h)|, the Ehrensfest time scale. However, the Hamiltonians they can accomodate consist more or less of analytic perturbations of the harmonic oscillator that decay as x and p tend to infinity.

The paper is organized as follows: In the Section 2, we prove Theorem 1.1 under the assumption that two types of error terms satisfy certain bounds. We prove the two required bounds in Sections 3 and 4. In Section 5 we describe the proof of Theorem 1.2.

Proof of Theorem 1.1

We begin this section by presenting the definition of the semiclassical wave packets ϕ j (A, B, h, a, η, x) that is given in [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF]. A more explicit, but more complicated definition is given in [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF]. Since [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF] provides a detailed discussion of these wave packets, we do not prove all their properties here.

We adopt the standard multi-index notation. A multi-index j = (j 1 , j 2 , . . . , j d ) is a d-tuple of non-negative integers. We define

|j| = d k=1 j k , j! = (j 1 !)(j 2 !) • • • (j d !), x j = x j 1 1 x j 2 2 • • • x j d d , and D j = ∂ |j| (∂x 1 ) j 1 (∂x 2 ) j 2 • • • (∂x d ) j d .
Throughout the paper we assume a ∈ IR d , η ∈ IR d and h > 0. We also assume that A and B are d × d complex invertible matrices that satisfy

A t B -B t A = 0, ( 2.1) 
A * B + B * A = 2 I. (2.2) 
These conditions guarantee that both the real and imaginary parts of BA -1 are symmetric. Furthermore, Re BA -1 is strictly positive definite, and ( Re BA -1 ) -1 = A A * . We note that conditions (2.1) and (2.2) are preserved under the dynamics generated by (1.6).

Our definition of ϕ j (A, B, h, a, η, x) is based on the following raising operators that are defined for m = 1, 2, . . . , d.

A m (A, B, h, a, η) * = 1 √ 2h d n=1 B n m (x n -a n ) - d n=1 A n m (-ih ∂ ∂x n -η n ) .
Definition For the multi-index j = 0, we define the normalized complex Gaussian wave packet (modulo the sign of a square root) by

ϕ 0 (A, B, h, a, η, x) = π -d/4 h-d/4 (det(A)) -1/2 × exp -(x -a), B A -1 (x -a) /(2h) + i η, (x -a) /h . (2.3)
Then, for any non-zero multi-index j, we define

ϕ j (A, B, h, a, η, • ) = 1 √ j! ( A 1 (A, B, h, a, η) * ) j 1 ( A 2 (A, B, h, a, η) * ) j 2 • • • × ( A d (A, B, h, a, η) * ) j d ϕ 0 (A , B, h, a, η, • ).
Remarks 1. For A = B = I, h = 1, and a = η = 0, the ϕ j (A, B, h, a, η, • ) are just the standard Harmonic oscillator eigenstates with energies |j| + d/2.

2.

For each A, B, h, a, and η, the set { ϕ j (A, B, h, a, η, • ) } is an orthonormal basis for L 2 (IR d ).

3. The raising operators can also be given by another formula that was omitted from [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF] in the multi-dimensional case. If we set

g(A, B, h, a, x) = exp -(x -a), BA -1 * (x -a) /(2h) -i η, (x -a) /h , then we have ( A m (A, B, h, a, η) * ψ ) (x) = - h 2 1 g(A, B, h, a, x) d n=1 A n m ∂ ∂x n ( g(A, B, h, a, x) ψ(x) ) .
4. In [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF], the state ϕ j (A, B, h, a, η, x) is defined as a normalization factor times

H j (A; h-1/2 |A| -1 (x -a)) ϕ 0 (A, B, h, a, η, x).
Here H j (A; y) is a |j| th order polynomial in y that depends on A only through U A , where A = |A| U A is the polar decomposition of A.

5. By the argument on page 370 of [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF] or by scaling out the |A| and h dependence and using Remark 3 above, one can show that H j (A; y) e -y 2 /2 is an (unnormalized) eigenstate of the usual Harmonic oscillator with energy |j| + d/2.

6.

When the dimension d is 1, the position and momentum uncertainties of the ϕ j (A, B, h, a, η, • ) are (j + 1/2)h |A| and (j + 1/2)h |B|, respectively. In higher dimensions, they are bounded by (|j| + d/2)h A and (|j| + d/2)h B , respectively.

7. When we approximately solve the Schrödinger equation, the choice of the sign of the square root in the definition of ϕ 0 (A, B, h, a, η, • ) is determined by continuity in t after an arbitrary initial choice.

The proof of the theorem depends on the following abstract lemma, whose proof is an easy application of Duhamel's formula (see e.g. [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF]).

Lemma 2.1 Suppose H(h) is a family of self-adjoint operators for h > 0. Suppose ψ(t, h) belongs to the domain of H(h), is continuously differentiable in t, and approximately solves the Schrödinger equation in the sense that

i h ∂ψ ∂t (t, h) = H(h) ψ(t, h) + ξ(t, h), (2.4) 
where ξ(t, h) satisfies

ξ(t, h) ≤ µ(t, h). (2.5)
Then, for t > 0,

e -itH(h)/h ψ(0, h) -ψ(t, h) ≤ h-1 t 0 µ(s, h) ds. (2.6) 
The analogous statement holds for t < 0.

Because V is smooth and bounded below, there exist global solutions to the first two equations of the system (1.6) for any initial condition. It then follows immediately that the remaining three equations of the system (1.6) have global solutions. Furthermore, it is not difficult ( [START_REF] Hagedorn | Semiclassical Quantum Mechanics III: The Large Order Asymptotics and More General States[END_REF], [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF]) to prove that (2.1) and (2.2) are preserved by the flow.

As mentioned in the introduction, it is proved in [START_REF] Hagedorn | Semiclassical Quantum Mechanics III: The Large Order Asymptotics and More General States[END_REF] and [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF] that initial conditions of the form (1.3) give rise to approximate solutions of the form

ψ l (x, t, h) = e iS(t)/h |j|≤ J(l) c j (l, t, h) ϕ j (A(t), B(t), h, a(t), η(t), x),
with errors whose norms are of order hl/2 . Here J (l) = J + 3l -3, and A(t), B(t), a(t), η(t), and S(t) satisfy (1.6). The coefficients c j (l, t, h) satisfy the linear system

i h ċk (l, t, h) = |j|≤ J(l) K k j (l, t, h) c j (l, t, h), |k| = 0, 1, . . . , J(l), (2.7) 
with initial conditions c j (l, 0, h) = c j , for |j| ≤ J in accordance with (1.3) and c j (l, 0, h) = 0 for |j| > J.

To specify the (J + 3l -2) × (J + 3l -2) matrix K(l, t, h) that appears in (2.7), we first decompose the potential as

V (x) = W a (x) + Z a (x) ≡ W a (x) + (V (x) -W a (x)), (2.8) 
where W a (x) denotes the second order Taylor approximation (with the obvious abuse of notation)

W a (x) ≡ V (a) + V (1) (a) (x -a) + V (2) (a) (x -a) 2 /2, (2.9) 
Next (reverting to multi-index notation), we approximate Z a (x) by its Taylor approximation of order l + 1,

Z [l] a (x) = 3≤|m|≤l+1 (D m V )(a) m! (x -a) m , (2.10) 
and define the infinite matrix

K k j (l, t, h) = ϕ k (A(t), B(t), h, a(t), η(t), x), Z [l] a(t) (x) ϕ j (A(t), B(t), h, a(t), η(t), x) . (2.11)
Then, we obtain the matrix K(l, t, h) from K(l, t, h) by restricting the indices to |j| ≤ J(l) and |k| ≤ J(l). The general strategy [START_REF] Hagedorn | Semiclassical Quantum Mechanics III: The Large Order Asymptotics and More General States[END_REF], [START_REF] Hagedorn | Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension[END_REF], [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF] to show that ψ l (x, t, h) is an approximation to the actual solution Ψ(x, t, h) of (1.1) and (1.3) up to order hl/2 is as follows: From [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF], we know that for all multi-indices j, i h ∂ ∂t e iS(t)/h ϕ j (A(t), B(t), h, a(t), η(t), x)

= - h2 2 ∆ + W a(t) (x)
e iS(t)/h ϕ j (A(t), B(t), h, a(t), η(t), x) .

(2.12)

Thus, the ϕ j take into account the kinetic energy and W a(t) (x) parts of the Hamiltonian. Next, we expand the exact solution as

Ψ(x, t, h) = j b j (h, t) e iS(t)/h ϕ j (A(t), B(t), h, a(t), η(t), x),
where the b j (h, t) satisfy an infinite linear system of ordinary differential equations whose matrix is obtained from the Z a(t) (x) term in the Hamiltonian. In that system, we make a first approximation by replacing the function Z a(t) (x) by its Taylor approximation Z

[l] a(t) (x). This yields an infinite linear system whose matrix is K(l, t, h). Its entries are time dependent polynomials in h1/2 of order l -1. We make a second approximation by truncating the infinite system to obtain (2.7) that is satisfied by the c j (l, t, h). The result (1.5) is proved by using Lemma 2.1 to show that the errors generated by the Taylor approximation and the truncation approximation are of order hl/2 .

As described in the introduction, we construct the exponentially accurate approximate solution ψ(x, t, h) = ψ l(h) (x, t, h), by keeping track of the l-dependence of C(l) in (1.5) and then choosing l(h) in order to minimize the error.

In the remainder of this section, we prove Theorem 1.1 under the assumption that the following three technical lemmas are true. We prove the first lemma in Section 3. It estimates errors that arise from our replacement of Z a(t) (x) by Z

[l] a(t) (x). The second and third lemmas are proved in Section 4. They bound certain matrix elements and combinatorial quantities that arise from the truncation approximation discussed above. Lemma 2.2 Suppose V satisfies the hypotheses of Theorem 1.1, |m| = l+2, J(l) = J +3l-3, and

ψ l (x, t, h) = e iS(t)/h |j|≤ J(l) c j (l, t, h) ϕ j (A(t), B(t), h, a(t), η(t), x),
with |j|≤ J(l) |c j (l, t, h)| 2 = 1. Let ζ(x, a(t)) = (a(t) + θ x,a(t) (x -a(t))) ∈ IR d , with θ x,a(t) ∈ (0, 1)
. There exist constants g 0 and g 1 , that depend on d and J only, such that for sufficiently small h,

D m V (ζ(x, a(t))) m! (x -a(t)) m ψ l (•, t, h) ≤ g 0 M exp(4τ (δ 2 d + a(t) 2 )) g 1 h(l + 2) A(t) /δ l+2 .
(2.13) Lemma 2.3 We define the infinite matrix

X m j k (t, h) = ϕ j (A(t), B(t), h, a(t), η(t), •), (x -a(t)) m ϕ k (A(t), B(t), h, a(t), η(t), •) , (2.14)
and then define the finite matrix X m (l, t, h) from X m (t, h) by restricting its indices to |j| ≤ J(l) and |k| ≤ J(l). Then, X m j k (l, s, h) = 0 and X m j k (s, h) = 0 if |j| -|k| > |m| and, for each N > 0, there exists D(N) < ∞, such that

sup |k| ≤ J(l) J(l) + 1 ≤ |j| ≤ J(l) + l + 1 X m 0 (t 0 , h)X m 1 (l, t 1 , h)X m 2 (l, t 2 , h) • • • X mq (l, t q , h) j k ≤ D(N) h J(l) sup t∈{t 0 ,t 1 ,t 2 ,•••tq} A(t) |m 0 |+|m 1 |+|m 2 |•••+|mq| , (2.15) 
for any collection m 0 , m 1 , . . . , m q of multi-indices that satisfy |m j |/ J(l) ≤ N.

Lemma 2.4 We define

F p (n, q) = 1 ≤ |m 1 |, |m 2 |, • • • , |mq| ≤ p |m 1 | + |m 2 | + • • • + |mq| = n 1 (2.16)
to be the number of distinct sets { m 1 , m 2 , . . . , m q }, where each

m j is a d-dimensional multi-index with 1 ≤ |m j | ≤ p and |m 1 | + |m 2 | + • • • + |m q | = n.
We note that F p (n, q) is zero unless q ≤ n ≤ qp. Suppose that a function L q (l) satisfies

L q (l) ≤ C q 1 hq q! q(l+1) n=3l-2 (C 2 hl) n/2 F l+1 (n, q), (2.17) 
where C 1 and C 2 are constants. Let [ [ α ] ] denote the greatest integer less than or equal to α.

Then there exists g * > 0, such that for any g ∈ (0, g * ), there exist positive constants C 3 , γ 1 , and h * , that depend only on g, C 1 , and C 2 , such that

0 < h < h * , l(h) = [ [ g/h ] ], and 2 ≤ q ≤ l(h) + 2 (2.18) imply L q (l(h)) ≤ C 3 exp { -γ 1 /h } . (2.

19)

Proof of Theorem 1.1: We define ψ l (x, t, h) by (1.4), where the c j (l, t, h) are determined by the system (2.7) and initial conditions described above.

To apply Lemma 2.1 we define

ξ l (x, t, h) = i h ∂ ∂t ψ l (x, t, h) -- h2 2 ∆ + V (x) ψ l (x, t, h).
(2.20) By using (2.12), we see that this can be decomposed as a sum of two terms, ξ

l (x, t, h) = Z [l] a(t) (x) -Z a(t) (x) ψ l (x, t, h) (1) 
(2)

l (x, t, h) = -P {|j|≥ J(l)} Z [l] a(t) (x) ψ l (x, t, h), (2.22) 
where P {|j|≥l+2} is the orthogonal projection onto the span of the set

{ ϕ j (A(t), B(t), h, a(t), η(t), • ) : |j| ≥ l + 2 }.
By the standard Taylor series error formula,

Z a(t) (x) -Z [l] a(t) (x) = |m|=l+2 D m V (ζ(x, a(t))) m! (x -a(t)) m ,
for some ζ(x, a) = (a + θ x,a (x -a)), with θ x,a ∈ (0, 1). Thus, by the crude estimate

|m|=n 1 ≤ |m|≤n 1 ≤ d j=1 m j ≤n 1 = (n + 1) d = e d ln(n+1) ≤ e d n , (2.23) 
and Lemma 2.2, we obtain

ξ (1) l (•, t, h) ≤ |m|=l+2 D m V (ζ(x, a(t))) m! (x -a(t)) m ψ l (•, t, h) ≤ g 0 M exp(4τ (δ 2 d + a(t) 2 )) g 1 h(l + 2) A(t) /δ l+2 e d l+2 .
Thus, there exist constants C 4 and C 5 , such that |t| ≤ T implies

ξ (1) l (•, t, h) ≤ C 4 C 5 h(l + 2) l+2 .
(2.24)

The quantity ξ

l (•, t, h) satisfies

ϕ j (A(t), B(t), h, a(t), η(t), x), ξ (2) 
l (x, t, h) = 0, if 0 ≤ |j| ≤ J (l) or |j| > J(l) + l + 1,
and

ϕ j (A(t), B(t), h, a(t), η(t), x), ξ (2) 
l (x, t, h) = |k|≤ J(l) ϕ j (A(t), B(t), h, a(t), η(t), x), Z [l] a(t) (x) ϕ k (A(t), B(t), h, a(t), η(t), x) c k (t) = ( K(t) c(t)) j , if J(l) < |j| ≤ J (l) + l + 1, (2.25) 
where we denote the c j (l, t, h) collectively by the vector c(l, t, h). We easily verify these facts by using (2.7), (2.11), (2.12) and Lemma 2.3. To estimate the norm of ξ

l (•, t, h), we use the Dyson expansion with remainder to decompose c(l, t, h) = l q=0 c q (l, t, h) + r(l, t, h), (2.26) where (dropping some arguments)

c q (t) = t 0 ds 1 s 1 0 ds 2 • • • s q-1 0 ds q (ih) -q K(s 1 )K(s 2 ) • • • K(s q ) c(0), (2.27) 
and

r(t) = t 0 ds 1 s 1 0 ds 2 • • • s l 0 ds l+1 (ih) -(l+1) K(s 1 )K(s 2 ) • • • K(s l+1 ) c(s l+1 ).
(2.28) Using (2.11), (2.10), and (2.14), we see that each c q (l, t, h) is of order hq/2 and that r(l, t, h) is of order h(l+1)/2 .

To estimate the norm of ξ

l (•, t, h) we study the j th component of K(t)c(l, t, h), with |j| > J(l). Because of (2.26), this coefficient is a sum of two types of terms: those that arise from c q (l, t, h) and those that arise from r(l, t, h). Using (2.10), we expand K(l, t, h) in (2.27) and (2.28) and K(l, t, h) in terms of X m (l, t, h) and X m (t, h), to obtain

K(t)c q (t) = (ih) -q (l+1)(q+1) n=3(q+1) m 0 , m 1 , m 2 , • • • , mq |m 0 | + |m 1 | + • • • + |mq| = n 3 ≤ |m j | ≤ l + 1 t 0 ds 1 s 1 0 ds 2 • • • s q-1 0 ds q D m 0 V (a(t))D m 1 V (a(s 1 )) • • • D mq V (a(s q )) m 0 !m 1 !m 2 ! • • • m q ! × X m 0 (t)X m 1 (s 1 )X m 2 (s 2 ) • • • X mq (s q ) c(0), (2.29) 
and

K(t)r(t) = (ih) -(l+1) (l+1)(l+2) n=3(l+2) m 0 , m 1 , m 2 , • • • , m l+1 |m 0 | + |m 1 | + • • • + |m l+1 | = n 3 ≤ |m j | ≤ l + 1 t 0 ds 1 s 1 0 ds 2 • • • s l 0 ds l+1 D m 0 V (a(t))D m 1 V (a(s 1 )) • • • D m l+1 V (a(s l+1 )) m 0 !m 1 !m 2 ! • • • m l+1 ! × X m 0 (t)X m 1 (s 1 )X m 2 (s 2 ) • • • X m l+1 (s l+1 ) c(s l+1 ). (2.30) 
The values of m j that occur in both (2.29) and (2.30) satisfy

|m j |/ J(l) ≤ (l + 1)/(3l -3) ≤ 1, (2.31) 
as long as l ≥ 3. So, we can apply Lemma 2.3 with N = 1.

Recall that X m j k (l, s, h) = 0 and X m j k (s, h) = 0 if |j| -|k| > |m|. Since c k (0) is non-zero only for |k| ≤ J, and we need only consider the j th coefficient of K(t)c(t) for |j| > J(l), the only relevant values of n in (2.29) must satisfy

n ≥ 3l -2.
(2.32)

This condition is also satisfied for all values of n in (2.30), since the sum begins with n = 3l+6.

To use the analyticity assumptions to get estimates on the derivatives of V , we define

C δ (x) = {z ∈ I C d : z j = x j + δe iθ j , θ j ∈ [0, 2π), j = 1, 2, • • • , d}. If z ∈ C δ (a(t)), then, for all j = 1, 2, • • • , d, |z j | ≤ δ + |a j (t)|.
Hence, writing 1 m! D m V (a(t)) as a d-dimensional Cauchy integral, we get the bound

1 m! |D m V (a(t))| ≤ sup z∈C δ (a(t)) |V (z)| δ |m| ≡ v(t) δ |m| (2.33) where v(t) ≤ M exp(4τ (δ 2 d + a 2 (t))).
Furthermore, since A(t) depends continuously on t, there exists w(T ), such that sup t∈[-T,T ] A(t) ≤ w(T ).

The norm of the vector c(t) is 1 since K(l, t, h) is self-adjoint. Thus, the non-zero entries of c(0) are each bounded by 1, and by a crude estimate, there are at most (J + 1) d of them. Similarly, c(t) has at most ( J(l) + 1) d non-zero entries, each of which is bounded by 1. Thus, for l ≥ 3, (2.11), (2.10), (2.14), (2.29), (2.30), (2.32), (2.31), and Lemma 2.3 imply the following two estimates when j satisfies J(l) + 1 ≤ |j| ≤ J(l) + l + 1:

( K(t) c q (t)) j ≤ v(t) T 0 v(s) ds q hq q! (l+1)(q+1) n=3l-2 (D(1) w(T )/δ) n hn/2 J(l) n/2 F l+1 (n, q + 1) (J + 1) d = v(t)h(q + 1)(J + 1) d T 0 v(s)ds T 0 v(s)ds q+1 hq+1 (q + 1)! (l+1)(q+1) n=3l-2 (D(1)w(T ) h J(l)/δ) n F l+1 (n, q + 1) (2.34) and ( K(t)r(t)) j ≤ v(t)h(l + 2)( J(l) + 1) d T 0 v(s)ds T 0 v(s)ds l+2 hl+2 (l + 2)! (l+1)(l+2) n=3l-2 (D(1)w(T ) h J(l)/δ) n F l+1 (n, l + 2), (2.35) 
where F p (n, q) is defined by (2.16). By Lemma 2.4, (2.34), and (2.35), both ( K(t) c q (t)) j and ( K(t)r(t)) j are bounded by C 3 exp { -γ 1 /h } for an appropriate choice of l(h) = [ [ g/h ] ] and sufficiently small h. Each of the l + 2 terms in (2.26) contributes a term of this type to ξ

(2) l (x, t, h), so h-1 ξ (2) l (x, t, h) ≤ C 3 h-1 (l(h) + 2) exp { -γ 1 /h } ≤ C 3 exp { -γ 2 /h } ,
for any γ 2 < γ 1 when h is sufficiently small. We shrink g if necessary to make

C 2 5 g < 1 (2.36)
and set l = l(h) in (2.24). This yields a similar estimate

h-1 ξ (1) l (•, t, h) ≤ C 6 exp { -γ 3 /h } , for some γ 3 > 0.
We combine these two estimates and apply Lemma 2.1 to obtain (1.2) with γ = min {γ 2 , γ 3 }. This proves the theorem.

Proof of Lemma 2.2

For simplicity, we drop the t dependence in the notation throughout this section.

To prove Lemma 2.2, we use Hölder's inequality to see that |j|≤ J(l) |c j (l, h)| 2 = 1 implies

|j|≤ J(l) |c j (l, h)| ≤    |j|≤ J(l) |c j (l, h)| 2    1/2    |j|≤ J(l) 1    1/2 ≤ J(l) + 1 d/2 .
Thus, it is sufficient to prove

D m V (ζ(x, a)) m! (x -a) m ϕ j (A, B, h, a, η, x) ≤ g 3 M exp(4τ (δ 2 d + a 2 )) g 4 h(l + 2) A /δ l+2 , (3.1) 
for some g 3 and g 4 , whenever |j| ≤ J(l).

We mimic the proof of 2.33 to obtain a bound on 

D m V (ζ(x, a))/m!. If z ∈ C δ (ζ(x, a)), then, for all j = 1, 2, • • • , d, |z j | ≤ δ + |ζ j (x, a)| ≤ δ + |a j | + |x j -a j |.

Using this and applying (b+c

) 2 ≤ 2(b 2 +c 2 ) several times, we see that z ∈ C δ (ζ(x, a)) implies | V (z) | ≤ M exp(2τ (x -a) 2 ) exp(4τ (δ 2 d + a 2 )).
I = IR d (x -a) 2m exp(4τ (x -a) 2 ) |ϕ j (A, B, h, a, η, x)| 2 dx. (3.3) 
Performing the change of variables x → y = |A| -1 (x-a)/h 1/2 , and using the explicit formula for ϕ j , we see that

I = h|m| 2 |j| j! π d/2 IR d (|A|y) 2m exp(-y 2 + 4τ h(|A|y) 2 ) |H j (A; y)| 2 dy, (3.4) 
where H l (A; y) is the polynomial described in Remarks 4 and 5 that immediately follow the definition of ϕ j (A, B, h, a, η, x) in Section 2. We assume henceforth that h is sufficiently small that

4 τ h A 2 ≤ 1/2. (3.5)
The estimate (|A|y

) 2 ≤ A 2 y 2 implies (|A|y) 2 k ≤ A 2 y 2 , for k = 1, 2, • • • , d. From this, we conclude I ≤ (h A 2 ) |m| 2 |j| j! π d/2 y 2|m| exp(-y 2 /2) |H j (A; y)| 2 dy. (3.6)
We next need an estimate on |H j (A; y)|. By Remark 5 after the definition in Section 2,

-∆ + y 2 H j (A; y) e -y 2 /2 = (2|j| + d) H j (A; y) e -y 2 /2 . (3.7)
This equation states that H j (A; y) e -y 2 /2 is a eigenfunction of -∆ + y 2 corresponding to the eigenvalue 2|j| + d. Introducing normalization factors, we conclude that

2 -|j|/2 (j!) -1/2 π -d/4 H j (A; y) e -y 2 /2 = |k|=|j| b k ϕ k 1 (y 1 )ϕ k 2 (y 2 ) • • • ϕ k d (y d ), (3.8) 
where

ϕ k (y) = 2 -k/2 (k!) -1/2 π -1/4 H k (y) e -y 2 /2
is the normalized eigenfunction of -∂ 2 ∂y 2 + y 2 corresponding to the eigenvalue 2k + 1, and the coefficients b k satisfy |k|=|j| |b k | 2 = 1. We can thus deduce an estimate of H j (A; y) from an estimate for usual Hermite polynomials H k (y):

|H j (A; y)| 2 = | |k|=|j| b k H k 1 (y 1 )H k 2 (y 2 ) • • • H k d (y d )| 2 ≤ |k|=|j| |H k 1 (y 1 )H k 2 (y 2 ) • • • H k d (y d )| 2 .
(3.9)

The Hermite polynomials, in turn, satisfy the following bounds.

Lemma 3.1 If |y| > √ 2k + 1, then |H k (y)| ≤ 2 k |y| k , (3.10)
and there exists a numerical constant κ > 0, such that for all y ∈ IR,

|H k (y)| ≤ κ 2 k/2 √ k! e y 2 /2 . (3.

11)

Proof: The second statement is well known. See [START_REF] Abromowitz | Handbook of Mathematical Functions[END_REF], formula 22.14.17 or [START_REF] Gradsteyhn | Table of Integrals, Series, and Products[END_REF], formula 8.954.2. By symmetry, it is sufficient to prove (3.10) for y > 0. It is well known that the k th eigenfuction of the harmonic oscillator is non-zero in the classically forbidden region |y| > √ 2k + 1. It is also well known that H k (y) = 2 k y k + P k (y) where P k (y) is a polynomial of degree k -2. Thus, we have

H k (y)/(2 k y k ) = 1 + B k (y), where B k satisfies B k (y) = O(1/y 2 )
for large y, and

B k (y) > -1 if y > √ 2k + 1.
Using standard properties of the Hermite polynomials, we see that

B ′ k (y) = (y H ′ k (y) -k H k (y))/(2 k y k+1 ) = (2 k y H k-1 (y) -k H k (y))/(2 k y k+1 ) = k (2 y H k-1 (y) -(2 y H k-1 (y) -2 (k -1) H k-2 (y)))/(2 k y k+1 ) = k (k -1) H k-2 (y)/(2 k-1 y k+1 ). So, if y > √ 2k + 1, we see that B ′ k (y) > 0. Thus, y > √ 2k + 1 implies -1 < B k (y) < 0, which implies (3.10).
In (3.6), we use the multinomial expansion

(y 2 ) |m| = |n|=|m| |m| n 1 • • • n d y 2n 1 1 y 2n 2 2 • • • y 2n d d to obtain I ≤ (h A 2 ) |m| 2 |j| j! π d/2 |n|=|m| |k|=|j| |m| n 1 • • • n d d r=1 y 2nr r |H kr (y r )| 2 exp(-y 2 r /2)dy r .
Using Lemma 3.1, the one dimensional integrals in the final factor here can then be estimated as follows (without indices):

y 2n |H k (y)| 2 exp(-y 2 /2) dy ≤ y 2 ≤2k+1
κ 2 2 k k! y 2n exp(y 2 /2) dy + 4 k y 2(n+k) exp(-y 2 /2) dy

≤ κ 2 2 k k! 2 2n + 1 (2k + 1) n+1/2 exp(k + 1/2) + 4 k 2 (k+n+1/2) z 2(k+n) e -z 2 dz = 2 k+1 2n + 1 κ 2 e k+1/2 k!(2k + 1) n+1/2 + 4 k 2 (k+n+1/2) π 1/2 (2(k + n) -1)! 2 2(n+k)-1 (k + n -1)! = 2 k+1 2n + 1 κ 2 e k+1/2 k!(2k + 1) n+1/2 + 2 k-n+3/2 π 1/2 (2(k + n) -1)! (k + n -1)! . (3.12)
Here we have used

z 2(k+n) e -z 2 dz = π 1/2 1 • 3 • 5 • • • (2(k + n) -1) 2 k+n .
Now, Stirling's formula guarantees the existence of a > 0, such that

a n n n ≤ n! ≤ n n , (3.13)
for all integers n ≥ 1. Using this in (3.12), we obtain

y 2n |H k (y)| 2 exp(-y 2 /2) dy ≤ f 0 f k+n 1 (k + n)!,
for some constants f 0 and f 1 . From this we conclude (restoring the indices)

I ≤ (h A 2 ) |m| 2 |j| j! π d/2 |n|=|m| |k|=|j| f d 0 f |m|+|j| 1 |m| n 1 • • • n d (k + n)! (3.14)
In this expression, we have

(k + n)! = (|k| + |n|)! |k| + |n| k 1 + n 1 • • • k d + n d -1 = (|m| + |j|)! |m| + |j| k 1 + n 1 • • • k d + n d -1 ≤ (|m| + |j|)! (3.15)
We further use

|n|=|m| |m| n 1 • • • n d = d |m| and (2.23) in (3.14) to obtain I ≤ (h A 2 ) |m| f 0 √ π d (f 1 d) |m| e d f 1 2 |j| (|m| + |j|)! j! = (h A 2 ) |m| f 0 √ π d (f 1 d) |m| e d f 1 2 |j| |j| j 1 • • • j d |m| + |j| |j| |m|! ≤ (h A 2 ) |m| f 0 √ π d (2 f 1 d) |m| (e d f 1 ) |j| |j| j 1 • • • j d |m|! ≡ (h A 2 d) |m| f d 2 f |m| 3 f |j| 4 |j| j 1 • • • j d |m|!, (3.16) 
where f 2 , f 3 , f 4 are numerical constants. Estimates (3.2) and (3.16) imply

D m V (ζ(x, a)) m! (x -a) m ϕ j (A, B, h, a, η, x) ≤ M exp(4τ (δ 2 d + a 2 ))(h A 2 (d/δ 2 )f 3 ) |m|/2 f d/2 2 f |j|/2 4 |m|! |j| j 1 • • • j d .
So, by the Schwarz inequality, (1.4), (3.9), and (3.18),

D m V (ζ(x, a)) m! (x -a) m ψ l (x, t, h) ≤ J(l) n=0 |j|=n D m V (ζ(x, a)) m! (x -a) m ϕ j (A, B, h, a, η, x) 2 ≤ M 2 exp(8τ (δ 2 d + a 2 ))(h A 2 (d/δ 2 )f 3 ) |m| f d 2 |m|! J(l) n=0 |j|=n f |j| 4 |j| j 1 • • • j d = M 2 exp(8τ (δ 2 d + a 2 )) (h A 2 (d/δ 2 )f 3 ) |m| f d 2 |m|! J(l) n=0 f n 4 d n = M 2 exp(8τ (δ 2 d + a 2 )) (h A 2 (d/δ 2 )f 3 ) |m| f d 2 |m|!   (f 4 d) J(l)+1 -1 f 4 d -1   ≤ M 2 exp(8τ (δ 2 d + a 2 )) (h A 2 (d/δ 2 )f 3 ) |m| f d 2 |m|! 2 (f 4 d) J(l) . (3.17) 
The last step depends on the following fact: We can assume without loss that q = f 4 d ≥ 2, so that for any positive integer p, we have -1 ≤ q p+1 -2q p , and hence, q p+1 -1 ≤ 2q p+1 -2q p . Thus, (q p+1 -1)/(q -1) ≤ 2q p .

(3.18)

We use the hypothesis |m| = l + 2 and note that |m|! ≤ (l + 2) l+2 . We then conclude that there exist constants g 0 and g 1 , that depend only on d and J, such that (2.13) holds. This implies the lemma.

Proofs of Lemmas 2.3 and 2.4

The proof of Lemma 2.3 relies on two preliminary lemmas. 

| ϕ j (A, B, h, a, η, x), (x -a) m ϕ k (A, B, h, a, η, x) | ≤ h|m|/2 ( √ 2d) |m| A |m| (|k| + 1)(|k| + 2) • • • (|k| + |m|), (4.1) 
and

ϕ j (A, B, h, a, η, x), (x -a) m ϕ k (A, B, h, a, η, x) = 0, if |j| -|k| > |m|.
Proof: [START_REF] Hagedorn | Raising and Lowering Operators for Semiclassical Wave Packets[END_REF] to express (x i -a i ) in terms of raising and lowering operators. Doing so, we obtain

For i = 1, 2, • • • , d, we can use equation (3.28) of
(x i -a i ) ϕ k (A, B, h, a, η, x) = h/2 d p=1 A ip k p + 1 ϕ k ′ (p) (A, B, h, a, η, x) + h/2 d p=1 Āip k p ϕ k ′′ (p) (A, B, h, a, η, x),
where k ′ (p) and k ′′ (p) are constructed from k by replacing the component k p by k p + 1 and k p -1, respectively. Thus, (x i -a i ) ϕ k (A, B, h, a, η, x) may be written as a sum of 2d terms, each of which has the form b q ϕ q (A, B, h, a, η, x), where |q| ≤ |k| + 1 and |b q | ≤ h/2 A |k| + 1. From this and a simple induction, (x -a) m ϕ k (A, B, h, a, η, x) may be written as a sum of (2d) |m| terms, each of which has the form b q ϕ q (A, B, h, a, η, x), where |k| -|m| ≤ |q| ≤ |k| + |m| and

|b q | ≤ (h/2) |m| A |m| (|k| + 1)(|k| + 2) • • • (|k| + |m|).
This implies the lemma.

In the next lemma we use the shorthand X m (t) to denote X m (l, t, h) of Lemma 2.3.

Lemma 4.2 For each N > 0, there exists D(N) < ∞, such that

sup {j,k : |j|, |k|≤ J(l)} | (X m 1 (t 1 ) X m 2 (t 2 ) • • • X mq (t q )) j k | ≤ D(N) √ h sup t∈{t 1 ,t 2 ,•••tq} A(t) |m 1 |+|m 2 |•••+|mq| J(l) (|m 1 |+|m 2 |+•••+|mq|)/2 , (4.2) 
for any collection m 1 , m 2 , . . . , m q of multi-indices that satisfy |m j |/ J(l) ≤ N.

Proof: The matrix X m is obtained from X m by restricting its indices to |j|, |k| ≤ J(l). Using Lemma 4.1, we see that for such values of the indices,

X m j k (t) ≤ ( √ 2h d A(t) ) |m| J (l) |m|/2 (1 + 1/ J(l))(1 + 2/ J(l))) • • • (1 + |m|/ J(l)).
Thus, |m|/ J(l) ≤ N implies

X m j k (t) ≤ ( √ 2h d A(t) ) |m| (1 + N) |m|/2 J (l) |m|/2 .
We estimate the absolute value of the j, k matrix element of the product

| (X m 1 (t 1 ) X m 2 (t 2 ) • • • X mq (t q )) j k | ≤ |p i | ≤ J(l), i = 1, • • • , q -1 |p 1 -j| ≤ |m 1 |, |p 2 -p 1 | ≤ |m 2 |, • • • , |k -p q-1 | ≤ |mq| X m 1 j p 1 (t 1 ) X m 2 p 1 p 2 (t 2 ) • • • X mq p q-1 k (t q ) (4.3)
by bounding the absolute values of each of the matrix elements X m i p i-1 p i (t i ) by

X m i p i-1 p i (t i ) ≤ ( √ 2h d A(t i ) ) |m i | (1 + N) |m i |/2 J(l) |m i |/2 , (4.4) 
and multiplying by a bound on the number of terms.

To estimate the number of terms, we first note that for any multi-index r, the number of 

i | ≤ |m| for i = 1, 2, • • • , d, which is (2|m| + 1) d .
Thus, the number of terms is bounded by

|p i | ≤ J(l), i = 1, • • • , q -1 |p 1 -j| ≤ |m 1 |, |p 2 -p 1 | ≤ |m 2 |, • • • , |k -p q-1 | ≤ |mq| 1 ≤ (2|m 1 | + 1) d (2|m 2 | + 1) d • • • (2|m q | + 1) d ≤ (e 2 ) d(|m 1 |+|m 2 |+•••+|mq|) . (4.5)
The final inequality follows because 1 + 2|m j | ≤ e 2|m j | . We obtain the lemma by using (4.4) and (4. 

A(t) -m ( X m 0 (t 0 ) X m 1 (t 1 ) X m 2 (t 2 ) • • • X mq (t q )) j k = √ h sup t∈{t 0 ,t 1 ,•••,tq} A(t) -m |r|≤ J(l) X m 0 j r (t 0 ) | (X m 1 (t 1 ) X m 2 (t 2 ) • • • X mq (t q )) r k | ≤ |r| ≤ J(l) |j -r| ≤ |m 0 | 2 |m 0 |/2 (|r| + 1)(|r| + 2) • • • (|r| + |m 0 |) × D(N) |m 1 |+|m 2 |+...+|mq| J(l) (|m 1 |+|m 2 |+...+|mq|)/2 ≤ |r| ≤ J(l) |j -r| ≤ |m 0 | 2 |m 0 |/2 J(l) |m 0 |/2 (1 + 1/ J(l))(1 + 2/ J(l)) . . . (1 + |m 0 |/ J(l)) × D(N) |m 1 |+|m 2 |+...+|mq| J(l) (|m 1 |+|m 2 |+...+|mq|)/2 ≤ |r| ≤ J(l) |j -r| ≤ |m 0 | 2 |m 0 |/2 (1 + N) |m 0 |/2 D(N) |m 1 |+|m 2 |+...+|mq| J (l) (|m 1 |+|m 2 |+...+|mq|)/2 ≤ 2 |m 0 |/2 (1 + N) |m 0 |/2 D(N) |m 1 |+|m 2 |+...+|mq| J(l) (|m 1 |+|m 2 |+...+|mq|)/2 |j-r|≤|m 0 | 1.
Since the sum in the last line is (1+2|m 0 |) d ≤ e 2d|m 0 | , we obtain the desired estimate.

We now turn to the proof of Lemma 2.4. Our first step is to study the combinatorial factor F p (n, q) in the one dimensional case.

(4.6)

This quantity is zero if n < q or n > qp. Otherwise, it satisfies

G p (n, q) ≤        n -1 q -1 if q ≤ n ≤ [q(p + 1)/2] q(p + 1) -n -1 q -1 if [q(p + 1)/2] + 1 ≤ n ≤ qp. (4.7) 
Proof: If n < q or n > qp, the sum in (4.6) contains no terms, so G p (n, q) = 0. The quantity G p (n, q) is the number of ways that the number n can be decomposed as n = m 1 + m 2 + . . . + m q with each m j satisfying 1 ≤ m j ≤ p. We uniquely associate to each such decomposition of n, a corresponding decomposition of n ′ = q(p + 1)

-n = m ′ 1 + m ′ 2 + . . . + m ′ q by setting m ′ j = p + 1 -m j .
This association is a one-to-one correspondence, so we see that G p (n, q) satisfies the symmetry relation G p (n, q) = G p (q(p + 1) -n, q). (4.8)

As a consequence, the second inequality in (4.7) (with [q(p + 1)/2] + 1 ≤ n ≤ qp) follows from the first (with q ≤ n ≤ [q(p + 1)/2]).

To prove the first inequality in (4.7) we drop the condition m j ≤ p and exactly calculate the resulting function. Dropping the upper bound on the m j , we clearly have G p (n, q) ≤ G(n, q), where G(n, q) = 1.

So, the lemma will be proved once we establish

G(n, q) = n -1 q -1 . (4.9) 
To prove this, we use induction. Formula (4.9) is trivial to verify for all n ≥ 1 when q = 1 and for all n ≥ 2 when q = 2. Assume (4.9) has been verified whenever n ≥ q -1, and suppose n ≥ q. We have

G(n, q) = n-q+1 m 1 =1 G(n -m 1 , q -1) = n-q+1 m 1 =1 n -m 1 -1 q -2 ,
so the induction step is complete, since it is known (see [START_REF] Vilenkin | Combinatorics[END_REF], p.36) that

n-q+1 m 1 =1 n -m 1 -1 q -2 = n -1 q -1 . (4.10)
This ends the proof of the lemma.

Our next step is to obtain an estimate for G p (n, q) that depends only on n.

Lemma 4.4 Let G p (n, q) be defined by (4.6). There exists a constant C 7 , such that p ≥ 1, q ≥ 1, and n ≥ 1 imply

G p (n, q)) ≤ (C 7 ) n . ( 4 

.11)

Proof: We note that G p (n, q) is zero unless q ≤ n ≤ qp. Furthermore, G p (q, q) = G p (qp, q) = G 2 (2, 1) = 1 and G 1 (n, q) = δ n q . So, we need only prove existence of C 7 , such that p ≥ 2, q ≥ 1, (p, q) = (2, 1) imply sup q<n<pq (G p (n, q)) 1/n ≤ C 7 .

(4.12)

To prove this, we first study the case where q < n ≤ [q(p + 1)/2]. Since q ≤ n, we have

q 1/n = exp(ln(q)/n) ≤ exp(ln(n)/n) ≤ e 1/e .
Thus, by (4.7), the condition q < n ≤ [q(p + 1)/2], and (3.13), we have

(G p (n, q)) 1/n ≤ (n -1)! (q -1)! (n -q)! 1/n ≤ q 1/n (n -1)! q! (n -q)! 1/n ≤ e 1/e
n aq q/n (n -q) (n-q)/n . (4.13)

An explicit computation shows that ∂ ∂n n q q/n (n -q) (n-q)/n = n q q/n (n -q) (n-q)/n q n 2 ( ln(q) -ln(n -q) ) .

From this, we deduce that the right hand side of (4.13) attains its maximum at n = 2q. Evaluating that maximum, we obtain sup q<n≤[q(p+1)/2] (G p (n, q)) 1/n ≤ 2 a e 1/e . (4.14)

For [q(p + 1)/2] < n < pq, the number n ′ = q(p + 1) -n satisifes q < n ′ ≤ [q(p + 1)/2] and n ′ /n ≤ 1. Thus, by (4.8) and (4.14), we obtain We now generalize Lemma 4.4 to the multi-dimensional case.

(G p (n, q)) 1/n = (G p (n ′ , q)) 1/n ≤ 2 a e 1/e n ′ /n ≤ 2 a e 1/e . Thus, sup [q(p+1)/2]<n<pq (G p (n, q))
Lemma 4.5 Let F p (n, q) be defined by (2.16). For all p ≥ 1, q ≥ 1, and n ≥ 1, we have

F p (n, q) ≤ C (n+qd) 7 , (4.16) 
where C 7 is the constant of Lemma 4.4.

Proof: With m j temporarily denoting numbers instead of multi-indices, we define

Γ p (n, q) = 0 ≤ m 1 , m 2 , • • • , mq ≤ p m 1 + m 2 + • • • + mq = n 1,
which is zero unless 0 ≤ n ≤ pq.

By defining m ′ j = m j +1, we see that every decomposition of n as n = m 1 +m 2 +• • •+m q , with 0 ≤ m j ≤ p, corresponds uniquely to a decomposition of n + q as n + q

= m ′ 1 + m ′ 2 + • • • + m ′ q , with 1 ≤ m ′ j ≤ p + 1.
Therefore, we have the identity Γ p (n, q) = G p+1 (n + q, q). (4.17)

We now let the m j denote multi-indices and let m j (k) denote the k th component of m j . Then, using (4.17) and Lemma 4.4, we easily obtain

F p (n, q) ≤ 0 ≤ m j (k) ≤ p q j=1 d k=1 m j (k) = n 1 = Γ p (n, qd) ≤ C (qd+n) 7 .
Proof of Lemma 2.4: Suppose 2 ≤ q ≤ l + 2, and let L q (l) satisfy (2.17), i.e.,

L q (l) ≤ C q 1 hq q! q(l+1) n=3l-2 (C 2 h l) n/2 F l+1 (n, q).
By Lemma 4.5 and (3.13), there exist C 8 and C 9 , such that

L q (l) ≤ (C 1 C d 7 ) q (a h q) q q(l+1) n=3l-2 (C 2 h l) n/2 C n 7 ≤ C q 9 (h q) q q(l+1) n=3l-2 C 8 h1/2 l 1/2 n . ( 4 

.18)

Note that we can take

C 8 = max { 1, C 2 C 7 }, (4.19) 
C 9 = max { 1, C 1 C d 7 }, (4.20) 
because we can assume C 8 ≥ 1 and C 9 ≥ 1 without loss of generality.

We arbitrarily choose two positive numbers α < 1 and β < 1. We then define By summing a geometric series in (4.18), we see that

g = 1 C 2 
L q (l) ≤ C q 9 (1 -α) (h q) q C 8 h1/2 l 1/2 3l-2 = C q 9 C 2q 8 (1 -α) (h q C 2 8 ) q C 8 h1/2 l 1/2 3l-2 . (4.23)
As a function of q, l q q = exp ( q ln(l/q) ) is maximized at q = l/e, where it has the value e l/e . Thus, l q q ≤ e l/e . This, q ≤ l + 2, and h l C 2 8 ≤ α 2 < 1 imply 1 (h q C 2 8 ) q = 1 (h l C 2 8 ) q l q q ≤ e l/e (h l C Note that the factor 2 3 can be replaced by (1 + ǫ), with ǫ arbitrarily small, by taking h sufficiently small.

Remark We can choose α and β to satisfy β e 1/e ≤ α < 

Proof of Theorem 1.2

To prove Theorem 1.2, we revisit the proof of Theorem 1.1 and make the T dependence of all constants explicit. We then allow T to grow with h with the restriction that our approximation remain close to the actual solution as h → 0. Since V is bounded below and energy is conserved, |a(t)| grows at most linearly with time. Thus, there exist v 1 > 0 and v 0 > 0, such that v(t) defined by (2.33) satisifies v(t) ≤ v 0 exp(v 1 t).

(5.1)

From assumption (1.13), it follows that w(T ) = sup 0≤|t|≤T A(t) ≤ N exp(λT ).

(5.2)

In the sequel, we denote all innessential constants that do not depend on T by the same symbol c.

Consider Lemma 2.2. For z ∈ C δ (ζ(x, a(t))), we can prove the existence of ρ > 0 such that To arrive at these conclusions, we imposed various conditions. Those conditions were (3.5), that now requires h ≤ c exp(-2λT ), (2.36), than now requires c exp(2λT ) exp(-νT ) < 1, and h ≤ g(T )/2 used in (4.25), that now requires h ≤ c exp(-νT ).

D m V (ζ
These are all satisfied, provided we take

T (h) ≤ T ′ | ln(h)|,
with T ′ > 0 sufficiently small. Using this in our estimate for the error term ξ(t, h), we see that for sufficiently small T ′ , |t| ≤ T ′ | ln(h)| implies

ψ(x, t, h) -Ψ(x, t, h) L 2 (I R d ) ≤ C ′ exp(-γ ′ /h σ ),
for some γ ′ > 0, σ > 0, and C ′ > 0.

  m V (ζ(x, a)) as a d-dimensional Cauchy integral, we easily obtain the bound1 m! |D m V (ζ(x, a))| ≤ M exp(4τ (δ 2 d + a 2 )) δ |m| exp(2τ (x -a) 2 ). (3.2)Thus, estimate (3.1) follows from the corresponding estimate on the integral

Lemma 4 . 1

 41 The matrix elements of (x -a) m satisfy

2 8 ) 9 C 2 l 1 /2 l- 6 = e 1 /e C 9 C 3 8 h1/2 l 1/2 l C 2 9 ( 1 8 . 2 9( 1 - 8 ≤ 2 3 e C 2 9 ( 1 -α) g 3 C 2 8 e

 89216189182182918 l+2 . From this, C 8 ≥ 1, and C 9 ≥ 1, we concludeL q (l) ≤ C l+2 -α) (h l) 3 C 2 see from (4.24) that if h ≤ g/2, then we have L q (l) ≤ e -| ln(β)|l C α) (g -h) 3 C 2 -| ln(β) |g/h . (4.25)

Lemmas 4 . 3 , 4 . 4 ,

 4344 and 4.5 have no time dependence, and the time dependence of Lemmas 2.1, 2.2, 2.3, 3.1, 4.1, and 4.2 has been made explicit in their conclusions.

  (x, a(t))) m! (x -a(t)) m ψ l (x, t, h) ≤ c exp(ρ|t|) c h (l + 2) exp(λ|t|) our bound on |V (z)| we haveD m V (ζ(x, a(t))) m! ≤ c exp(ρ|t|) exp(c|x -a(t)|)instead of(3.2). With this and the estimate exp(cy) ≤ exp(cy 2 ) + exp(c) for all c > 0 and y > 0, we see that the estimates in the proof of Lemma 2.2 are still valid. This yields (5.3). Consequently, the constants C 4 and C 5 appearing in (2.24) satisfyC 4 (T ) = c exp(ρT ) C 5 (T ) = c exp(λT ),where ρ > 0. By using estimates (5.1) and (5.2) in (2.34) and (2.35), we see that when we apply Lemma 2.4, the constants C 1 and C 2 satisfyC 1 (T ) = c exp(ρT ) C 2 (T ) = c exp(2λT ).We still must determine the T dependence of C and γ of Theorem 1.1. We do this by determining the T dependence of g, γ 1 and C 3 in Lemma 2.4. Equations (4.19) and (4.20) yield C 8 and C 9 , in terms of which the above constants are determined. We find that C 8 (T ) = c exp(λT ) C 9 (T ) = c exp(ρT ). Consequently, from (4.26), (4.27) ,(4.28), we have g(T ) = c exp(-νT ), ν = 2ρ + 6λ γ 1 (T ) = c exp(-νT ), C 3 (T ) = c exp(µT ), µ = 8ρ + 10λ.

  multi-indices indices p that satisfy |p| -|r| ≤ |m| is equal to the number of vectors v with integer components, such that | d i=1 v i | ≤ |m|. This is bounded by the number of vectors with integer components, such that |v

  5) to bound (4.3). We mimic the proof of Lemma 4.2. Let m = |m 0 | + |m 1 | + |m 2 | + . . . + |m q |. By Lemmas 4.1 and 4.2,

	Proof of Lemma 2.3 √ h sup
	t∈{t 0 ,t 1 ,•••,tq}

  1 e 1/e . Then, since β 2 C 2 9 C 4 8 e 2/e ≤ β 2 e 2/e ≤ α 2 , we obtain the conclusion of Lemma 2.4 with -e -1/e ) β 6 , (4.28) where C 8 and C 9 are related to C 1 , C 2 , and C 7 by (4.19) and (4.20). Note that C 7 is purely combinatorial and has no time dependence.

	g =	β 2 9 C 6 C 2 8 e 2/e ,	(4.26)
	γ 1 =	| ln(β)| β 2 C 2 9 C 6 8 e 2/e	(4.27)
	C 3 =	2 3 e 1+6/e C 8 9 C 10 8 (1	

≤ m 1 , m

, • • • , mq ≤ p m 1 + m 2 + • • • + mq = n

≤ m 1 , m

, • • • , mq m 1 + m 2 + • • • + mq = n
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