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We formulate an adiabatic theorem adapted to models that present an instantaneous
eigenvalue experiencing an infinite number of crossings with the rest of the spec-
trum. We give an upper bound on the leading correction terms with respect to the
adiabatic limit. The result requires only differentiability of the considered projector,
and some geometric hypothesis on the local behavior of the eigenvalues at the
crossings. ©1999 American Institute of Physid$S0022-24889)00511-3

I. INTRODUCTION

The availability of intense pulsed laser sources has opened a large field of possibilities to
control atomic and molecular dynamical processes. One of the main theoretical tools to analyze
these processes is adiabatic Floquet thkaryd references therein. The general setup can be
described as follows. One considers a molecule described by a Hamiltépiacting on a Hilbert
spaceH, in interaction with one radiation mode of frequeney(The description of the interaction
with several modes of different frequencies can be formulated along similar) li8ege the
intensity of the field is quite large, the field is treated as a classical field. The Hamiltonian of the
molecule perturbed by the electromagnetic field can be written, for example, as

H=Hy+EMF(wt+ 6y), (1)

whereM is the dipole moment operator of the molecuies R is a parameter representing the
amplitude of the radiation fields is a real valued 2-periodic function andd, the initial phase.

We assume thatly has a discrete spectrum. In order to describe a laser pulse the amplitude is
taken as a slowly varying time dependent functi€(t), where one takes, e.ge=1/T, with T,

the duration of the pulse. A new technique that provides an efficient method for complete transfer
of population is based on frequency chirping: within the pulse duration the frequency is also
slowly modulatedw = w(et).

This model has thus two kinds of time dependencies in the Hamiltonian: one that is periodic
and another one that is slowly varying. The periodic part can be treated by Floquet methods, and
the slowly varying part by adiabatic theory. Adiabatic Floquet theory is based on the following
statement: Assume that in the Hamiltonidn the parameteE and the frequency are made time
dependentE(t), w(t), andM stays time independent. Consider the propagsitrt,; 6;), So-
lution of the Schrdinger equation
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i %U(t,to;90)=H(wt+ 0)U(t,t;6,), U(t,t;6,)=1 @)

acting on the Hilbert spac#. We consider an enlarged Hilbert space by tensofihwith the
space of square integrable functions on the unit cifcf¢S!, ). The operatotJ(t,ty;6) can be
lifted into the enlarged space, interpreting #hdependence as a multiplication operator. We can
then define

UK(t,to) = eitw(th(t,to : g)etow(to)&

whered=dld6. The statement is that E) is equivalent to

J
iEUK(t,to):K(t)UK(t,to) 3
with
_ F)
K(t)=—iw(t) 70 +Ho+E(t)MF(0)

andw (t) denotes an effective instantaneous frequency defined @ty= w(t) +t dw(t)/dt. As-
suming that the time dependencekfit), «(t) is slow one can develop adiabatic techniques for
the evolution of(3). WhenK has pure point spectrum, the first ingredients are the instantaneous
eigenvalues and eigenvectors. They always can be written and labeled in the form

)\j’k=7\j’0+km, kEZ

_ (4)
b (0) = o ).

The indexj has the same cardinality as the dimension of the Hilbert spac€hus, even if we

take simple models with finite dimensiorid], the Floquet spectrum has infinitely many eigenval-

ues. As functions ofE and w, these eigenvalues may exhibit crossings, which the adiabatic
approximation can accommodate in case there is a finite number of them, see Refs. 2 and 3. The
structure(4) of the eigenvalues is such that if we consider a slowly vargffgctivefrequency

w (t) that goes through 0 at some timyg the nature of the spectrum becomes quite different. One
can encounter situations in which a branch of instantaneous eigenvalues undergoes an infinite
number of crossings with other branches, or the spectrum may become suddenly continuous.
Hence it becomes necessary to investigate the validity of the adiabatic theorem in such situations.
Let us stress that a strictly positive time dependent frequerfty may give rise quite naturally to

an effective frequencys(t) that goes to zerdlndeed, consider a linear variation @fof the form

(x)(t): &)O_at,
with wg, a>0 on the time interval 0,wq/a), which is far from exotic. Then
w (1) = wg— 2at

goes through zero dt= wy/(2a) e[0,wg/a). As it has been shown in Refs. 4 and 5, the possi-
bility to vary the frequency is a powerful method to enhance the control of molecular processes
driven by laser.

We will confine ourselves to the case where a branch of eigenvalue undergoes an infinity of
crossings with other branches. As this situation is not generic, as actual crossings are more the
exception than the rule, we give below a whole class of systems for which this situation is true.
Moreover, it is probably the only case in which we get enough regularity to prove an adiabatic
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theorem. Note also that in casg(t) passes through 0, the domainkoft) becomes time depen-
dent, so that technical issues regarding regularity of the evolution operator have to be addressed.
This is done in the Appendix A.

The goal of the present paper is to formulate an adiabatic theorem that can be applied to such
situations with an estimate on the corrections to the adiabatic limit. Adiabatic Theorems without
gap conditions are known to be true, see Ref. 6, however, in general, no estimates on the error
terms are available.

While this work was motivated by the physical situation described above and discussed below
in the examples, our analysis of the adiabatic approximation is model independent and can be
applied to more general situations.

II. ADIABATIC THEOREM

A. Context

The adiabatic approximation in quantum mechanics has a long history which we will not
attempt to retrace here. We refer the reader to the recent stifvays references therein. Let us
simply recall here that the works following that of Born and Folok Kato? Nenciul® and Avron,

Seiler, and Yafft' have led to a formulation of the adiabatic theorem under the usual gap as-
sumption that is general and where the error term is well controlled and of artiecase the gap
assumption is modified, the situation is less explicit. In this section, we switch back to the notation
H(et) for the slowly varying time-dependent Hamiltonian. Assubhgs) is smooth inse[0,1]

and there exists a spectral projecR{is) of H(s) which is stronglyC? on[0,1]. Avron and Elgart

have shown in Ref. 6 that the adiabatic theorem holds under these conditions, pre{&)ies of

finite rank, independently of any spectral considerations. A similar result was proven by
Bornemantt® for discrete hamiltonians in case the set of eigenvalue crossings is of measure zero
in time. The limitation of these approaches is that, in general, no estimate can be made on the rate
at which the adiabatic regime is attained. In certain specific situations, an estimate on this rate is
available. In the case where the spectral measupe is a-Holder continuous, withe
=P’(s)¥(s), ¥such thatt=|¢)(y|, the rate of convergence was shown in Ref. 6 to be of order
e¥*a) A case where the spectrum Hif(s) is assumed to be dense pure point is dealt with in
Ref. 12. Another situation, considered in Ref. 13, where the gap hypothesis is not necessarily
fulfilled occurs wherH(s) =H(s) + eH(s), where the domain dofi;(s) is smaller than that of
Ho(s). In both cases, the error term remains of oreldn the present article, we consider another
situation in which the usual gap assumption is modified and the error made in the adiabatic
approximation can be estimated. We make the hypothesis that the prdsois associated

with an eigenvalua (s), in the sense that (s)P(s) =\ (s)P(s), for all se[0,1]. We assume that

\(s) is isolated in the spectrum except at a series of tifm®$,.n accumulating at e (0,1)

where it experiences crossings with the rest of the spectrum. Requiring some conditions on the
local behavior of the gap betweearfs) and the rest of the spectrum near the crossing paipts

we estimate the error term in the theorem withaydriori knowledge on the nature of the rest of

the spectrum. Note that fa= o0, such that\ (o)) is not isolated in the spectrur®(o,) does not
represent the entire spectral projector associated with the eigenvaiyke

B. One crossing

Let us make more precise the regularity hypotheses under which we shall work. In order to
deal with the application described above, we will assume the Hamiltonian is unbounded. This
causes technical difficulties motivating the pér} of the hypothesis below which justifies our
manipulations. We show in the appendix that this assumption is verified for our models. In case
H(s) is bounded, this part of the assumption is automatically verified.

(HO) (i) We assume that for ake[0,1\{a}, H(s) is a stronglyC* self-adjoint operator
defined on a dense domain independent o6 in a separable Hilbert spadé, where 0<a<1.
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WhereadH(a) is bounded self-adjoint oif. We also assume the existence of a projeBt®) of
H(s) which is stronglyC? on [0,1] and such thaH (s)P(s)=P(s)H(s)=\(s)P(s), for all s
e[0,1].

(i) Further assume that the unitary evolution operatd(s)=U(s,0) and A(s)=A(s,0)
generated byH(s), respectivelyH(s)+ €i[P’(s),P(s)] (see(5), (6)) are well defined for alk
€[0,1] and possess the propertigsto (v) listed in Theorem A.1. Note th&(s) needs not be
finite dimensional and is continuous.

We start by considering one crossing 2ofwith the rest of the spectrum by revisiting the
strategy proposed in Ref. 2, making use of the general analysis presented in Ref. 11.

Let g(s) be the gap betweern\(s) and the rest of the spectrum dfi(s): g(s)
=dist(\(s),(S)\{\(s)})=0, se[0,1]. We also introduce the bounded, strongly operator
L(s)=i[P’(s),P(s)]. We assume thag {0}={o} and consider the strong differential equa-
tions onD

ieU’(s)=H(s)U(s), U(0)=1, (5)
ieA’(s)=(H(s)+eL(s))A(s), A(0)=l. (6)

The unitaryA is the so callecadiabatic evolutionwhich possesses the well known intertwining
relationA(s)P(0)=P(s)A(s).>** Finally, let W(s) be defined byw(s)=A"1(s)U(s). We have
onD

W’ (s)=—A"Y(s)L(S)A(s)W(s), W(0)=1, (7)

in the strong sense. To compare the adiabatic and actual evolutions, we need to compute the size
of the difference of the unitarW(s) at two times surrounding the crossing. This is the aim of the
next result.

Lemma 2.1Under the above assumptions, we have for asyug<t<o<s<su;<1,

IW(ug) —W(uy) | <C(elug—t|/g7+ €|uy—s|/gi+ e/ g, + el gs+|s—t|) (8)

whereg,=inf,y, 9(u), 9s=infycrsu 19wy @nd the constant is uniform inug, uy, s, andt
(see Fig. 1L

Remark:On the basis of the classical paper by Born and Foekd the detailed analysis of
crossings by Hagedorhone would expect the corresponding estimate without the first two terms.

FIG. 1. The various quantities defined in Lemma 2.1.
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However, such an estimate requires more detailed knowledge of the structure of spectrum, e.g.,
that the gap is given by the distance between two eigenvalues, than what we assume in our general
setting.

The proof of Lemma 2.1 is presented in Appendix B. The idea of the proof is to integrate Eq.
(7) over the intervalug,u;] and then to get estimates of the sizes on each subintdg)s],
[t,s], and[s,u;] which involves only the gaps.

Lemma 2.1 can be used to treat two standard situations:

(1) If there is a gapG between\(s) and the rest of the spectrum, this lemma implies that the
adiabatic approximation holds with an error term boundedCleyG2.

(2) If one starts the evolution on a crossing point which splits BRenear 0, we can use this
lemma to show that the adiabatic approximation is valid with an error bounded by

V(D -AD)[=Ce*+20

if € is small enough. This is precisely the situation encountered at the beginning of the
interaction of a laser pulse with frequency that is in resonance with the difference between two
energy levels of the molecuté:!®

To get this estimate, we can consider only half of the problem by letting aside all the terms
containing at and settingu;=1:

IW(1)—W(0)||<C(e|1—s|/gi+ e/gs+s). (9)

This is indeed fully justified by the proof of the lemnisee Appendix B Next, we have by
hypothesis thag(s)=g,=Gs" if s is small. Introducing this behavior in E¢9), we obtain
[W(1)—W(0)|<C(e/s**+s). The result follows now by balancing the two contributions by
choosings=s(€) = e¥(**29)_ Again, with more information on the spectrum, as in Refs. 2 and 3,
one should be able to improve the above estimate to artfer @,

C. Infinite number of crossings

We now have all the information required to proceed to the case of an infinite number of
crossings. We make the following hypotheses describing what happens in the neighborhood of
each crossingsee Fig. 2

Spectral hypotheseJhere exist two partition$u, },. of [0,2) and (@,1] respectively:

O0=Uy <'+ <Up_;<Up - —Ug=a=Uuj Uy <ug_;<---<uj =1

such that for eack e N*,

—_——— -

Op—1 Up—1 O U Okt

FIG. 2. lllustration of the spectral hypothedd4 —H2 on the interval (&). The intervalsv, are represented by—).
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(H1) one can find non empty open intervalg , which satisfy V, C[u,_,,uy ],
V, C[u, ,u_,] and

supg(s)= inf g(1), (10)

* *
SEVk telk

wherel, =[U,_;,u, \V, andly =[u, ,ui_,]\Vy .
(H2) there are constan@.. (k) >0 and ak-independent positive constaatsuch that for all
seV, :

G.(k)[s—oy|*<g(s), (11

for some pointo, €V .

Comments(1) These Spectral Hypotheses mean that the crossings are well separated and that
they behave as power of order at mestHypothesis H1) tells us that outside the crossing
regions ;) the gaps are relatively “large.” This means that the only accumulation point of
small gaps is.

(2) The choice of a constant exponenis not as restrictive as it might look at first. Indeed,
we are interested in an upper bound, so it is the great#sat will determine the global behavior.

(3) In the applications, we will consider examples whgre'{0}={o, }: the set of crossing
points of\ (s) with the rest of the spectrum. This implies>0. But, the case of an infinite number
of avoided crossings can be treated by takirrg0 in Hypothesis H2).

To obtain an estimate for the difference between the real evolukidr) and the adiabatic one
A(1), theidea is to apply Lemma 2.1 on a finite number of crossings and to take a simple integral
bound[as in (B2)] over the rest of the interval surroundirsy The choice of the number of
crossings will be optimized with respect &in order to get a simple form for the bound of the
remainder term. To state the corresponding result, we need to introduce some notations. Let
A~ (k)=maxX|u; —og | Juc_,—og [} and 7. (k)=maxA.(K)/G2(k),A%(K)/G-(K)}. The functions
Ki—|ug —al/=k_ 7+ (k) Y729 are monotonically decreasing to zero, sogifs small enough,
we defineK .. (€) e N* as the greatest integer satisfying

|ug—al

=€
EE:lTi(k)1/(1+2a)

l/(1+2a). (12)

This integer always exists & is sufficiently small and, by constructioK,..(e€) —« ase—0.
Theorem 2.1:For e small enough, unde{0) and the spectral hypothesd$1), (H2) and
provided that

s(ers (k)Y 29< |V |/2 for all 1<sk<=K_.(e), (13
for some constarg>0, we have that
U(1)=A(1)+0(max|ug_,—al.lug —al}).

Hence, as lim oK.(e)=«, |U(1)—A(1)| goes to =zero for e~0 as fast as
max{lupz_(e)—al,IUE+(E)—a|}-

Remarksi(1) The theorem states that the error can be estimated provided we can compute the
critical valueK .. (€). Further considerations on the practical aspects of this computation are given
in the next section.

(2) Condition(13) implies that the size of the intervaﬂq+ cannot be too small with respect to
€7+ (k).
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(3) While we shall apply the theorem in a situation where the spectrum is simple and pure
point, the theorem remains valid under the sole existence of an eigenvalue separated from the rest
of the spectrum by gaps with the properties statedH X—(H2), without any knowledge on the
rest of the spectrum or restriction on the dimensiorP(s$).

(4) The introduction of an adjustable constanis necessary in the following application to
satisfy the hypothesis of the theorem.

lll. APPLICATION

We can obtain more explicit estimates on the rest by considering some specific behavior at the
crossings.

Let us introduce the following notatiorf,~f(k) means that there exist two constants
0<c;<c,<« such thatc;f(k)<F,<c,f(k) for ke N* large enough. We have the

Proposition 3.1:Assume the hypothesis of Theorem 2.1 and the following behavior for the
relevant quantities:

|ug —a|=Cy/kP+C,/kF 1+ 0(1KA*Y),  B>0,Cy#0
G.(k)~k?,
IVic|~1k°,  5>0.

We set u=min{B+1+2y,a(B+1)+7}. Then|U(1)—A(1)|=0(eP) where the exponenp is
given by

Tion i w>(1+2a)

—v Yv>0 if u=(1+20a)

B
\ (B+D(1+2a)—

P= 1+ 2«

if u<(l+2a)

provided thaté satisfy the following constraintg8+1< < g+max1,u/(1+2a)}.

Remark:Let us mention that it can be shown that in caseB=y=1 and5=2, we can take
p=1/3, instead op=1/3— v, for all v>0. Now, if in Lemma 2.1, the right member were missing
the termse|uo—t|/g2+ €|u,—s|/g2, as one would expect with a little more information on the
spectrum, an analysis similar to the one provided above leads to an error term oétd€&his
makes it reasonable to expect that in such a situation the error actually is of that order, as it was
the case in the corresponding analysis of one crossing performed in Ref. 2, see Ref. 3. Finally, it
is shown in the examples below that the valuesB=vy=1 and §=2 are generic in some sense.

IV. EXAMPLES

We now consider a family of models for which the situation just described takes place as the
effective frequencyw takes the value zero. We start by considering the most general model for a
two level system driven by a periodic field. The model can be characterized by choosing freely the
eigenvalues\ , =N +me andA_ ,=N_+Kkw and the corresponding eigenfunctions of the
form:

eX(9 cosz( 0)
eV sinz(6)

—e Y Wsinz(0)| ..,

e—iX(ﬂ) COSZ( 0) e’ (14)

‘/’-%—,m( 0)=

)e”“" and ¢ (0)=

in which the functions, y, andz are periodic modulo an integer multiple 6f
Defining the unitary matrix
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e*@cosz(h) —eY?sinz(0)

Y(0)=| . . )
(9) Y@ sinz(9) e *¥ cosz(6)

the corresponding Floquet Hamiltonian can be written(d®pping thed dependence in the
notation

K=—iwd—iwY(dY H)+YDY 1

whereD =diag(\ . ,\_). Using the notation @=x+y, 29=y—x and choosing, without loss of
generality,A , = — A _=\, the Floquet Hamiltonian can be expressed as

wd O+ (N —wdp)cos() (—iwdz+(\—wdp)sin(2z))e 2

TP w2t (- wap)sin@)e??  —@ad—(\—wap)cos(2)

(19

wheredf denotes the derivative with respect@oNote that wherw =0 the operatoK reduces to

the (matrix) multiplication operator by (#)DY ~1(6) on L?(St,C?), whose spectrum consists of
two eigenvaluest\ which are infinitely degenerate. This is to be compared with the general
situation whereK for w=0 becomes a multiplication operator by an arbitraty [@eriodic 2<2
matrix H(6). In that case, the spectrum i§fis continuous and given by two band functions which
are the instantaneoum 6) eigenvalues ofd ().

We will consider two different models with the same eigenvalues but with different eigen-
functions. We remark that since the validity of the adiabatic theorem depends only on the prop-
erties of the eigenvalue@nd regularity properties of the projectpré gives the same upper
bound for the correction for all the moddlk5) with equal spectrum. However, it is clear that the
theorem is useful if the couplings between considered levels are nonzero. With this regard, we
discuss below two examples that have the same spectrum, with an infinite number of crossings.
For the first one, which is the widely used RW#tating wave approximatiormodel of quantum
optics, the couplings are all equal to zero, except @ee beloyw The second model is a pertur-
bation of the first one that yields nonzero couplings between the levels.

We choose, for example, the following eigenvalues:

A (w)=kw*(p(w)+w)/2, where p(w)= V(@ — wg)?+ Q2 (16)

FIG. 3. The first eigenvalues of the RWA and modified RWA models.
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and wg, () are constants. The first model is defined by choosif®) =0, y(8)= 6, i.e., 20(6)
=2¢(0)=0 and cos(2)=—(w—wg)/ n(w), sin(Z)=0/7(w), hencez is independent of. The
corresponding Floquet Hamiltonian is given by
. a l (1)0 Qeiig

KR 0= 155521 et —w,

The second model is defined by the choid®)=—(6)/2, y(0)=0—0(0)/2, i.e., 256)=86,
2¢p(0)=6—p(60) and the same as for the RWA case. This leads to

Wo— @ Qe_i‘g)

Qe w—wg

o)
Km(8)=Kgrwal8)+ 589

We consider now a supplementary smooth slow time dependence in the parameter
=w(s) and ing=0(0,s). This implies that the eigenvalues, the eigenvectors and the correspond-
ing eigenprojectors are smooth functionssp&o that the regularity Hypothesi$iQ)(i) is satis-
fied. We show in appendix thaHQ)(ii) is satisfied as well for any choice of smooth functions
Yy, Z, andA\.

We assume, for simplicity, thais(s)=s (but any other smooth monotonic function sf
would equally d¢. This choice corresponds to the chirping that is most often realized in experi-
ments. We select the eigenvaldgs) =\ o(s)=(7(s)+s)/2 and denote by) the associated
eigenvectofsee Fig. 3. The only crossings that experiences are with the_ ,  ;’s and they take
place at times such that

n(s)=ks, kelZ*. (17

We remark however that these crossings can lead to corrections to adiabaticity, or not, depending
on whether the corresponding eigenvectors are coupled. The nonadiabatic coupling among the
branches is measured by the following scalar product:

(W(S)] s a(8)) == % el V=200 71 (5) i sin(22(s)) 9" (6,9))d6
0

!
__Z (s) zweik0+ig(0,s) de,

B 2 0

where the’ denotes the derivative with respectgo

Recall that the couplings between the eigens{dt® associated with the level(s) and its
orthogonal complement in the Hilbert space is given by the opeta®y=i[P’(s),P(s)], see
(7), since the adiabatic evolutioi(s) follows the instantaneous eigenspaces. A direct computa-
tion of the matrix element$y_ ., 1(S)|L(S)¢(s)) with P'(s)=]|y’'(S)){¢(S)|+|¢(s)){¢'(s)]|
shows that the above scalar product is proportional to the couplings responsible for the non-
adiabatic transitions.

For the RWA model, ap=0 the nonadiabatic couplings are given by

(W(S)|dsth— x+1(S))=—2'(S) 8-

Thus, the leveh (s) is not coupled to the infinitely many other levels it crosses. Hence we are led
in this case to an effective problem displaying no crossing, so that the error is of evira¢inis
case.

For the other model, we will obtain nonzero couplings at all the crossings, if we choose
0(0,s) such that expp(6,9)) has infinitely many nonzero Fourier components. For example, one
can takeo(6,s)=p(s)sin(¥) (in particularp can be chosen constanThis coupling is then given

by
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(W5t 14 1(9))=(—1)*"'Z' (8)I(p(9)),

whereJ, is a Bessel function.

We will now verify that the assumptions of Proposition 3.1 are satisfied. Let us focus on the
interval (05], for Ssmall enough. The interval S,0) can be treated similarly. Again to simplify
the notations we will not explicit the- sub/superscripts.

Remark: The preceding two examples have been chosen for their simplicity and explicit
complete analytical solvability. However, we emphasize that the following analysis is valid for all
the models(15) under the sole assumption that the eigenvalues can be written gés) =ms
+X(s)/2, whereX is aC? function with bounded derivatives such thi0)>0. In particular they
are satisfied for the eigenvalues given (it6). The hypotheses imply that the functidip(s)
=N(s) — s is strictly decreasing for ang greater than, say, sondg. Under these conditions the
following assertion shows that the crossings thés) =N (s)/2 experiences with the rest of the
spectrum take place at times such tRés) =ks, ke N large enough. Again, the actual corrections
to adiabaticity will depend on the particular properties of the associated eigenvectors which are
measured by the scalar prodyat(s)|ds¥— x+1(S)), which generically will not be zero for an
infinite number of crossings.

Assertion 1:For {={,, the functionf(s)=N(s)—{s has a unique positive zemw, and if
{<& we haveo,>o0;.

From the expansion

f(8)=R(0)+(X'(0)={)s+0O(s?),

we obtain the behavior af, :

0 =ﬂ+0(1/g3) (18
¢ {-N'(0) '
We define the sequeneg>0 by the equation:
N(up) —ku=(k+21)u—N(uy), i.e., N(u)=(k+21/2u,. (19

Assertion 1 implies that,<o,<u,_; and, from Eq(18) and the fact thati,= 0, 1>, We obtain

X(0)

=m+0(1/k3). (20

Uk
Next, we have
Assertion 2:0n the intervalu,,u,_4], the spectral gap is given by

g(s)=dist(\(s),a(s)\{\(s)}) =|R(s) —ks|<u,_,/2.

More precisely, fou,<s<o0, we have thag(s)=N(s) —ks<u,/2 and foro,<s<u,_; we have
thatg(s) =ks—X(s)=<u,_4/2.

This assertion is easily proven by considering the different cases.

We now prove that the spectral hypothedikl()—(H2) are verified. Assertion 1 and Equation
(20) show that the sequende,} is (for k large enoughmonotonically decreasing ta=0. To
define the intervals/,, we choose any point, in (0y,u,_1) such thatg(r,)=kr,—X(ry)
=u,/2 and seV, = (uy,ry). TheV,’s are disjoint and = {u,} U[r,ux_1]. By definition ofV,,
we have thatg(s)<u,/2=g(u,) and for r,<s<uy,_; the gap is given byg(s)=ks—N(s)
=u,/2. Whence, hypothesisH1) is satisfied. Finally to prove thatH2) holds, we need to
estimate the behavior @f(s) on V,: the mean value theorem implies that for eachV,\{0},
there is agg, in the interval joinings andoy, such that

9(s)=[R(s) —ks|=|k=N"(qgs)|[s— 0K ~k|s—0y],
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which shows thatKl2) is satisfied withe=1 andG(k)~k.
It remains to check the conditions given in the statement of Proposition 3.1. We have

|ug— 0| =u,=R(0)/k+R(0)(R'(0)—1/2)/k*+O(1Kk3), i.e. B=1
G(k)~k ie. y=1, (21
IVi|~1Kk? ie., 6=2.
To get the estimate fdiv,|, we have used thau(,0,]CV,C (u,U,_,] and the expressions for

0y, andu, in Egs.(18) and(20). This implies thatu=a(B8+1)+ y=1+2a and 5=8+1. So,
we can use the second case of Proposition 3.1 to prove that the adiabatic approximation holds for

the models:
[U(1)—A(1)|<ceP, for any p<3. (22
In keeping with the first remark of Sec. Ill, we recall that a more careful analysis ypelds
=1/3.
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APPENDIX A: TECHNICALITIES

In this appendix, we show that an operatorldi{S', ) of the form
. J
K(S,H)I—Im(s)%—i-H(S,G), (A1)

whereH (s, 6) is a bounded operator i such thats—H(s,6) and s—d/d6H(s,6) are norm
continuous ands— w(S) is continuous, admits a strongly continuous unitary propagdt)
=U(s,0) with all expected regularity properties, even if there is a valder which w(a)=0.
Notice that the assumptions &hwill be satisfied if, for example,, 6)—H(s, 6) is stronglyC™.

The proof relies on a theorem of Katbwhich we will restate in a more suitable form for our
purpose.

Theorem A.1(Kato). Let K andD be Hilbert spaces such th&is densely and continuously
embedded irC and letK(t), O<t<T, be a family of self-adjoint operators . Suppose that

(1) DCdomK(t) for all 0<t<T, whence the(t) are bounded operators frofr to I, and the
applicationt—K(t) is norm continuous fronD to ;

(2) there exists a family of isomorphisnfy(t) from D to K which is strongly continuously
differentiable and such that

S(HK(1)S(t) " =K(t)+B(t)

whereB(t) is a strongly continuous bounded operatorfon
Under those conditions, there exists a unique family of unitary opertit@rs) on X defined
for 0=s,t<T with the following properties:

(i) U(t,s) is strongly continuous ofC in s,t with U(s,s)=1;

(i)  U((t,r)=U(t,s)U(s,r);

(i) U(t,s)DCD, ||U(t,s)|p<Ne'" and is strongly continuous dR in s,t simultaneously;
(iv) (d/ds) U(t,s)g=iU(t,s)K(s)y for any e D, for 0<s,t<T;
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(v)  for eachyeD and fixeds, (d/dt) U(t,s)¢ exists and is equal te-iK(t)U(t,s)¢ and
strongly continuous irkC in t.

To prove this theorem, we apply Theorem 6.1 in Ref. 17 to the opefdtdr=iK (t), which
is stable with constants of stabilig=0 andN=1 (see Definition 3.1 and Theorem 4.1 thejein
The fact thatU(t,s) is unitary follows from the self-adjointness #f(t), the construction of
U(t,s) by unitary approximants given in the proofs of Theorem 4.1 and 6.1 in Ref. 17 and the
invertibility of U(t,s), which is a consequence of the fact th&(t) = —iK (T —t) satifies also the
hypothesis of Theorem 6.1 in Ref. 17. See also Remark 5.3 therein.

We now prove that the family of self-adjoint operators defined by @d.) satisfies the
hypothesis of Theorem A.1. To simplify the notation, we will not explicit thdependence and
write ¢ for d/d6.

Proof: For D, we choose domf{iw, J) for somew, >0, and we notice that for anysuch
thatw (t) # 0, we have that dori(t) =D and if w(t) =0, then donK(t) = /. For the norm orD,
we choose the graph norm associated-tiav, J:

lllB=112+ ] =i aul = >
WhenceD is a dense continuously embedded subspadé. &for anys,t and anyye D, we have

t)— 2
IKO-Ke) =2 0=, o w2l - )2

*

_ 2
<2 ma><{M H(t)—H(s)

= > )

*

2]||¢||%.

which shows the norm continuity d€(t).

We setS(t)=S=—iw,d+i. Sis an isomorphism betwee® and K which is strongly
differentiable(by t independende It remains to show tha satisfies Hypothesi€) of Theorem
A.1. For this, we first notice that for any e domK(t), we have thaB 1y e DCdomK(t) and

K(t)S 1y=S K(t)y+H(1)S y—S H(t)y=S K(t)y+S ISH(1)S ty—S H(t)y
=S Y(K(t)—iw, dH(t)S Y. (A2)

Whence, for anyy e domK(t), we have that the left-hand side of H&2) belongs toD. So we
can write,

SK()S ty=K(t)y—iw, dH(1)S Ly, for all yedomK(t).

SettingB(t) = —iw, dH(t)S 1, we have a strongly continuous bounded operéigrthe assump-
tions onH) which satisfiesSK(t)S 1DK(t)+B(t). To show the reverse inclusion, we can con-
sider anyb=2 sup||B(t)| which implies thatib belongs to the resolvent set of bokxt)
+B(t) and SK(t)S™ 1. It follows that (K(t)+B(t)+ib) *CS(K(t)+ib) 1S~ But since the
left hand side has domait, we must have equality betwe#t{t) + B(t) andSK(t)S ! instead of
inclusion. O

In the examples of Sec. IV, boti(s, §) defined through15) by means of smooth functions
X,¥,zZ,\ of (s,0), and H(s,0)+€i[P'(s,6),P(s,0)] where P(s,0)=|¢(s,0)){¢(s,0)| with
(s, 6) given by one of the vectord 4) satisfy the hypotheses of the theorem. Hence assumption
(HO) (ii) is satisfied for these models.
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APPENDIX B: PROOF OF LEMMA 2.1, THEOREM 2.1, AND PROPOSITION 3.1

Proof of Lemma 2.1The idea of the proof is to integrate E@) over the intervaJ ug,u;] and
then to get “nice” estimates of the sizes on each subinterjalst], [t,s], and[s,u;]. By
integrating Eq(7), we get

i(W(uy)—W(ug))=— Jut A Y (u)L(uw)A(U)W(u)du— JtSA‘l(u)L(u)A(u)W(u)du

- JUlA’l(u)L(u)A(u)W(u)du. (B1)

S

For the middle term, we simply use the properties of the operator norm and the fa&{ thend
W(u) are unitary to obtain

S
W(s)=Wt)ll= | IL(wldus sup [L(wls=t], (B2)
ue[0,1]

i.e., we do not care about the behaviorggfl) inside the subintervdlt,s]. To estimate the first
integral, letQ(u)=1—P(u). A simple computation, using(s)P’(s)P(s)=0, shows that

PU)L(WP(u)=Q(u)L(u)Q(u)=0, (B3)

and due to the intertwining property 8f(u), we can write

t
W(t) —W(up) =i f (P(O)A™HU)L(WA(W)Q(0)+Q(0)A™ (u)L(u)A(u)P(0))W(u)du.
up
(B4)

Now, we need to extract an explick dependence from this equality in order to obtain the
estimates stated in the lemma. To do this, we follow Ref. 11 and introduce the bounded operator
R (u) defined by

1
RL(u)zﬂ F(U)R(u,)\)L(u)R(u,)\)d)\,

whereR(u,\)=(H(u)—\) ! is the resolvent oH(u) at A and where the loop'(u) is a circle
centered ah (u) of radiusg(u)/2. It has the propertiesee Refs. 11 and 13

[Ri(uw),H(u)]=[L(u),P(u)], (B5)

P(WRL(U)P(u)=Q(u)R(u)Q(u)=0. (B6)

Standard arguments show tHaf (u) is stronglyC?! and that

Ri(u)= i (R(u,M)L"(u)R(u,N) —R(u,N)H'(u)R(u,N)L(u)R(u,N\)
20T I'(u)
—R(u,N)L(u)R(u,\N)H’(u)R(u,N))dN, (B7)

whereH' (u)R(u,\) is to be understood as the bounded operator
H’(u)R(u,N)=H'"(u)R(u,i)(1+(A—=i)R(u,N)). (B8)

Hence, we get the following estimates:
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Ruwl= S gtz 2= 2L, ®9

IRL(W=emax]|H’ (WRu,DIIILWILIL" (W} g*(w). (B10)

The main property ofR, (u) (see Ref. 11is that it satisfies for anye D the following equalities,
as verified by means dB5):

d
P(O)A™H(U)L(WAWQ(0)¢=—i 6@(P(O)A_l(U)RL(U)A(U)Q(O)lﬂ)

+ieP(0)A" L (U)R| (U)A(U)Q(0) i (B11)

and

d
Q(0)A™H(U)L(U)A(U)P(0) =i EE(Q(O)Ail(U)RL(U)A(U) P(0)¥)

—1€Q(O)A™HWR{(WA(U)P(0) . (B12)

These equations imply thdﬁJOA‘l(u)L(u)A(u)W(u)du is proportional toe. Indeed, Equalities
(B3) and the intertwining property o&i(u) show that the diagonal blocks are 0.
Introducing Equalitie§B11) and(B12) in Eq. (B4), we get

td
W(t) —W(uo)=— GJ'U E(Q(O)Afl(U)RL(U)A(U) P(0)

t
—P(0O)A™H(WRL(WAUW)Q(0))W(u)du— Gf (P(OA™HW)R{(WA(W)Q(0)

Uo
—Q(O)A™H(W)R{ (WA(U)P(0))W(u)du. (B13)
Performing an integration by part in the first integral, using the differential equétidior W(u)

and taking into account th#t(u), W(u) are unitary and®(0), Q(0) are projectors, gives us the
following bound for the norm of the differend®&/(t) —W(uo):

IW(t) =W(ug)[<2€(IRL(DII+[IRL(ug) [+ sup [|R(W[L(W](t—uo)

uelug,t]

+sup [R{(W)(t—up)). (B14)

uelug,t]

Next, we use first EstimateB9) and (B10) and then the fact that<Quy<t<1 to obtain the
desired bound:

8¢ 4e 2€
IW(H) - W(up)|< — sup [L(u)]+ — sup [L( u)||2(t_u0)+092

t uelug,t] t uelug,t]
X sup {[H"(WRu,D[[[Lw]LIL’ (u)]}(t—ue)
uelug,t]
€ €lt—ug|
<12— sup {|L(w)].|L(w)]Z}+2——
Ot yeroq
X sup {[H" (WR(u, DL wL L’ (u)l}
uel0,1]
( € N e|t—uo|> (815
<c,| — )
loc of
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Using the same kind of arguments, shows that on the subintesual], we have

[W(u;)—W(s)||<c, 7 (B16)

o2 s

€|s—uy| 6)

Combining estimateéB2), (B15), and(B16) gives the announced bound 8V(u;) —W(ug)||.0]

Proof of Theorem 2.1In the sequel, we will denote by the same symbdll inessential
constants. Let us consider the interf/@ta). In order to simplify the notations, we will not write
the subscripts/superscripts. Picking somet,se V, such that<o,<s and|t—o,|=|s—0,|, we
get

IW(u) = W(u_ 1)l <c(elt—uy_1|/g7+ €|s—uyl/g5+ e/ g+ el gs+ |t —s])
( A(k)
€

ot "2+ e

1 —a
s lt-od "+ t-o

A(k) _ A%(k) _
$C(Ew|t—0k| 2a+€ G(k) |t_0k| 2a+|t_0k|) (B]-?)

<c(er(k)|[t—oy| 2%+ |t—0y)) (B18)

by the preceding section. Indeed, we have tgat:infue[ukflit]g(u)zg(rt) for some r,
e[uy_4,t]. Now, by HypothesisKi1), r,e V. Whence, we have that

0:=9(r)=G(k)|ry— 0y *=G(k)[t—0,|“

as ryst<oyg. Using the same kind of arguments, we can show thatinf, (s, 9(u)
=G(k)|s—o,/®. Finally to obtain the boun¢B17), it remains to notice thdts—t|=|t—o,|+|s
— 0,/ =2|t— o,/ together with|t—o0y|, [t—u,_1|<A(K) and|s—oy|, |[s—u,<A(K).

We now get an estimate by choosibgt(e, k) in order to balance the two contributions
appearing in the last term of E¢B17) above: for some constast-0, we set

g1+2a67.(k)
th(ﬁk)—OkL (B19)
i.e.,
t(e,k)— 0] =s(er(k))H1+20), (B20)

By definition, t(e,k) e V|, hence, ak will eventually be bounded from above BY(e€), this
imposes Condition13) in the statement of the theorem. Replacingy t(e,k) in (B17) and
summing ovelk, we get for anyK<K(e),

K
||W(0>—W<uK>||$c<s+e*2“>k§1 (er(k))Hi+2a), (B22)

On the other hand, using the differential E@), we obtain
a
||W(uK)—W(a)||sf [L(u)||[dusc|ux—al. (B22)
Uk
Again, we balance the two right-hand sides(B21) and (B22) by setting the integeK =K(¢),

which has been defined in E(L2). Consequently,
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K(e)
IW(0)—W(a)||<c| (s+s29) 1720 > 7(k) U120 4|y, ,—al
k=1

gC(S""€720‘+1)|U|<(e)_a|EC('€)|UK(E)_<'31|, (B23)

whereC(s) is independent o&. Proceeding similarly ong,1] completes the proof. O

Remark:In the step(B17) we deliberately lost a little in the estimate by usiftg- 0, *
<A{|t—o0,/ 2 in order to simplify the subsequent arguments. It is nevertheless possible to get
slightly sharper results by not adopting this simplification, however the analysis gets more in-
volved and less transparent. We simply note here that in the examples discussed in this paper, this
more careful analysis yields, for the generic situation, an error term of efdeith an exponent
p=1/3, instead of the valup=1/3— v, for any v>0 obtained there.

Proof of Proposition 3.1:.The idea of the proof is to explicit conditions on the different
exponents ensuring the validity of Theorem 2.1. We will only consider the intéfa), the
same kind of arguments will apply o (l]. Again, in order to simplify the notations we will let
aside the subscripts/superscripts

First, we have that &(k)=u,—u,_;=C,8/kP"1+0(1kP*1)~1/kA"1, which implies that

6=p+1>0, (B24)
since 24 (k)=|V,|~1/k?. Notice that the length of th¥, can be rescaled by a uniform constant
if 6=B+1.
Next, A(K)/G?(k)~1kP™1"27 and A%(k)/G(k)~1k*FTD*Tr So if we denote by
w=min{ B+1+2y,a(B+1)+ v} thenr(k) = maxA(K)/G*(k), A*(k)/G(k)}~ 1/k* by increasing the
overall constant in Theorem 2.1 if necessary. Whence,

K K KO if u>142a
E T(k)1/(1+2a)"“z k—p,/(l-%—Zuz)N IOgK if M=1+2a (825)
K=t K=t Ki-ul(A+2a) u<l+2a

and considering the definition &f(¢) [see Eq(12)], we obtain

K(e) # if u>1+2a«a

luk(e—al - .
61/<1+2a)~W~ K(e) PllogK(e) if u=1+2a . (B26)
k=t K(e) B-1tul(+20) i\ <142¢4

Condition (13) stated in Theorem 2.1 reads
s(er(k)YIt20<|v,|/2 (B27)

for all 1=<k<K(e). Notice that this condition is automatically satisfiedSi u/(1+2«). In gen-
eral, it will be satisfied for a sufficiently smad| if

F(G)E61/(l+2a)K(6)57M/(1+2a) (828)
remains bounded as—0. Using(B26), we have

K(e)o A-wlt2e) jf 4>142a,
F(e)~{ K(€)° T PllogK(e) if u=1+2a, (B29)
K(e)° A1 if u<il+2a.

As K(e)—x for -0, Eq. (B29) implies that F(e) will remain bounded if 6<B+
max1;u/(1+2a)}.
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Hence, usingdB23) and(B26), we get that the adiabatic theordthl) holds with a remainder
term on[0,a),

O(Juk (o~ a])=0(K(e) #)=0(e")

where the exponerg is given by

p
1722 if u>(1+2a)
p=1 1+2a_VVV>O if u=(1+2a)
P if u<(1+2a)
{ (B+D(1+2a)—

provided thatB+1<é<pB+maxX1l;u/(1+2a)}. To determing in caseu=1+2« and 6=6+1, we

have used the estimate V(1729 ~K (€)# log K(e)<K(e)?" for all »'>0. This ends the proof of
the proposition. O
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