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We formulate an adiabatic theorem adapted to models that present an instantaneous
eigenvalue experiencing an infinite number of crossings with the rest of the spec-
trum. We give an upper bound on the leading correction terms with respect to the
adiabatic limit. The result requires only differentiability of the considered projector,
and some geometric hypothesis on the local behavior of the eigenvalues at the
crossings. ©1999 American Institute of Physics.@S0022-2488~99!00511-3#

I. INTRODUCTION

The availability of intense pulsed laser sources has opened a large field of possibilit
control atomic and molecular dynamical processes. One of the main theoretical tools to a
these processes is adiabatic Floquet theory1 and references therein. The general setup can
described as follows. One considers a molecule described by a HamiltonianH0 acting on a Hilbert
spaceH, in interaction with one radiation mode of frequencyv. ~The description of the interaction
with several modes of different frequencies can be formulated along similar lines.! Since the
intensity of the field is quite large, the field is treated as a classical field. The Hamiltonian o
molecule perturbed by the electromagnetic field can be written, for example, as

H5H01EMF~vt1u0!, ~1!

whereM is the dipole moment operator of the molecule,EPR is a parameter representing th
amplitude of the radiation field,F is a real valued 2p-periodic function andu0 the initial phase.
We assume thatH0 has a discrete spectrum. In order to describe a laser pulse the amplitu
taken as a slowly varying time dependent functionE(et), where one takes, e.g.,e51/Tp with Tp

the duration of the pulse. A new technique that provides an efficient method for complete tr
of population is based on frequency chirping: within the pulse duration the frequency is
slowly modulatedv5v(et).

This model has thus two kinds of time dependencies in the Hamiltonian: one that is pe
and another one that is slowly varying. The periodic part can be treated by Floquet method
the slowly varying part by adiabatic theory. Adiabatic Floquet theory is based on the follo
statement: Assume that in the Hamiltonian~1! the parameterE and the frequencyv are made time
dependent,E(t), v(t), andM stays time independent. Consider the propagatorU(t,t0 ;u0), so-
lution of the Schro¨dinger equation
54560022-2488/99/40(11)/5456/17/$15.00 © 1999 American Institute of Physics
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i
]

]t
U~ t,t0 ;u0!5H~vt1u0!U~ t,t0 ;u0!, U~ t,t;u0!51 ~2!

acting on the Hilbert spaceH. We consider an enlarged Hilbert space by tensoringH with the
space of square integrable functions on the unit circle:L2(S1,H). The operatorU(t,t0 ;u) can be
lifted into the enlarged space, interpreting theu-dependence as a multiplication operator. We c
then define

UK~ t,t0!5e2tv~ t !]U~ t,t0 ;u!et0v~ t0!]

where]5]/]u. The statement is that Eq.~2! is equivalent to

i
]

]t
UK~ t,t0!5K~ t !UK~ t,t0! ~3!

with

K~ t !52 iÃ~ t !
]

]u
1H01E~ t !MF~u!

andÃ(t) denotes an effective instantaneous frequency defined byÃ(t)5v(t)1t dv(t)/dt. As-
suming that the time dependence ofE(t), v(t) is slow one can develop adiabatic techniques
the evolution of~3!. WhenK has pure point spectrum, the first ingredients are the instantan
eigenvalues and eigenvectors. They always can be written and labeled in the form

l j ,k5l j ,01kÃ, kPZ
~4!

c j ,k~u!5c j ,0~u!eiku.

The indexj has the same cardinality as the dimension of the Hilbert spaceH. Thus, even if we
take simple models with finite dimensionalH, the Floquet spectrum has infinitely many eigenv
ues. As functions ofE and Ã, these eigenvalues may exhibit crossings, which the adiab
approximation can accommodate in case there is a finite number of them, see Refs. 2 and
structure~4! of the eigenvalues is such that if we consider a slowly varyingeffectivefrequency
Ã(t) that goes through 0 at some timet0 , the nature of the spectrum becomes quite different. O
can encounter situations in which a branch of instantaneous eigenvalues undergoes an
number of crossings with other branches, or the spectrum may become suddenly cont
Hence it becomes necessary to investigate the validity of the adiabatic theorem in such situ
Let us stress that a strictly positive time dependent frequencyv(t) may give rise quite naturally to
an effective frequencyÃ(t) that goes to zero.4 Indeed, consider a linear variation ofv of the form

v~ t !5v02at,

with v0 , a.0 on the time interval@0,v0 /a), which is far from exotic. Then

Ã~ t !5v022at

goes through zero att05v0 /(2a)P@0,v0 /a). As it has been shown in Refs. 4 and 5, the pos
bility to vary the frequency is a powerful method to enhance the control of molecular proc
driven by laser.

We will confine ourselves to the case where a branch of eigenvalue undergoes an infi
crossings with other branches. As this situation is not generic, as actual crossings are m
exception than the rule, we give below a whole class of systems for which this situation is
Moreover, it is probably the only case in which we get enough regularity to prove an adia
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theorem. Note also that in caseÃ(t) passes through 0, the domain ofK(t) becomes time depen
dent, so that technical issues regarding regularity of the evolution operator have to be add
This is done in the Appendix A.

The goal of the present paper is to formulate an adiabatic theorem that can be applied
situations with an estimate on the corrections to the adiabatic limit. Adiabatic Theorems w
gap conditions are known to be true, see Ref. 6, however, in general, no estimates on th
terms are available.

While this work was motivated by the physical situation described above and discussed
in the examples, our analysis of the adiabatic approximation is model independent and
applied to more general situations.

II. ADIABATIC THEOREM

A. Context

The adiabatic approximation in quantum mechanics has a long history which we wil
attempt to retrace here. We refer the reader to the recent surveys7,8 and references therein. Let u
simply recall here that the works following that of Born and Fock2 by Kato,9 Nenciu,10 and Avron,
Seiler, and Yaffe11 have led to a formulation of the adiabatic theorem under the usual ga
sumption that is general and where the error term is well controlled and of ordere. In case the gap
assumption is modified, the situation is less explicit. In this section, we switch back to the no
H(et) for the slowly varying time-dependent Hamiltonian. AssumeH(s) is smooth insP@0,1#
and there exists a spectral projectorP(s) of H(s) which is stronglyC2 on @0,1#. Avron and Elgart
have shown in Ref. 6 that the adiabatic theorem holds under these conditions, providedP(s) is of
finite rank, independently of any spectral considerations. A similar result was prove
Bornemann18 for discrete hamiltonians in case the set of eigenvalue crossings is of measur
in time. The limitation of these approaches is that, in general, no estimate can be made on
at which the adiabatic regime is attained. In certain specific situations, an estimate on this
available. In the case where the spectral measuremw is a-Hölder continuous, withw
5P8(s)c(s), c such thatP5uc&^cu, the rate of convergence was shown in Ref. 6 to be of or
ea/(21a). A case where the spectrum ofH(s) is assumed to be dense pure point is dealt with
Ref. 12. Another situation, considered in Ref. 13, where the gap hypothesis is not nece
fulfilled occurs whenH(s)5H0(s)1eH1(s), where the domain ofH1(s) is smaller than that of
H0(s). In both cases, the error term remains of ordere. In the present article, we consider anoth
situation in which the usual gap assumption is modified and the error made in the adi
approximation can be estimated. We make the hypothesis that the projectorP(s) is associated
with an eigenvaluel(s), in the sense thatH(s)P(s)5l(s)P(s), for all sP@0,1#. We assume tha
l(s) is isolated in the spectrum except at a series of times$ok%kPN accumulating ataP(0,1)
where it experiences crossings with the rest of the spectrum. Requiring some conditions
local behavior of the gap betweenl(s) and the rest of the spectrum near the crossing pointsok ,
we estimate the error term in the theorem withouta priori knowledge on the nature of the rest
the spectrum. Note that fors5ok such thatl(ok) is not isolated in the spectrum,P(ok) does not
represent the entire spectral projector associated with the eigenvaluel(ok).

B. One crossing

Let us make more precise the regularity hypotheses under which we shall work. In or
deal with the application described above, we will assume the Hamiltonian is unbounded
causes technical difficulties motivating the part~ii ! of the hypothesis below which justifies ou
manipulations. We show in the appendix that this assumption is verified for our models. In
H(s) is bounded, this part of the assumption is automatically verified.

(H0) ~i! We assume that for allsP@0,1#\$a%, H(s) is a stronglyC1 self-adjoint operator
defined on a dense domainD independent ofs in a separable Hilbert spaceK, where 0,a,1.
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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WhereasH(a) is bounded self-adjoint onK. We also assume the existence of a projectorP(s) of
H(s) which is stronglyC2 on @0,1# and such thatH(s)P(s)5P(s)H(s)5l(s)P(s), for all s
P@0,1#.

~ii ! Further assume that the unitary evolution operatorsU(s)5U(s,0) and A(s)5A(s,0)
generated byH(s), respectivelyH(s)1e i @P8(s),P(s)# ~see~5!, ~6!! are well defined for alls
P@0,1# and possess the properties~i! to ~v! listed in Theorem A.1. Note thatP(s) needs not be
finite dimensional andl is continuous.

We start by considering one crossing ofl with the rest of the spectrum by revisiting th
strategy proposed in Ref. 2, making use of the general analysis presented in Ref. 11.

Let g(s) be the gap betweenl(s) and the rest of the spectrum ofH(s): g(s)
5dist(l(s),s(s)\$l(s)%)>0, sP@0,1#. We also introduce the bounded, stronglyC1 operator
L(s)5 i @P8(s),P(s)#. We assume thatg21$0%5$o% and consider the strong differential equ
tions onD

i eU8~s!5H~s!U~s!, U~0!51, ~5!

i eA8~s!5~H~s!1eL~s!!A~s!, A~0!51. ~6!

The unitaryA is the so calledadiabatic evolutionwhich possesses the well known intertwinin
relationA(s)P(0)5P(s)A(s).9,14 Finally, let W(s) be defined byW(s)5A21(s)U(s). We have
on D

iW8~s!52A21~s!L~s!A~s!W~s!, W~0!51, ~7!

in the strong sense. To compare the adiabatic and actual evolutions, we need to compute
of the difference of the unitaryW(s) at two times surrounding the crossing. This is the aim of
next result.

Lemma 2.1:Under the above assumptions, we have for any 0<u0<t,o,s<u1<1,

iW~u0!2W~u1!i<C~euu02tu/gt
21euu12su/gs

21e/gt1e/gs1us2tu! ~8!

wheregt5 infuP[u0 ,t]g(u), gs5 infuP@s,u1#g(u) and the constantC is uniform in u0 , u1 , s, and t

~see Fig. 1!.
Remark:On the basis of the classical paper by Born and Fock,2 and the detailed analysis o

crossings by Hagedorn,3 one would expect the corresponding estimate without the first two te

FIG. 1. The various quantities defined in Lemma 2.1.
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However, such an estimate requires more detailed knowledge of the structure of spectrum
that the gap is given by the distance between two eigenvalues, than what we assume in our
setting.

The proof of Lemma 2.1 is presented in Appendix B. The idea of the proof is to integrat
~7! over the interval@u0 ,u1# and then to get estimates of the sizes on each subintervals@u0 ,t#,
@ t,s#, and@s,u1# which involves only the gaps.

Lemma 2.1 can be used to treat two standard situations:

~1! If there is a gapG betweenl(s) and the rest of the spectrum, this lemma implies that
adiabatic approximation holds with an error term bounded byCe/G2.

~2! If one starts the evolution on a crossing point which splits likesa near 0, we can use thi
lemma to show that the adiabatic approximation is valid with an error bounded by

iU~1!2A~1!i<Ce1/~112a!

if e is small enough. This is precisely the situation encountered at the beginning o
interaction of a laser pulse with frequency that is in resonance with the difference betwee
energy levels of the molecule.15,16

To get this estimate, we can consider only half of the problem by letting aside all the
containing at and settingu151:

iW~1!2W~0!i<C~eu12su/gs
21e/gs1s!. ~9!

This is indeed fully justified by the proof of the lemma~see Appendix B!. Next, we have by
hypothesis thatg(s)>gs5Gsa if s is small. Introducing this behavior in Eq.~9!, we obtain
iW(1)2W(0)i<C(e/s2a1s). The result follows now by balancing the two contributions
choosings5s(e)5e1/(112a). Again, with more information on the spectrum, as in Refs. 2 and
one should be able to improve the above estimate to ordere1/(11a).

C. Infinite number of crossings

We now have all the information required to proceed to the case of an infinite numb
crossings. We make the following hypotheses describing what happens in the neighborh
each crossing~see Fig. 2!.

Spectral hypotheses:There exist two partitions$uk
6%kPN of @0,a) and (a,1# respectively:

05u0
2,¯,uk21

2 ,uk
2
¯→u`

25a5u`
1←¯uk

1,uk21
1 ,¯,u0

151

such that for eachkPN* ,

FIG. 2. Illustration of the spectral hypothesesH1 –H2 on the interval (0,a). The intervalsVl
2 are represented by~ !.
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(H1) one can find non empty open intervalsVk
6 , which satisfy Vk

2,@uk21
2 ,uk

2#,
Vk

1,@uk
1 ,uk21

1 # and

sup
sPVk

6

g~s!< inf
tPI k

6

g~ t !, ~10!

whereI k
25@uk21

2 ,uk
2#\Vk

2 and I k
15@uk

1 ,uk21
1 #\Vk

1 .
(H2) there are constantsG6(k).0 and ak-independent positive constanta such that for all

sPVk
6 :

G6~k!us2ok
6ua<g~s!, ~11!

for some pointsok
6PVk

6 .
Comments:~1! These Spectral Hypotheses mean that the crossings are well separated a

they behave as power of order at mosta. Hypothesis (H1) tells us that outside the crossin
regions (Vk

6) the gaps are relatively ‘‘large.’’ This means that the only accumulation poin
small gaps isa.

~2! The choice of a constant exponenta is not as restrictive as it might look at first. Indee
we are interested in an upper bound, so it is the greatesta that will determine the global behavior

~3! In the applications, we will consider examples whereg21$0%5$ok
6%: the set of crossing

points ofl(s) with the rest of the spectrum. This impliesa.0. But, the case of an infinite numbe
of avoided crossings can be treated by takinga50 in Hypothesis (H2).

To obtain an estimate for the difference between the real evolutionU(1) and the adiabatic one
A(1), theidea is to apply Lemma 2.1 on a finite number of crossings and to take a simple in
bound @as in ~B2!# over the rest of the interval surroundinga. The choice of the number o
crossings will be optimized with respect toe in order to get a simple form for the bound of th
remainder term. To state the corresponding result, we need to introduce some notation
D6(k)5max$uuk

62ok
6u,uuk21

6 2ok
6u% and t6(k)5max$D6(k)/G6

2 (k),D6
a (k)/G6(k)%. The functions

K°uuK
62au/(k51

K t6(k)1/(112a) are monotonically decreasing to zero, so, ife is small enough,
we defineK6(e)PN* as the greatest integer satisfying

uuK
62au

(k51
K t6~k!1/~112a! >e1/~112a!. ~12!

This integer always exists ife is sufficiently small and, by construction,K6(e)→` ase→0.
Theorem 2.1:For e small enough, under (H0) and the spectral hypotheses (H1), (H2) and

provided that

§~et6~k!!1/~112a!<uVk
6u/2 for all 1<k<K6~e!, ~13!

for some constant§.0, we have that

U~1!5A~1!1O~max$uuK2~e!
2 2au,uuK1~e!

1 2au%!.

Hence, as lime→0K6(e)5`, iU(1)2A(1)i goes to zero for e→0 as fast as
max$uuK2(e)

2 2au,uuK1(e)
1 2au%.

Remarks:~1! The theorem states that the error can be estimated provided we can compu
critical valueK6(e). Further considerations on the practical aspects of this computation are
in the next section.

~2! Condition~13! implies that the size of the intervalsVk
6 cannot be too small with respect t

et6(k).
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~3! While we shall apply the theorem in a situation where the spectrum is simple and
point, the theorem remains valid under the sole existence of an eigenvalue separated from
of the spectrum by gaps with the properties stated in (H1) – (H2), without any knowledge on the
rest of the spectrum or restriction on the dimension ofP(s).

~4! The introduction of an adjustable constant§ is necessary in the following application t
satisfy the hypothesis of the theorem.

III. APPLICATION

We can obtain more explicit estimates on the rest by considering some specific behavio
crossings.

Let us introduce the following notation:Fk; f (k) means that there exist two constan
0,c1,c2,` such thatc1f (k)<Fk<c2f (k) for kPN* large enough. We have the

Proposition 3.1:Assume the hypothesis of Theorem 2.1 and the following behavior for
relevant quantities:

uuk
62au5C1 /kb1C2 /kb111o~1/kb11!, b.0, C1Þ0

G6~k!;kg,

uVk
6u;1/kd, d.0.

We set m5min$b1112g,a~b11!1g%. Then iU(1)2A(1)i5O(ep) where the exponentp is
given by

p55
1

112a
if m.~112a!

1

112a
2n ;n.0 if m5~112a!

b

~b11!~112a!2m
if m,~112a!

provided thatd satisfy the following constraints:b11<d<b1max$1,m/~112a!%.
Remark:Let us mention that it can be shown that in casea5b5g51 andd52, we can take

p51/3, instead ofp51/32n, for all n.0. Now, if in Lemma 2.1, the right member were missin
the termseuu02tu/gt

21euu12su/gs
2, as one would expect with a little more information on t

spectrum, an analysis similar to the one provided above leads to an error term of ordere1/3. This
makes it reasonable to expect that in such a situation the error actually is of that order, as
the case in the corresponding analysis of one crossing performed in Ref. 2, see Ref. 3. Fin
is shown in the examples below that the valuesa5b5g51 andd52 are generic in some sens

IV. EXAMPLES

We now consider a family of models for which the situation just described takes place a
effective frequencyÃ takes the value zero. We start by considering the most general model
two level system driven by a periodic field. The model can be characterized by choosing free
eigenvaluesl1,m5l11mv and l2,k5l21kv and the corresponding eigenfunctions of t
form:

c1,m~u!5S eix~u! cosz~u!

eiy~u! sinz~u! Deimu and c2,k~u!5S 2e2 iy~u! sinz~u!

e2 ix~u! cosz~u! Deiku, ~14!

in which the functionsx, y, andz are periodic modulo an integer multiple ofu.
Defining the unitary matrix
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Y~u!5S eix~u! cosz~u! 2eiy~u! sinz~u!

eiy~u! sinz~u! e2 ix~u! cosz~u!
D

the corresponding Floquet Hamiltonian can be written as~dropping theu dependence in the
notation!

K52 iÃ]2 iÃY~]Y21!1YDY21,

whereD5diag(l1 ,l2). Using the notation 2̀5x1y, 2q5y2x and choosing, without loss o
generality,l152l25l, the Floquet Hamiltonian can be expressed as

K52 iÃ]1S Ã]q1(l2Ã]`)cos(2z) (2 iÃ]z1(l2Ã]`)sin(2z))e22iq

~ iÃ]z1(l2Ã]`)sin(2z))e2iq 2Ã]q2(l2Ã]`)cos(2z) D
~15!

where] f denotes the derivative with respect tou. Note that whenÃ50 the operatorK reduces to
the ~matrix! multiplication operator byY(u)DY21(u) on L2(S1,C2), whose spectrum consists o
two eigenvalues6l which are infinitely degenerate. This is to be compared with the gen
situation whereK for Ã50 becomes a multiplication operator by an arbitrary 2p periodic 232
matrix H(u). In that case, the spectrum ofK is continuous and given by two band functions whi
are the instantaneous~in u! eigenvalues ofH(u).

We will consider two different models with the same eigenvalues but with different ei
functions. We remark that since the validity of the adiabatic theorem depends only on the
erties of the eigenvalues~and regularity properties of the projectors!, it gives the same uppe
bound for the correction for all the models~15! with equal spectrum. However, it is clear that th
theorem is useful if the couplings between considered levels are nonzero. With this rega
discuss below two examples that have the same spectrum, with an infinite number of cro
For the first one, which is the widely used RWA~rotating wave approximation! model of quantum
optics, the couplings are all equal to zero, except one~see below!. The second model is a pertu
bation of the first one that yields nonzero couplings between the levels.

We choose, for example, the following eigenvalues:

l6,k~Ã!5kÃ6~h~Ã!1Ã!/2, where h~Ã!5A~Ã2v0!21V2 ~16!

FIG. 3. The first eigenvalues of the RWA and modified RWA models.
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and v0 , V are constants. The first model is defined by choosingx(u)50, y(u)5u, i.e., 2q~u!
52`~u!5u and cos(2z)52(Ã2v0)/h(Ã), sin(2z)5V/h(Ã), hencez is independent ofu. The
corresponding Floquet Hamiltonian is given by

KRWA~u!52 iÃ
]

]u
1

1

2 S v0 Ve2 iu

Veiu 2v0
D .

The second model is defined by the choicex(u)52%(u)/2, y(u)5u2%(u)/2, i.e., 2q~u!5u,
2`~u!5u2%~u! and the samez as for the RWA case. This leads to

KM~u!5KRWA~u!1
Ã

2h
]%S v02Ã Ve2 iu

Veiu Ã2v0
D .

We consider now a supplementary smooth slow time dependence in the parameÃ
5Ã(s) and in%5%(u,s). This implies that the eigenvalues, the eigenvectors and the corresp
ing eigenprojectors are smooth functions ofs, so that the regularity Hypothesis (H0)~i! is satis-
fied. We show in appendix that (H0)~ii ! is satisfied as well for any choice of smooth functionsx,
y, z, andl.

We assume, for simplicity, thatÃ(s)5s ~but any other smooth monotonic function ofs
would equally do!. This choice corresponds to the chirping that is most often realized in ex
ments. We select the eigenvaluel(s)5l1,0(s)5(h(s)1s)/2 and denote byc the associated
eigenvector~see Fig. 3!. The only crossings thatl experiences are with thel2,k11’s and they take
place at timess such that

h~s!5ks, kPZ* . ~17!

We remark however that these crossings can lead to corrections to adiabaticity, or not, dep
on whether the corresponding eigenvectors are coupled. The nonadiabatic coupling amo
branches is measured by the following scalar product:

^c~s!u]sc2,k11~s!&52
1

2p E
0

2p

ei ~k11!u22i `~u,s!~z8~s!2 i sin~2z~s!!q8~u,s!!du

52
z8~s!

2p E
0

2p

eiku1 i%~u,s! du,

where the8 denotes the derivative with respect tos.
Recall that the couplings between the eigenstatec(s) associated with the levell(s) and its

orthogonal complement in the Hilbert space is given by the operatorL(s)5 i @P8(s),P(s)#, see
~7!, since the adiabatic evolutionA(s) follows the instantaneous eigenspaces. A direct comp
tion of the matrix elementŝc2,k11(s)uL(s)c(s)& with P8(s)5uc8(s)&^c(s)u1uc(s)&^c8(s)u
shows that the above scalar product is proportional to the couplings responsible for the
adiabatic transitions.

For the RWA model, as%50 the nonadiabatic couplings are given by

^c~s!u]sc2,k11~s!&52z8~s!dk,0 .

Thus, the levell(s) is not coupled to the infinitely many other levels it crosses. Hence we are
in this case to an effective problem displaying no crossing, so that the error is of ordere in this
case.

For the other model, we will obtain nonzero couplings at all the crossings, if we ch
%(u,s) such that exp(i%(u,s)) has infinitely many nonzero Fourier components. For example,
can take%(u,s)5r(s)sin(u) ~in particularr can be chosen constant!. This coupling is then given
by
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^c~s!u]sc2,k11~s!&5~21!k11z8~s!Jk~r~s!!,

whereJk is a Bessel function.
We will now verify that the assumptions of Proposition 3.1 are satisfied. Let us focus o

interval (0,S#, for Ssmall enough. The interval@2S,0) can be treated similarly. Again to simplif
the notations we will not explicit the1 sub/superscripts.

Remark:The preceding two examples have been chosen for their simplicity and ex
complete analytical solvability. However, we emphasize that the following analysis is valid fo
the models~15! under the sole assumption that the eigenvalues can be written asl6,m(s)5ms
6:(s)/2, where: is aC2 function with bounded derivatives such that:~0!.0. In particular they
are satisfied for the eigenvalues given in~16!. The hypotheses imply that the functionf z(s)
5:(s)2zs is strictly decreasing for anyz greater than, say, somez0 . Under these conditions th
following assertion shows that the crossings thatl(s)5:(s)/2 experiences with the rest of th
spectrum take place at times such that:(s)5ks, kPN large enough. Again, the actual correctio
to adiabaticity will depend on the particular properties of the associated eigenvectors whi
measured by the scalar product^c(s)u]sc2,k11(s)&, which generically will not be zero for an
infinite number of crossings.

Assertion 1:For z>z0 , the functionf z(s)5:(s)2zs has a unique positive zerooz and if
z,j we haveoz.oj .

From the expansion

f z~s!5:~0!1~:8~0!2z!s1O~s2!,

we obtain the behavior ofoz :

oz5
:~0!

z2:8~0!
1O~1/z3!. ~18!

We define the sequenceuk.0 by the equation:

:~uk!2kuk5~k11!uk2:~uk!, i.e., :~uk!5~k11/2!uk . ~19!

Assertion 1 implies thatuk,ok,uk21 and, from Eq.~18! and the fact thatuk5ok11/2, we obtain

uk5
:~0!

k11/22:8~0!
1O~1/k3!. ~20!

Next, we have
Assertion 2:On the interval@uk ,uk21#, the spectral gap is given by

g~s!5dist~l~s!,s~s!\$l~s!%!5u:~s!2ksu<uk21/2.

More precisely, foruk<s<ok we have thatg(s)5:(s)2ks<uk/2 and forok<s<uk21 we have
that g(s)5ks2:(s)<uk21/2.

This assertion is easily proven by considering the different cases.
We now prove that the spectral hypothesis (H1) – (H2) are verified. Assertion 1 and Equatio

~20! show that the sequence$uk% is ~for k large enough! monotonically decreasing toa50. To
define the intervalsVk , we choose any pointr k in (ok ,uk21) such thatg(r k)5krk2:(r k)
<uk/2 and setVk5(uk ,r k). TheVk’s are disjoint andI k5$uk%ø@r k ,uk21#. By definition ofVk ,
we have thatg(s)<uk/25g(uk) and for r k<s<uk21 the gap is given byg(s)5ks2:(s)
>uk/2. Whence, hypothesis (H1) is satisfied. Finally to prove that (H2) holds, we need to
estimate the behavior ofg(s) on Vk : the mean value theorem implies that for eachsPVk\$ok%,
there is aqs , in the interval joinings andok , such that

g~s!5u:~s!2ksu5uk2:8~qs!uus2oku;kus2oku,
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which shows that (H2) is satisfied witha51 andG(k);k.
It remains to check the conditions given in the statement of Proposition 3.1. We have

uuk20u5uk5:~0!/k1:~0!~:8~0!21/2!/k21O~1/k3!, i.e., b51

G~k!;k i.e., g51, ~21!

uVku;1/k2 i.e., d52.

To get the estimate foruVku, we have used that (uk ,ok#,Vk,(uk ,uk21# and the expressions fo
ok , anduk in Eqs.~18! and ~20!. This implies that,m5a(b11)1g5112a andd5b11. So,
we can use the second case of Proposition 3.1 to prove that the adiabatic approximation ho
the models:

iU~1!2A~1!i<cep, for any p, 1
3. ~22!

In keeping with the first remark of Sec. III, we recall that a more careful analysis yieldp
51/3.
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APPENDIX A: TECHNICALITIES

In this appendix, we show that an operator onL2(S1,H) of the form

K~s,u!52 iÃ~s!
]

]u
1H~s,u!, ~A1!

whereH(s,u) is a bounded operator inH such thats°H(s,u) and s°]/]uH(s,u) are norm
continuous ands°Ã(s) is continuous, admits a strongly continuous unitary propagatorU(s)
5U(s,0) with all expected regularity properties, even if there is a valuea for which Ã(a)50.
Notice that the assumptions onH will be satisfied if, for example, (s,u)°H(s,u) is stronglyC1.

The proof relies on a theorem of Kato,17 which we will restate in a more suitable form for ou
purpose.

Theorem A.1~Kato!. Let K andD be Hilbert spaces such thatD is densely and continuousl
embedded inK and letK(t), 0<t<T, be a family of self-adjoint operators inK. Suppose that

~1! D,domK(t) for all 0<t<T, whence theK(t) are bounded operators fromD to K, and the
applicationt°K(t) is norm continuous fromD to K;

~2! there exists a family of isomorphismsS(t) from D to K which is strongly continuously
differentiable and such that

S~ t !K~ t !S~ t !215K~ t !1B~ t !

whereB(t) is a strongly continuous bounded operator onK.
Under those conditions, there exists a unique family of unitary operatorsU(t,s) on K defined

for 0<s,t<T with the following properties:

~i! U(t,s) is strongly continuous onK in s,t with U(s,s)51;
~ii ! U(t,r )5U(t,s)U(s,r );
~iii ! U(t,s)D,D, iU(t,s)iD<Necut2su and is strongly continuous onD in s,t simultaneously;
~iv! (d/ds) U(t,s)c5 iU (t,s)K(s)c for any cPD, for 0<s,t<T;
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~v! for eachcPD and fixeds, (d/dt) U(t,s)c exists and is equal to2 iK (t)U(t,s)c and
strongly continuous inK in t.

To prove this theorem, we apply Theorem 6.1 in Ref. 17 to the operatorA(t)5 iK (t), which
is stable with constants of stabilityc50 andN51 ~see Definition 3.1 and Theorem 4.1 therein!.
The fact thatU(t,s) is unitary follows from the self-adjointness ofK(t), the construction of
U(t,s) by unitary approximants given in the proofs of Theorem 4.1 and 6.1 in Ref. 17 an
invertibility of U(t,s), which is a consequence of the fact thatAo(t)52 iK (T2t) satifies also the
hypothesis of Theorem 6.1 in Ref. 17. See also Remark 5.3 therein.

We now prove that the family of self-adjoint operators defined by Eq.~A1! satisfies the
hypothesis of Theorem A.1. To simplify the notation, we will not explicit theu-dependence and
write ] for ]/]u.

Proof: For D, we choose dom(2 iw* ]) for somew* .0, and we notice that for anyt such
thatÃ(t)Þ0, we have that domK(t)5D and if Ã(t)50, then domK(t)5K. For the norm onD,
we choose the graph norm associated to2 iw* ]:

iciD
2 5ici21i2 iw* ]ci2>ici2.

Whence,D is a dense continuously embedded subspace ofK. For anys,t and anycPD, we have

i~K~ t !2K~s!!ci2<2
uÃ~ t !2Ã~s!u2

w
*
2 i2 iw* ]ci212iH~ t !2H~s!)ci2

<2 maxH uÃ~ t !2Ã~s!u2

w
*
2 ; IH~ t !2H~s!I 2J iciD

2 .

which shows the norm continuity ofK(t).
We set S(t)5S52 iw* ]1 i . S is an isomorphism betweenD and K which is strongly

differentiable~by t independence!. It remains to show thatS satisfies Hypothesis~2! of Theorem
A.1. For this, we first notice that for anycPdomK(t), we have thatS21cPD,domK(t) and

K~ t !S21c5S21K~ t !c1H~ t !S21c2S21H~ t !c5S21K~ t !c1S21SH~ t !S21c2S21H~ t !c

5S21~K~ t !2 iw* ]H~ t !S21!c. ~A2!

Whence, for anycPdomK(t), we have that the left-hand side of Eq.~A2! belongs toD. So we
can write,

SK~ t !S21c5K~ t !c2 iw* ]H~ t !S21c, for all cedomK~ t !.

SettingB(t)52 iw* ]H(t)S21, we have a strongly continuous bounded operator~by the assump-
tions onH! which satisfiesSK(t)S21.K(t)1B(t). To show the reverse inclusion, we can co
sider anyb>2 suptiB(t)i which implies that ib belongs to the resolvent set of bothK(t)
1B(t) and SK(t)S21. It follows that (K(t)1B(t)1 ib)21,S(K(t)1 ib)21S21. But since the
left hand side has domainK, we must have equality betweenK(t)1B(t) andSK(t)S21 instead of
inclusion. h

In the examples of Sec. IV, bothH(s,u) defined through~15! by means of smooth function
x,y,z,l of (s,u), and H(s,u)1e i @P8(s,u),P(s,u)# where P(s,u)5uc(s,u)&^c(s,u)u with
c(s,u) given by one of the vectors~14! satisfy the hypotheses of the theorem. Hence assump
(H0) ~ii ! is satisfied for these models.
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APPENDIX B: PROOF OF LEMMA 2.1, THEOREM 2.1, AND PROPOSITION 3.1

Proof of Lemma 2.1:The idea of the proof is to integrate Eq.~7! over the interval@u0 ,u1# and
then to get ‘‘nice’’ estimates of the sizes on each subintervals@u0 ,t#, @ t,s#, and @s,u1#. By
integrating Eq.~7!, we get

i ~W~u1!2W~u0!!52E
u0

t

A21~u!L~u!A~u!W~u!du2E
t

s

A21~u!L~u!A~u!W~u!du

2E
s

u1
A21~u!L~u!A~u!W~u!du. ~B1!

For the middle term, we simply use the properties of the operator norm and the fact thatA(u) and
W(u) are unitary to obtain

iW~s!2W~ t !i<E
t

s

iL~u!idu< sup
uP@0,1#

iL~u!ius2tu, ~B2!

i.e., we do not care about the behavior ofg(u) inside the subinterval@ t,s#. To estimate the first
integral, letQ(u)512P(u). A simple computation, usingP(s)P8(s)P(s)[0, shows that

P~u!L~u!P~u!5Q~u!L~u!Q~u!50, ~B3!

and due to the intertwining property ofA(u), we can write

W~ t !2W~u0!5 i E
u0

t

~P~0!A21~u!L~u!A~u!Q~0!1Q~0!A21~u!L~u!A~u!P~0!!W~u!du.

~B4!

Now, we need to extract an explicite dependence from this equality in order to obtain t
estimates stated in the lemma. To do this, we follow Ref. 11 and introduce the bounded op
RL(u) defined by

RL~u!5
1

2ip R
G~u!

R~u,l!L~u!R~u,l!dl,

whereR(u,l)5(H(u)2l)21 is the resolvent ofH(u) at l and where the loopG(u) is a circle
centered atl(u) of radiusg(u)/2. It has the properties~see Refs. 11 and 13!

@RL~u!,H~u!#5@L~u!,P~u!#, ~B5!

P~u!RL~u!P~u!5Q~u!RL~u!Q~u!50. ~B6!

Standard arguments show thatRL(u) is stronglyC1 and that

RL8~u!5
1

2ip R
G~u!

~R~u,l!L8~u!R~u,l!2R~u,l!H8~u!R~u,l!L~u!R~u,l!

2R~u,l!L~u!R~u,l!H8~u!R~u,l!!dl, ~B7!

whereH8(u)R(u,l) is to be understood as the bounded operator

H8~u!R~u,l!5H8~u!R~u,i !~11~l2 i !R~u,l!!. ~B8!

Hence, we get the following estimates:
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iRL~u!i<
uG~u!u

2p
iL~u!i~g~u!/2!2252iL~u!i /g~u!, ~B9!

iRL8~u!i<c max$iH8~u!R~u,i !iiL~u!i ,iL8~u!i%/g2~u!. ~B10!

The main property ofRL(u) ~see Ref. 11! is that it satisfies for anycPD the following equalities,
as verified by means of~B5!:

P~0!A21~u!L~u!A~u!Q~0!c52 i e
d

du
~P~0!A21~u!RL~u!A~u!Q~0!c!

1 i eP~0!A21~u!RL8~u!A~u!Q~0!c ~B11!

and

Q~0!A21~u!L~u!A~u!P~0!c5 i e
d

du
~Q~0!A21~u!RL~u!A~u!P~0!c!

2 i eQ~0!A21~u!RL8~u!A~u!P~0!c. ~B12!

These equations imply that*u0

t A21(u)L(u)A(u)W(u)du is proportional toe. Indeed, Equalities

~B3! and the intertwining property ofA(u) show that the diagonal blocks are 0.
Introducing Equalities~B11! and ~B12! in Eq. ~B4!, we get

W~ t !2W~u0!52eE
u0

t d

du
~Q~0!A21~u!RL~u!A~u!P~0!

2P~0!A21~u!RL~u!A~u!Q~0!!W~u!du2eE
u0

t

~P~0!A21~u!RL8~u!A~u!Q~0!

2Q~0!A21~u!RL8~u!A~u!P~0!!W~u!du. ~B13!

Performing an integration by part in the first integral, using the differential equation~7! for W(u)
and taking into account thatA(u), W(u) are unitary andP(0), Q(0) are projectors, gives us th
following bound for the norm of the differenceW(t)2W(u0):

iW~ t !2W~u0!i<2e~ iRL~ t !i1iRL~u0!i1 sup
uP@u0 ,t#

iRL~u!iiL~u!i~ t2u0!

1 sup
uP@u0 ,t#

iRL8~u!i~ t2u0!!. ~B14!

Next, we use first Estimates~B9! and ~B10! and then the fact that 0<u0,t<1 to obtain the
desired bound:

iW~ t !2W~u0!i<
8e

gt
sup

uP@u0 ,t#

iL~u!i1
4e

gt
sup

uP@u0 ,t#

iL~u!i2~ t2u0!1c
2e

gt
2

3 sup
uP@u0 ,t#

$iH8~u!R~u,i !iiL~u!i ,iL8~u!i%~ t2u0!

<12
e

gt
sup

uP@0,1#

$iL~u!i ,iL~u!i2%12
eut2u0u

gt
2

3 sup
uP@0,1#

$iH8~u!R~u,i !iiL~u!i ,iL8~u!i%

<c2S e

gt
1

eut2u0u
gt

2 D . ~B15!
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Using the same kind of arguments, shows that on the subinterval@s,u1#, we have

iW~u1!2W~s!i<c2S eus2u1u
gs

2 1
e

gs
D . ~B16!

Combining estimates~B2!, ~B15!, and~B16! gives the announced bound foriW(u1)2W(u0)i .h
Proof of Theorem 2.1:In the sequel, we will denote by the same symbolc all inessential

constants. Let us consider the interval@0;a). In order to simplify the notations, we will not write
the subscripts/superscripts2. Picking somet,sPVk such thatt,ok,s and ut2oku5us2oku, we
get

iW~uk!2W~uk21!i<c~eut2uk21u/gt
21eus2uku/gs

21e/gt1e/gs1ut2su!

<cS e
D~k!

G~k!2 ut2oku22a1e
1

G~k!
ut2oku2a1ut2oku D

<cS e
D~k!

G~k!2 ut2oku22a1e
Da~k!

G~k!
ut2oku22a1ut2oku D ~B17!

<c~et~k!ut2oku22a1ut2oku! ~B18!

by the preceding section. Indeed, we have thatgt5 infuP@uk21 ,t#g(u)5g(r t) for some r t

P@uk21 ,t#. Now, by Hypothesis (H1), r tPVk . Whence, we have that

gt5g~r t!>G~k!ur t2okua>G~k!ut2okua

as r t<t<ok . Using the same kind of arguments, we can show thatgs5 infuP@s,uk#g(u)
>G(k)us2okua. Finally to obtain the bound~B17!, it remains to notice thatus2tu5ut2oku1us
2oku52ut2oku together withut2oku, ut2uk21u<D(k) and us2oku, us2uku<D(k).

We now get an estimate by choosingt5t(e,k) in order to balance the two contribution
appearing in the last term of Eq.~B17! above: for some constant§.0, we set

§112aet~k!

ut~e,k!2oku2a 5ut~e,k!2oku, ~B19!

i.e.,

ut~e,k!2oku5§~et~k!!1/~112a!. ~B20!

By definition, t(e,k)PVk , hence, ask will eventually be bounded from above byK(e), this
imposes Condition~13! in the statement of the theorem. Replacingt by t(e,k) in ~B17! and
summing overk, we get for anyK<K(e),

iW~0!2W~uK!i<c~§1§22a!(
k51

K

~et~k!!1/~112a!. ~B21!

On the other hand, using the differential Eq.~7!, we obtain

iW~uK!2W~a!i<E
uK

a

iL~u!idu<cuuK2au. ~B22!

Again, we balance the two right-hand sides in~B21! and ~B22! by setting the integerK5K(e),
which has been defined in Eq.~12!. Consequently,
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iW~0!2W~a!i<cS ~§1§22a!e1/~112a! (
k51

K~e!

t~k!1/~112a!1uuK~e!2au D
<c~§1§22a11!uuK~e!2au[C~§!uuK~e!2au, ~B23!

whereC(§) is independent ofe. Proceeding similarly on (a,1# completes the proof. h

Remark: In the step~B17! we deliberately lost a little in the estimate by usingut2oku2a

<Dk
aut2oku22a in order to simplify the subsequent arguments. It is nevertheless possible t

slightly sharper results by not adopting this simplification, however the analysis gets mo
volved and less transparent. We simply note here that in the examples discussed in this pap
more careful analysis yields, for the generic situation, an error term of orderep with an exponent
p51/3, instead of the valuep51/32n, for anyn.0 obtained there.

Proof of Proposition 3.1:The idea of the proof is to explicit conditions on the differe
exponents ensuring the validity of Theorem 2.1. We will only consider the interval@0,a), the
same kind of arguments will apply on (a,1#. Again, in order to simplify the notations we will le
aside the subscripts/superscripts2.

First, we have that 2D(k)5uk2uk215C1b/kb111o(1/kb11);1/kb11, which implies that

d>b11.0, ~B24!

since 2D(k)>uVku;1/kd. Notice that the length of theVk can be rescaled by a uniform consta
if d5b11.

Next, D(k)/G2(k);1/kb1112g and Da(k)/G(k);1/ka(b11)1g. So, if we denote by
m5min$b1112g,a~b11!1g% thent(k)5max$D(k)/G2(k), Da(k)/G(k)%;1/km by increasing the
overall constant in Theorem 2.1 if necessary. Whence,

(
k51

K

t~k!1/~112a!;(
k51

K

k2m/~112a!;H K0 if m.112a

logK if m5112a

K12m/~112a! if m,112a

~B25!

and considering the definition ofK(e) @see Eq.~12!#, we obtain

e1/~112a!;
uuK~e!2au

(k51
K~e!t~k!1/~112a! ;H K~e!2b if m.112a

K~e!2b/ logK~e! if m5112a

K~e!2b211m/~112a! if m,112a

. ~B26!

Condition ~13! stated in Theorem 2.1 reads

§~et~k!!1/~112a!<uVku/2 ~B27!

for all 1<k<K(e). Notice that this condition is automatically satisfied ifd,m/~112a!. In gen-
eral, it will be satisfied for a sufficiently small§, if

F~e![e1/~112a!K~e!d2m/~112a! ~B28!

remains bounded ase→0. Using~B26!, we have

F~e!;H K~e!d2b2m/~112a! if m.112a,

K~e!d212b/ logK~e! if m5112a,

K~e!d2b21 if m,112a.

~B29!

As K(e)→` for e→0, Eq. ~B29! implies that F(e) will remain bounded if d<b1
max$1;m/~112a!%.
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Hence, using~B23! and~B26!, we get that the adiabatic theorem~2.1! holds with a remainder
term on@0,a),

O~ uuK2~e!2au!5O~K~e!2b!5O~ep!

where the exponentp is given by

p55
1

112a
if m.~112a!

1

112a
2n ;n.0 if m5~112a!

b

~b11!~112a!2m
if m,~112a!

provided thatb11<d<b1max$1;m/~112a!%. To determinep in casem5112a andd5b11, we
have used the estimatee21/(112a);K(e)b logK(e),K(e)b1n8 for all n8.0. This ends the proof of
the proposition. h
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