Adiabatic evolution for systems with infinitely many eigenvalue crossings - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 1999

Adiabatic evolution for systems with infinitely many eigenvalue crossings

Résumé

We formulate an adiabatic theorem adapted to models that present an instantaneous eigenvalue experiencing an infinite number of crossings with the rest of the spectrum. We give an upper bound on the leading correction terms with respect to the adiabatic limit. The result requires only differentiability of the considered projector, and some geometric hypothesis on the local behavior of the eigenvalues at the crossings.
Fichier principal
Vignette du fichier
jmgjjmp.pdf (175.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01233203 , version 1 (24-11-2015)

Identifiants

Citer

Alain Joye, F. Monti, S. Guérin, H. R. Jauslin. Adiabatic evolution for systems with infinitely many eigenvalue crossings. Journal of Mathematical Physics, 1999, 40 (11), pp.5456-5472. ⟨10.1063/1.533039⟩. ⟨hal-01233203⟩
92 Consultations
166 Téléchargements

Altmetric

Partager

More