An analysis of reading skill development using E-Z Reader
Résumé
Previously reported simulations using the E-Z Reader model of eye-movement control suggest that the patterns of eye movements observed with children versus adult readers reflect differences in lexical processing proficiency. However, these simulations fail to specify precisely what aspect(s) of lexical processing (e.g., orthographic processing) account for the concurrent changes in eye movements and reading skill. To examine this issue, the E-Z Reader model was first used to simulate the aggregate eye-movement data from 15 adults and 75 children to replicate the finding that gross differences in reading skill can be accounted for by differences in lexical processing proficiency. The model was then used to simulate the eye-movement data of individual children so that the best-fitting lexical processing parameters could be correlated to measures of orthographic knowledge, phonological processing skill, sentence comprehension, and general intelligence. These analyses suggest that orthographic knowledge accounts for variance in the eye-movement measures that is observed with between-individual differences in reading skill. The theoretical implications of this conclusion will be discussed in relation to computational models of reading and our understanding of reading skill development.