
HAL Id: hal-01233168
https://hal.science/hal-01233168v1

Preprint submitted on 25 Nov 2015 (v1), last revised 15 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Obata singular theorem for stratified spaces
Ilaria Mondello

To cite this version:

Ilaria Mondello. An Obata singular theorem for stratified spaces. 2015. �hal-01233168v1�

https://hal.science/hal-01233168v1
https://hal.archives-ouvertes.fr


AN OBATA SINGULAR THEOREM FOR STRATIFIED SPACES

ILARIA MONDELLO

Abstract. Consider a stratified space with a positive Ricci lower bound on
the regular set and no cone angle larger than 2π. For such stratified space we
know that the first non-zero eigenvalue of the Laplacian is larger than or equal
to the dimension. We prove here an Obata rigidity result when the equality
is attained: the lower bound of the spectrum is attained if and only if the
stratified space is isometric to a spherical suspension. Moreover, we show that
the diameter is at most equal to π, and it is equivalent for the diameter to be
equal to π and for the first non-zero eigenvalue of the Laplacian to be equal
to the dimension. We finally give a consequence of these results related to the
Yamabe problem. Consider an Einstein stratified space without cone angles
larger than 2π: if there is a metric conformal to the Einstein metric and with
constant scalar curvature, then it is an Einstein metric as well. Furthermore, if
its conformal factor is not a constant, then the space is isometric to a spherical
suspension.

Introduction

The interest in the geometric study of singular metric spaces has been constantly
increasing in the last years. Singular metric spaces appear easily as quotients or
Gromov-Hausdorff limits of smooth manifolds. Thanks to the works of D. Bakry
and M. Émery, or K.T. Sturm, J. Lott and C. Villani, and many others, there are
various way of defining the notions of curvature and dimension in a more general
setting than the one of Riemannian manifolds. Some of the possible questions in
this wide domain of mathematics can be collected in the following: which classical
results of Riemannian geometry hold in the more general setting of singular metric
spaces?

In this paper we are interested in a particular class of singular metric spaces,
which are called stratified spaces and generalize the notion of conical singularity.
In fact, a compact stratified space X can be decomposed into a regular dense set
Ω, which is a smooth manifold of dimension n, and in a singular set, with different
components Σj of possibly different dimensions j smaller than n, called singular
strata, with a local “cone-like” structure. What we mean is that the neighbourhood
of a point in a singular stratum Σj is the product of an Euclidean ball of dimension
j and a cone over a link. This latter can be a compact manifold (in which case we
have a manifold with simple edges) or a compact stratified space. Singular strata
of codimension one are not admitted in the definition. The easiest examples of
stratified space are manifolds with isolated conical singularities; in order to fix the
ideas, one can also imagine to construct singularities along a curve, in which case
the neighbourhood of a singular point is the product between an interval and a
cone of the appropriate dimension. We observe that the link of a singular stratum
of codimension two Σn−2 is a circle S1, and a cone over a circle has an angle α: if α
is smaller than 2π, then the cone has positive curvature in the sense of Alexandrov,
negative otherwise. We refer to α has the cone angle of the stratum Σn−2. On a
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stratified space we can consider an iterate edge metric, as defined in [ALMP12] or
[ACM14], which is a smooth Riemannian metric on the regular set Ω, and define
the usual tools of geometric analysis.

In [Mon14] we introduced a class of stratified spaces, admissible stratified spaces,
which have, roughly speaking, a positive Ricci lower bound. What we mean is that
the Ricci tensor is bounded by below by a positive constant in the regular set and
there is an additional condition on the stratum of codimension two, in order to avoid
the situation of a cone angle larger than 2π, which would introduce in some sense
negative curvature. The question is whether we can find geometric results on this
class of stratified spaces which recover classical theorems for compact Riemannian
manifolds with a positive Ricci lower bound. In [Mon14] we already proved a
singular version of the Lichnerowicz theorem: the first non-zero eigenvalue of the
Laplacian is larger than or equal to the dimension of the space. Moreover, this
allows one to deduce a Sobolev inequality with explicit constants depending only
on the volume and on the dimension of the space. The main goal of this paper is
to prove the following rigidity result for admissible stratified spaces:

Theorem (Singular Obata). Let (Xn, g) be an admissible stratified space. The first

non-zero eigenvalue of the Laplacian λ1(X) is equal to the dimension n if and only

if there exists an admissible stratified space (X̂n−1, ĝ) such that (Xn, g) is isometric

to the spherical suspension of X̂, that is:
(

X̂ ×
[

−π
2
,
π

2

]

, dt2 + cos2(t)ĝ
)

.

When (Xn, g) is a compact smooth manifold, the spherical suspension is simply
a sphere of dimension n with the canonical metric, and thus our theorem recover
the known result of M. Obata for compact smooth manifolds. Before proving the
previous theorem, we recall a result due to D. Bakry and M. Ledoux ([BL96],
Theorem 4) to deduce an upper bound on the diameter of an admissible stratified
space: diam(X) is less than or equal to π. The proof by D. Bakry and M. Ledoux
relies on a spectral gap and on a Sobolev inequality as the ones we proved in
[Mon14], therefore it is easily adaptable to our setting. Furthermore Theorem 4
[BL96] shows that if the upper bound for the diameter is attained, then the first non-
zero eigenvalue of the Laplacian is equal to n and we know an explicit eigenfunction
depending on the distance from a point. We prove that, in turns, if λ1(X) is equal
to the dimension, then the diameter is equal to π. We have then the following
theorem:

Theorem (Singular Myers). Let (X, g) be an admissible stratified space of dimen-

sion n. Then the following statements are equivalent:

(i) The first non-zero eigenvalue of the Laplacian ∆g is equal to n.
(ii) The diameter of X is equal to π.
(iii) There exist extremal functions for the Sobolev inequality.

These results, together with a study of minimizing geodesics and tangent cones
in an admissible stratified space, give us the main ingredients to prove the theorem
“à la” Obata.

We finally discuss an application of the rigidity result to the Yamabe problem,
which consists in looking for a metric of constant scalar curvature among the con-
formal class of a given metric. We refer to [LP87] for a description of the Yamabe
problem on compact smooth manifolds, and to [ACM14] for the same in the setting
of stratified spaces. The Yamabe problem has a variational formulation depending
on a conformal invariant, called the Yamabe constant: this latter is defined as the
infimum of the integral of the scalar curvature among conformal metrics of volume
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one. If there exists a conformal metric attaining the Yamabe constant, it has con-
stant scalar curvature and it is called a Yamabe metric. A metric of constant scalar
curvature is not necessarily a Yamabe metric, but we have shown in [Mon14] that
an Einstein metric on an admissible stratified space is a Yamabe metric. Here we
give another proof of this result, under the assumption that a Yamabe minimizer
exists. Moreover we show the following:

Theorem. Let (Xn, g) be an admissible stratified space with Einstein metric. If

there exists g̃ in the conformal class of g, not homothetic to g, with constant scalar

curvature, then g̃ is an Einstein metric as well and (Xn, g) is isometric to the

spherical suspension of an admissible stratified space (X̂n−1, ĝ) with Einstein met-

ric.

This is also true for compact smooth manifolds due to another theorem of
M. Obata.

We notice that a Myers theorem has been proven by C. Ketterer in [Ket13] for
metric measure spaces which satisfy a curvature-dimension condition RCD(K,n).
Moreover, if the upper bound is attained, then the metric measure space is isomet-
ric to a spherical suspension. His proof relies on a splitting theorem of N. Gigli
[Gig13]. As a consequence, the author also proved an Obata rigidity theorem in
[Ket14]. Our analogous result clearly applies in a less general setting, but the ad-
vantage if its proof is that it is based on simple tools coming from Riemannian
geometry, and essentially on the study of an equation for the Hessian of a function.
It remains an interesting question whether admissible stratified spaces satisfy a
curvature-dimension condition in the sense of Bakry-Émery, Sturm-Lott-Villani or
RCD(K,n), since they could give new concrete examples of metric measure spaces
belonging to this setting.

Acknowledgements: I would like to thank Gilles Carron for countless discus-
sions, Rafe Mazzeo for helpful suggestions, Kazuo Akutagawa, Gilles Courtois and
Vincent Minerbe for their remarks when I was completing this work.

1. Preliminaries

We introduce here a detailed definition of a stratified space. For this purpose,
we precise that for a truncated cone C(Z) over a compact metric space Z we mean
the product Z × [0, 1] with the equivalence relation (z1, 0) ∼ (z2, 0) for all z1, z2
in Z: we identify all the points in Z × {0} to a unique point, called the vertex of
the cone. We say that a truncated cone is of size δ if we consider the interval [0, δ]
instead of [0, 1]. If Z is a compact manifold endowed with the Riemannian metric
k, then a conic metric on C(Z) has the form dr2 + r2k.

Definition 1.1. Let (X, d) be a compact metric space. We say thatX is a stratified
space if it admits a decomposition of the form:

X = Ω ⊔ Σ,

where Ω is an open smooth manifold of dimension n dense inX , and Σ is the disjoint
union of a finite number N of components Σj , j = 1, . . .N , called singular strata,
which are smooth manifolds of dimension j. The stratum of dimension (n − 1) is
empty.

For each Σj there exist a neighbourhood Uj of Σj , a retraction πj , a radial
function ρj :

πj : Uj → Σj , ρj : Uj → [0, 1]

and a stratified space Zj such that πj is a cone bundle, whose fibre is a truncated
cone over Zj. The stratified space Zj is called the link of the stratum Σj .
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In the following we will refer to Ω and Σ respectively as the regular and the
singular set of X . We can reformulate the condition on the strata Σj by saying
that for each point x in Σj there exist a neighbourhood Wx, a positive radius δx
and a homeomorphism ϕx between Wx and a product between an Euclidean ball
B(δx) and a truncated cone Cδx(Zj) of size δx over the link Zj . Moreover, ϕx is a
diffeomorphism between the regular part of Wx and B(δx)×Cδx(Z

reg

j )\B(δx)×{0}.
In the rest of the paper we will treat ϕx as an identification between Wx and the
product Bj(δx)× Cδx(Zj).

One can define an admissible metric on a stratified space: for a precise discussion
we refer to section 3 of [ALMP12] and section 2.1 of [ACM14]. For the purposes
of this paper, the reader only needs to know that an admissible metric g is a
smooth Riemannian metric on the regular set Ω and near to the stratum Σj it is a
perturbation of the model metric g0 = ξj + dr2 + r2kj , where ξj is the Euclidean
metric on Rj and kj is an iterated edge metric on the link Zj . More precisely, if x
belongs to Σj and Wx, δx and ϕx are defined as above, we have for any r < δx:

|ϕ∗
xg − g0| ≤ Λrα on B

j(r) × Cr(Zj).

where Λ is a positive constant and α > 0 does not depend on j.

In the following we will consider minimizing geodesics, that in this context are
Lipschitz curves which minimize the distance between two points. We will need
to use the uniqueness of a minimizing geodesic starting from a regular point with
fixed speed: for this to be true, the metric must be C2. We then assume that near
each stratum Σj the perturbation of the model metric ϕ∗

xg − g0 has coefficients in
C2, and that the same is true for the metric kj on the links.

On a stratified space it is possible to define the usual analytic tools of geometric
analysis. We are mostly interested in the Sobolev space W 1,2(X) and in the Lapla-
cian operator. The first one is defined as the closure of the Lipschitz function on
X with respect to the usual norm:

‖f‖21,2 = ‖f‖22 + ‖df‖22 .
Thanks to the assumption that the codimension one stratum does not exist, the
smooth functions with compact support in the regular set Ω are dense in W 1,2(X).
A standard proof of this can be found in [Mon15]. In [ACM14], the usual Sobolev
embeddings which hold on compact Riemannian manifolds are proven in the setting
of stratified spaces as well. In particular we have the following Sobolev inequality:
there exist positive constants A and B such that for any u in W 1,2(X)

‖u‖22n
n−2

≤ A ‖du‖22 +B ‖u‖22 .

The Laplacian operator ∆g is the positive self-adjoint operator defined as the
Friedrichs extension of the semi-bounded Dirichlet quadratic form E :

E(u) =
∫

X

|du|2dvg.

defined for u in C∞
0 (Ω).

Tangent cones and geodesic balls. It will be useful to introduce another de-
scription for a neighbourhood of a singular point, which relays on the notion of
tangent sphere. First, for each point in a stratified space, the pointed Gromov-
Hausdorff limit of (X,λd, x) as λ tends to infinity exists, it is unique and it is
carries an exact cone metric. We refer to this limit as the tangent cone at x. When
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x is a point in Ω, the tangent cone is simply the Euclidean space Rn. If x belongs
to Σj , the tangent cone is a cone over the following stratified space:

Sx =
[

0,
π

2

]

× S
j−1 × Zj

endowed with the metric hx = dθ2 + cos2 θgSj−1 + sin2 θkj . We refer to Sx as the
(j−1)-fold spherical suspension of the link Zj , and more often as the tangent sphere
at x.

In [ACM15], the authors showed that for each singular point x there exist a
sufficiently small radius εx, a constant κ and an open neighbourhood Ωx of x such
that the geodesic ball centred at x is included in Ωx, Ωx is homeomorphic to the
cone Cκεx(Sx) and moreover in B(x, εx) the metric g differs from the exact cone
metric dr2 + r2hx for:

|g − (dr2 + r2hx)| ≤ Λεαx .

For a more detailed description of the previous, we refer to section 2.2 in [ACM15]
and to the first chapter of [Mon15].

Admissible stratified spaces. Most of the results of this paper are stated for a
class of stratified spaces, called admissible and introduced in [Mon14]. We recall
their definition:

Definition 1.2. A stratified space (Xn, g) is an admissible stratified space if it
satisfies the following two conditions:

(i) The Ricci tensor on Ω is such that Ricg ≥ (n− 1)g.
(ii) The stratum Σn−2 of codimension 2, if it is not empty, has angle α strictly

less than 2π.

The second condition is to exclude the situation of a cone of angle α > 2π,
which in some sense would introduce negative curvature, thus an obstruction to
extend results holding on smooth manifolds with a positive Ricci lower bound.
For admissible stratified spaces, we proved in [Mon14] a singular version of the
Lichnerowicz theorem:

Theorem 1.1 (Singular Lichnerowicz). Let (Xn, g) be an admissible stratified

space. Then the first non-zero eigenvalue λ1(X) of the Laplacian ∆g is larger

than or equal to the dimension n.

The proof of this theorem is by iteration on the dimension of the stratified space,
and it consists in using Bochner-Lichnerowicz formula on the regular set and getting
the suitable regularity on the eigenfunctions ϕ. Then by using the appropriate cut-
off functions ρε, vanishing in a tubular neighbourhood of the singular set and being
equal to one elsewhere, we obtain that for any eigenfunction ϕ of the Laplacian
associated to the eigenvalue λ the following holds:

(

1− (n− 1)

λ
− 1

n

)
∫

X

ρε(∆gϕ)
2dvg ≥

(

1− (n− 1)

λ

)
∫

X

ρε(∆gϕ)
2dvg

−
∫

X

ρε|∇dϕ|2dvg ≥ 0.

(1)

Passing to the limit as ε goes to zero, this implies the desired inequality. Further-
more, the singular Lichnerowicz theorem has consequences on the regularity of the
non-negative solutions to a Schrödinger equation of the form ∆gu = F (u), where
F is locally Lipschitz. In particular, for an eigenfunction ϕ we have that ϕ belongs
to W 2,2(X) and its gradient is bounded on X (see Corollary 2.12 in [Mon15]).

We observe that if there exists an eigenfunction ϕ associated to the eigenvalue
n, then the inequality (1) implies that its Hessian must satisfy |∇dϕ|2 = (∆gϕ)

2/n
on the regular set. Therefore we are in the case of equality in the Cauchy-Schwarz
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inequality and we get that the Hessian of ϕ is proportional to the metric g in the
regular set of X :

(2) ∇dϕ = −ϕg on Ω.

If the Hessian of a scalar function ϕ satisfies an equation of the form ∇dϕ = ρg
for some function ρ, then ϕ is called in the literature a concircular scalar field. Its
gradient X = dϕ is a conformal vector field, which means that the Lie derivative of
the metric along X is proportional to g. The existence of a concircular scalar field
or of a conformal vector field on a compact, or complete, smooth manifold can lead
to various consequences. For example, Y. Tashiro in [Tas65] classified complete
manifolds possessing a concircular scalar field. See also Sections 2 and 3 of [Mon99]
for a brief but complete presentation of some known results about the subject.

In the setting of admissible stratified spaces as well, the equation (2) is a key
point in proving a rigidity result, as it will be clear in the proofs of Theorem 2.1
and 3.1.

Remark 1.2. If (Xn, g) is an admissible stratified space, then each of its links Zj

and the tangent sphere at each point Sx are admissible stratified spaces as well (see
Lemma 1.1 in [Mon14]). As a consequence of this and of the singular Lichnerowicz
theorem, the first non-zero eigenvalue of the Laplacian on each tangent sphere is
larger than (n− 1).

As we recalled in the introduction, the singular Lichnerowicz theorem allows one
to prove that a Sobolev inequality with explicit constants holds on an admissible
stratified space:

Theorem 1.3 (Sobolev inequality). Let X be an admissible stratified space of

dimension n. Then for any 1 < p ≤ 2n/(n−2) a Sobolev inequality of the following

form holds:

(3) V 1− 2
p ‖f‖2p ≤ ‖f‖22 +

p− 2

n
‖df‖22 .

where V is the volume of X with respect to the metric g.

A Sobolev inequality of the previous form was proven by S. Ilias in [Ili83] for
compact smooth manifolds with Ricci tensor bounded by below by a positive con-
stant, and by D. Bakry in [Bak94] for a much general setting. Our proof is inspired
by the argument due to D. Bakry.

We now dispose of all the necessary tools to prove the upper bound on the
diameter of an admissible stratified space.

2. A Myers singular theorem

A classical result holding for smooth Riemannian manifolds is the Myers theo-
rem: if (Mn, g) is complete, connected, and its Ricci tensor is bounded by below by
(n−1)g, then the diameter of M is less or equal than π. In [BL96], the authors have
proven that this kind of lower bound can be shown in a great generality, on a proba-
bility measure space with a Markov generator which satisfies a curvature-dimension
condition. Moreover, the proof relies only on analytical tools, in particular on the
existence of a Sobolev inequality of the form (3) and on the choice of the appropri-
ate test functions (see Section 2 in [BL96] for the details). The previous theorem
gives us the Sobolev inequality needed to apply D. Bakry and M. Ledoux’s proof.
As a consequence, the Myers theorem holds on admissible stratified spaces in the
following sense:
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Theorem 2.1 (Singular Myers Theorem). Let (X, g) an admissible stratified space.

Let us define its Lipschitz diameter as:

diamL(X) = sup
{

||f̃ ||L∞(X×X); f ∈ Lip1(X)
}

where f̃(x, y) = f(x) − f(y) and Lip1(X) is the set of Lipschitz functions with

Lipschitz constant less or equal than one. Then diamL(X) is less or equal than π.

Observe that on a smooth Riemannian manifold, what we called Lipschitz diam-
eter coincides with the usual diameter associated to the Riemannian metric. We
remark that it is possible to prove the following lemma:

Lemma 2.2. Let (X, g) be a stratified space of dimension n and let γ : [0, 1] → X
be a Lipschitz curve in X. Let Lg(γ) denote its length. For any ε > 0 there

exists a curve γε such that γε((0, 1)) is contained in the regular set Ω and Lg(γε) ≤
(1 + ε)Lg(γ).

This implies two facts: first, a function u in C1(Ω) ∩ C0(X) whose gradient is
bounded in L∞(X) by a constant c is a Lipschitz function on the whole of X , with
Lipschitz constant less or equal than c; moreover, the Lipschitz diameter coincides
with the diameter associated to the metric g, and we can avoid any distinction
between the two.

We are going to show that an admissible stratified space has diameter equal
to π if and only if the first non-zero eigenvalue of the Laplacian is equal to the
dimension of the space. Thanks to Theorem 4 in [BL96] this is in turn equivalent
to the existence of extremal functions for the Sobolev inequality (3) which only
depend on the distance from a point.

Theorem 2.3. Let (X, g) be an admissible stratified space of dimension n. Then

the following statements are equivalent:

(i) The first non-zero eigenvalue of the Laplacian ∆g is equal to n.
(ii) The diameter of X is equal to π.
(iii) There exist extremal functions for the Sobolev inequality.

Proof. If the diameter of X is equal to π, then its Lipschitz diameter is equal to π,
and then Theorem 4 in [BL96] implies both the existence of functions attaining the
equality in Sobolev inequality and of an eigenfunction associated to the eigenvalue
n. In particular, if P is a point in X with and antipodal point N , dg(P,N) = π,
then the function ϕ(x) = cos(dg(P, x)) is such that ∆gϕ = nϕ.

As a consequence, we have to prove that if the first non-zero eigenvalue of the
Laplacian is equal to the dimension of the space, then its diameter is equal to
π. If we find a Lipschitz function f which takes values in an interval of length
π and whose Lipschitz constant is smaller or equal than one, then we have that
diamL(X) = π, and thanks to the previous lemma we get the desired value for the
diameter.

Consider ϕ an eigenfunction associated to the eigenvalue n: as we recalled above,
its gradient belongs to W 1,2(X) and it is bounded. Moreover, its Hessian is pro-
portional to the metric g on the regular set Ω, since ϕ satisfies the equation (2).
As a consequence, we can show that the quantity |∇ϕ|2 + ϕ2 is a constant on the
regular set Ω. In fact we have:

d(|∇ϕ|2 + ϕ2) = 2ϕdϕ+ 2∇dϕ(·,∇ϕ) = 2ϕdϕ− 2ϕdϕ = 0.

Then, up to multiplying by a constant, we can assume without loss of generality
that:

(4) |∇ϕ|2 + ϕ2 = 1 on Ω.
7



This equality tells us that ϕ takes values between −1 and 1. Let us consider the
function f defined as follows:

f = arcsin(ϕ).

Its gradient is bounded on the regular set Ω, because the gradient of ϕ belongs to
L∞(X), and then f belongs to Lip(X) as well. Moreover, by definition ∇f has
norm equal to one at each regular point: thanks to Lemma 2.2 this implies that
the Lipschitz constant of f on the whole X is less or equal than one. In order to
conclude, we need to show that the image of X by f is equal to [−π/2, π/2]. This
is clearly equivalent to proving that ϕ has the closed interval [−1, 1] as image.

Let us define U+ as the set on which ϕ is strictly positive. Observe that Ω∩ U+

is not empty, since ϕ changes sign on X , and Ω is dense in X . Moreover Ω ∩ U+ is
dense in U+, since Ω is dense and U+ is an open set in X .

Consider and the following problem with Dirichlet condition at the boundary:
{

∆gf = λf in U+

f = 0 on ∂U+.

This problem has a variational formulation: we can define the first non-zero Dirich-
let eigenvalue on U+ as the infimum of the Dirichlet energy on functions inW 1,2

0 (U+),
that is:

λ1(U+) = inf

{

E(ψ) = ‖dψ‖22
‖ψ‖22

, ψ ∈ W 1,2
0 (U+)

}

Assume by contradiction that the maximum of ϕ is equal to M , strictly smaller
than 1. We state that this implies the existence of a function u : [0,M ] → R+ such
that u(0) = 0 and

∆g(u ◦ ϕ) = nϕu′(ϕ)− (1− ϕ2)u′′(ϕ) > n(u ◦ ϕ), on Ω ∩ U+.

This means that we can find a function u which vanishes at 0, is positive on (0,M ]
and satisfies the following differential inequality on (0,M ]:

(5) − u′′(t)(1 − t2) + ntu′(t) > nu(t).

Let α > 1, to be chosen later, and consider uα(t) = t − tα. By replacing in the
differential inequality, we reformulate (5) in the following way:

α(α − 1)tα−2(1− t2) + nt(1− αtα−1) > n(t− tα).

α(α− 1)tα−2 − α(α− 1)tα − nαtα + ntα > 0

α(α − 1)tα−2 − (α− 1)tα(α+ n) > 0.

Now by multiplying by (α− 1)t2−α > 0 we get:

α− t2(α+ n) > 0.

Therefore the question becomes to find an α > 1 such that the previous inequality
is satisfied. The second degree polynomial appearing in the left-hand side of the
previous inequality has a solution in [0, 1] at t0(α) =

√

α(α+ n)−1, and it is positive
between 0 and t0(α). Since this last quantity tends to one as α goes to infinity, and
since M is strictly smaller than one, we can choose α large enough so that t0(α) is
strictly larger than M . For such α the function uα satisfies the desired differential
inequality, it is positive in (0,M ] and vanishes at 0. From now on we denote uα
simply by u, and u ◦ ϕ by φ.

Let ε be a positive real number and define uε = u+ε: then uε is strictly positive
and, if we consider φε = uε ◦ϕ, the Laplacian of φε satisfies ∆gφε > nφ on Ω∩U+.
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For any positive function ψ belonging to W 1,2
0 (U+) we can define v = ψ/φε,

which still belongs to W 1,2
0 (U+). By integration by parts and using that Ω ∩ U+ is

dense in U+ we obtain:
∫

U+

|dψ|2dvg =

∫

U+

|d(vφε)|2dvg =

∫

U+

(v2|dφε|2 + 2vφε(dv, dφε)g + φ2ε|dv|2)dvg

≥
∫

U+

(v2|dφε|2 + 2vφε(dv, dφε)g)dvg =

∫

U+

(d(v2φε), dφε)gdvg =

=

∫

U+

φεv
2∆gφεdvg =

∫

U+∩Ω

φεv
2∆gφεdvg .

Now, by using that ∆gφε > nφ on U+∩Ω in the last integral, and since by definition
v = ψ/φε we get:

∫

U+

|dψ|2dvg > n

∫

U+∩Ω

φεφv
2dvg = n

∫

U+∩Ω

ψ2 φ

φε
dvg = n

∫

U+

ψ2 φ

φε
dvg.

Now observe that φ/φε is smaller than one, it converges to one almost everywhere
when ε goes to zero, and when we pass to the limit, by the dominated convergence
theorem, we get:

∫

U+

|dψ|2dvg ≥ n

∫

U+

ψ2dvg.

This shows that λ1(U+) is larger than or equal to n.
The eigenfunction ϕ associated to n is a positive function on U+ belonging to

W 1,2
0 (U+), and therefore λ1(U+) is equal to n. Moreover, we can apply the same

calculations as above with ψ = ϕ. We can write ϕ as vφ, where v is strictly positive
on U+ and it is defined by v = (1 − ϕα−1)−1, since by definition φ = ϕ − ϕα. We
can easily deduce that v must be a positive constant. In fact we have:

n

∫

U+

ϕ2dvg =

∫

U+

|dϕ|2dvg =

∫

U+

(φ2|dv|2 + φv2∆gφ)dvg

>

∫

U+

φ2|dv|2dvg + n

∫

U+

ϕ2dvg.

This means that dv = 0, v must be equal to a constant c and φ is a multiple of
ϕ, therefore an eigenfunction relative to n. This is a contradiction, since we have
shown that ∆gφ is strictly larger than nφ on Ω ∩ U+. Therefore, the maximum of
φ on U+ must be equal to one.

Remark that, in particular, we have proven that the Dirichlet problem on U+

has a unique positive solution up to multiplication factors.
Analogously, the minimum of ϕ is equal to −1: therefore the image of X via

ϕ is [−1, 1],, and via f is [−π/2, π/2]. Thanks to Theorem 2.1 we know that the
Lipschitz diameter is less or equal than π, and then we get the equality, as we
wished. �

3. Obata singular theorem

In this section we are going to prove a rigidity result for an admissible stratified
space such that the first non-zero eigenvalue of the Laplacian is equal to the di-
mension. This theorem recovers the one proved by M. Obata [Oba62] for compact
smooth manifolds (Mn, g) with Ricci tensor bounded by below by (n− 1)g. For an
alternative discussion of the proof in the case of Riemannian manifolds we refer to
Theorem D.I.6 in [BGM71a].

Theorem 3.1 (Singular Obata theorem). Let (X, g) an admissible stratified space

of dimension n. The first eigenvalue of the Laplacian ∆g is equal to n if and only

9



if there exists an admissible stratified space (X̂, ĝ) of dimension (n − 1) such that

(X, g) is isometric to the spherical suspension of X̂:

(6) S(X̂) =
[

−π
2
,
π

2

]

× X̂.

Endowed with the metric dt2 + cos2(t)ĝ.

This theorem has an immediate consequence for cones over admissible stratified
spaces whose diameter is equal to π, which is going to play a role in the proof. We
are first going to prove the following:

Corollary 3.2 (Splitting). Let (Xn, g) be an admissible stratified space of diameter

equal to π. Then the cone C(X) splits into the product R × C(Y ), where (Y, k) is

an admissible stratified space.

Proof. It is an easy fact that a cone over a stratified space (Xn, g) splits a factor
R if and only if (Xn, g) is a spherical suspension over a stratified space (Y, k). In
fact, consider the metric dr2 + ds2 + s2k on R×C(Y ), with r ∈ R and s ∈ R+. We
define the change of variables:

r = ρ sin(θ), s = ρ cos(θ) for θ ∈
(

−π
2
,
π

2

)

.

Then replacing in the product metric we get:

dρ2 + ρ2(dθ2 + cos2(θ)k),

on the cone over the spherical suspension of (Y, k).
Theorem 3.1 states that an admissible stratified space (Xn, g) of diameter π is

isometric to a spherical suspension over (X̂, ĝ), and therefore, the cone over (Xn, g)
splits a factor R. �

Remark 3.3. In the previous Corollary, if (Y, k) has diameter equal to π, we can
iterate this argument, until we get the splitting Rm × C(Y0) for m ≥ 1 and an
admissible stratified space (Y0, k0) of diameter strictly less than π.

Remark 3.4. Under the assumption of the previous Corollary, let P and N two
points inX at distance π, which in the coordinates given by the spherical suspension
corresponds to {−π/2} × Y and {π/2} × Y respectively. Consider the geodesic γ0
in C(X) relying the vertex 0 of the cone with P and N . Since C(X) is isometric to
R×C(Y ) endowed with the metric dρ2+ρ2(dθ2+cos2(θ)k, the geodesic γ0 is defined
on the whole R: it is the radius connecting 0 and N on R+, the one connecting 0
and P on R−. We claim that the first coordinates ρ in the metric corresponds to
the opposite of the Busemann function of the geodesic γ0. Indeed, let x be a point
in C(X) = R × C(Y ) of coordinates (ρ(x), θ(x), y) and γ0(t) = (t, 0, 0) a point of
the geodesic γ0. The Busemann function associated to γ0 is defined as:

Bγ0
(x) = lim

t→+∞
(dC(X)(γ0(t), x) − t),

and by using the formula for the distance in C(X) = R× C(Y ) we get:

Bγ0
(x) = lim

t→+∞
(
√

|t− ρ(x)|2 + s(x)2 − t)

= lim
t→+∞

−2ρ(x)t+ ρ(x)2 + s(x)2
√

|t− ρ(x)|2 + s(x)2 + t
= −ρ(x),

As we claimed above. Observe also that the Busemann function of γ0 is onto on R,
since for any point γ0(s) of the geodesic we have Bγ0

(γ0(s)) = −s.
10



For the purposes of the proof of Theorem 3.1, we need some information about
minimizing geodesics on an admissible stratified space. For a minimizing geodesic
we mean a Lipschitz curve γ : I → X such that for any t1, t2 in the interval
I we have dg(γ(t1), γ(t2)) = |t2 − t1|. We point out here that little is known
about minimizing geodesics on general stratified spaces, their regularity and the
uniqueness of a minimizing geodesic between two points, in particular when one or
both of them belong to the singular set.

Lemma 3.5. Let X be an admissible stratified space, x be in X and γ : [0, 1] → X
a Lipschitz minimizing geodesic starting from x. Then γ̇(0) is well-defined and

unique.

Proof. We know that if X is an admissible stratified space, the diameter of X is
smaller or equal than π, and moreover, thanks to Remark 1.2, that each tangent
sphere is an admissible stratified space: therefore, the diameter of each tangent
sphere is less or equal than π. As a consequence, if we consider the tangent cone
C(Sx) the distance between two points (t, y) and (s, z) is given by:

(7) dC((t, y), (s, z)) =
√

t2 + s2 − 2rs cosdSx
(y, z)

Recall that for t small enough, a neighbourhood B(x, t) of a point x in X in included
in an open neighbourhood Ωx of x which is homeomorphic to a truncated cone of
size kt, for a positive constant k, over the tangent sphere Sx at x. Moreover, the
metric g on B(x, t) and the conic metric on C[0,kt](Sx) differ for an error which is
proportional to tα for α > 0. If we consider this estimate in terms of the distances
associated to g and to the conic metric, we get the following: for any y in B(x, t)
with coordinates (r, z) in C[0,kt)(Sx) we have

(8) |dg(x, y)− dC(0, (r, z))| ≤ Λt1+α,

where Λ is a positive constant independent of x.
For a sufficiently small time t, the point γ(t) belongs to Ωx and we can associate

to γ(t) coordinates in the cone C[0,kt](Sx), which we denote (r(t), θ(t)), with θ(t)
in Sx. We aim to show that these coordinates in the tangent cone admit a unique
limit γ̇(0) = (0, θ(0)) as t tends to zero.

For what concerns the radial coordinate r the situation is simpler. Thanks to
the inequality (8) we have:

|dg(x, γ(t)) − dC((0, θ(0)), (r(t), θ(t))| ≤ Λt1+α.

Since γ is a minimizing geodesic and by using the expression (7) for the distance
in the cone, we get:

|t− r(t)| ≤ Λt1+α,

which means that the radial coordinate satisfies r(t) = t + O(t1+α). As a conse-
quence, r(t) easily converges to zero as t goes to zero. For simplicity, from now on
in the proof we will replace r(t) by t: we leave to the reader the straightforward
computation with t+O(t1+α).

It remains to show that θ(t) converges to a unique point θ(0) in Sx. Since
Sx is compact, we know that for any sequence tj going to zero, there exists a
subsequence such that θ(tj) converges to a point in Sx. We want to prove that for
any two sequences tj , sj tending to zero, such point is the same.

Consider t, s > 0 sufficiently small. Then γ(t) and γ(s) belongs to a ball centred
at x of radius equal to the maximum between t and s. As we recalled above, such
ball is included in an open neighbourhood of x homeomorphic to a truncated cone
over Sx. The estimate for the metrics together with the fact that γ is minimizing
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lead to the following:
(9)
|dg(γ(t), γ(s))−

√

t2 + s2 − 2st cosdSx
(θ(t), θ(s))| ≤ Λmax {t, s}α dg(γ(t), γ(s))

which can be rewritten as:

(10)

∣

∣

∣

∣

∣

1−
√

1 + 4
st

|t− s|2 sin2
(

dSx
(θ(t), θ(s))

2

)

∣

∣

∣

∣

∣

≤ Λmax{t, s}α.

Consider the sequence tj = 2−j: first, we are going to show that the sequence θ(tj)
converges to a point z0 in Sx without passing to a subsequence. This is done by
proving that θ(tj) is a Cauchy sequence. Then, we are going to prove that for any
other sequence sj tending to zero as j goes to infinity, θ(sj) converges to z0 as well.

In the inequality (10) replace t = tj and s = tj+1. We then obtain:
∣

∣

∣

∣

∣

1−
√

1 + 8 sin2
(

dSx
(θ(tj), θ(tj+1))

2

)

∣

∣

∣

∣

∣

≤ 2Λ

(

1

2α

)j

This implies that the distance between θ(tj) and θ(tj+1) converges to zero as j
tends to infinity. More precisely, by multiplying by the conjugate quantity and by
using the Taylor expansion of sine at zero, we can state that there exists a positive
constant C such that:

dSx
(θ(tj), θ(tj+1)) ≤ C

(

1

2α

)j

.

The sequence 2−αj is such that its series converges and therefore θ(tj) is a Cauchy
sequence. Then it converges to a point z0 in Sx, without passing to any subsequence.
Now consider a sequence si going to zero as i tends to infinity. We need to prove
that θ(si) converges to z0. For any i, choose ji in N such that 2−ji−1 ≤ si < 2−ji .
Then by the triangular inequality we have:

dSx
(θ(si), z0) ≤ dSx

(θ(si), θ(tji )) + dSx
(θ(tji ), z0).

We know that the second term in the right-hand side tends to zero as ji goes to
infinity. As for the first term consider the inequality (10) with t = tji and s = si.
We multiply and divide the left-hand side of (10) by the conjugate quantity:

(11)

4ts
|t−s|2 sin

2
(

dSx (θ(t),θ(s))
2

)

1 +

√

1 + 4ts
|t−s|2 sin

2
(

dSx (θ(t),θ(s))
2

)

≤ max{s, t}α = 2−αji .

Denote by ρ the numerator of this expression and rewrite the previous as:

f(ρ) =
ρ

1 +
√
1 + ρ

≤ 2−αji .

For ji sufficiently large, the right-hand side of this inequality is smaller than one.
Since the function f is increasing and f(3) = 1, we get that ρ belongs to the interval
(0, 3). Then again by using the previous inequality we obtain:

ρ ≤ 2−αji(1 +
√

1 + ρ) ≤ 3 · 2−αji .

Getting back to (11), we have obtained:

sin2
(

dSx
(θ(t), θ(s))

2

)

< 3 · 2−αji
|t− s|2
4ts

.

Now, thanks to our choice of t and s we have the following bounds:

2−2ji−1 ≤ ts < 2−2ji , |t− s| < 2−ji−1,
12



which imply that for some positive constant C1 we have:

sin2
(

dSx
(θ(t), θ(s))

2

)

≤ C12
−αji

We have then shown that the distance in Sx between θ(si) and θ(tji ) must tend to
zero as i tend to infinity. Therefore θ(si) converges to z0, and this is true for any
sequence {si} tending to zero. This proves that θ(0) in Sx, and then γ̇(0) in C(Sx),
are well defined and unique, as we wished. �

Lemma 3.6. Let (X, g) be an admissible stratified space, γ : [−ε, ε] → X a mini-

mizing geodesic and let x be the point γ(0). Then the diameter of the tangent sphere

Sx is equal to π.

Proof. As we recalled above, for each point x of X the tangent sphere Sx is an
admissible stratified space, and then by the singular Myers theorem we know that
its diameter is less or equal than π. As a consequence, it suffices to find two points
in Sx at distance π. As we did in the previous proof, for a time t small enough,
we can associate to γ(t) the coordinates (r(t), θ(t)) in C(Sx). Observe that r(t)
belongs to R+, and since we are considering negative values for t, if we repeat the
same argument as above for the variable r(t) we get r(t) = |t|+O(t1+α).

We claim that the two points at distance π in Sx are given by:

θ+ = lim
t→0+

θ(t), θ− = lim
t→0−

θ(t)

Both of the two limits exist in Sx thanks to the previous Lemma.
Fix t > 0, consider θ(t) and θ(−t). By using (9) and again for simplicity by

replacing r(t) by |t|, we have the following:
∣

∣

∣
2t−

√

2t2 − 2t2 cosdSx
(θ(t), θ(t))

∣

∣

∣
≤ 2Λt1+α.

Then we can divide both sides of the inequality by 2t and get:
∣

∣

∣

∣

1− sin

(

dSx
(θ(t), θ(−t))

2

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1−
√

1− cos(dSx
(θ(t), θ(−t))
2

∣

∣

∣

∣

∣

≤ Λtα.

As a consequence, when t tends to zero, the distance in Sx between θ(t) and θ(−t)
must tend to π, and we get dSx

(θ+, θ−) = π. Then the tangent sphere has diameter
equal to π. �

Lemma 3.7. Let (Xn, g) be an admissible stratified space of diameter equal to π.
Let P a point in X such that there exists N in X at distance π from P . For any

point x0, distinct from P , if γ1, γ2 are respectively minimizing geodesics from P to

x0 and from x0 to N , then the concatenation of γ1 and γ2 is a minimizing geodesic

from P to N .

Proof. Thanks to the Myers singular theorem 2.1, we know that the first non-zero
eigenvalue of the Laplacian is equal to the dimension n, and moreover that the
function:

ϕ(x) = sin
(

dg(x, P )−
π

2

)

= cos(dg(x, P )) : X → [−1, 1]

is an eigenfunction for the Laplacian associated to n. Let P,N, x0 and γ1, γ2 be as
in the statement. To show that the concatenation γ of γ1 and γ2 is a minimizing
geodesic from P to N , it suffices to prove that the sum of dg(x0, P ) and dg(x0, N)
is equal to π. Let us consider

ϕN (x) = cos(dg(x,N)),
13



which is again an eigenfunction associated to n. Assume that the distance from x0
to P is less than π/2. Denote:

U+ =
{

x ∈ X s.t. d(x, P ) <
π

2

}

= {x ∈ X s.t. ϕ(x) > 0} .

Then the distance between all points in U+ and N is larger than π/2, and ϕN is
negative on U+. We are going to use the same integration by parts as we did in the
proof of Thoerem 2.1. For any ε > 0 define

vε =
ϕP

ε− ϕN
,

which is a positive function on U+ and belongs to W 1,2
0 (U+). Consider vεϕN and

the norm in L2 of its gradient:
∫

U+

|d(vεϕN )|2dvg =

∫

U+

(|dvε|2ϕ2
N + 2ϕNvε(dvε, dϕN )g + v2ε |dϕN |2)dvg(12)

≥
∫

U+

(d(v2εϕN ), dϕN )gdvg =

∫

U+

v2εϕN∆gϕNdvg.(13)

Now, ϕN is an eigenfunction of the Laplacian associated to the eigenvalue n, and
then we obtain:

∫

U+

|d(vεϕN )|2dvg ≥ n

∫

U+

v2εϕ
2
Ndvg.

When we let ε tend to zero, by the dominated convergence theorem, we get:

(14)
∫

U+

|d(ϕP )|2dvg ≥ n

∫

U+

ϕ2
P dvg.

But thanks to Theorem 2.1 we already know that the equality is attained for ϕP ,
and therefore we have equality in each line of (12). This implies that dv0 vanishes
and v0 is constant on each connected component of U+, and since U+ is connected,
the quotient v0 = −ϕP /ϕN is constant on U+. Both −ϕN and ϕP take values
between 0 and 1 on U+, and as a consequence the constant must be equal to one.
We have shown that for any x in U+ we have:

ϕ(x) = cos(dg(x, P )) = − cos(dg(x,N)) = −ϕN (x).

Which implies that, in particular, dg(x0, P )+dg(x0, N) = π. If the distance between
x0 and P is larger than π/2 we can repeat the same argument by exchanging the
roles of P and N . It remains to study the case in which x0 is at distance equal to
π/2 from P . Observe that for any x in X we have:

dg(x, P ) + d(x,N) ≥ π,

and since the cosine is a decreasing function on [0, π] we get:

ϕN (x) = cos(dg(x,N)) ≤ cos(π − dg(x, P )) = − cos(dg(x, P )) = −ϕP (x).

We have proven in particular that the equality holds in the sets in which ϕN , ϕP do
not vanish. If x0 is such that ϕP (x0) = 0, assume by contradiction that ϕN (x0) > 0.
Thus x0 belongs to the set in which ϕN is strictly positive, and we have shown that
in this set ϕN coincides with −ϕP . This would imply that ϕ(x0) is strictly negative,
which it is not, and therefore we have proven that ϕP and ϕN vanish in the same
set. This means that if x0 is a distance π/2 from P , then dg(x0, N) is equal to π/2
as well. This concludes the proof. �

We are now in position to prove Theorem 3.1.
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Proof of Theorem 3.1. One of the two implications is trivial. In fact, if we consider
an admissible stratified space X̂ of dimension (n− 1) and its spherical suspension,
the function ϕ(t) = sin(t) is an eigenfunction with associated eigenvalue n.

Our proof of the other implication is by induction on the dimension of X . If n is
equal to 1, X is a circle with metric a2dθ2 for a ≤ 1, and then the first eigenvalue
of the Laplacian is equal to one if and only if a is equal to one. Assume that we
have proven the statement of the theorem for all dimensions k until (n− 1) and let
Xn be an admissible stratified space of dimension n with diameter equal to π. The
induction hypothesis, together with the previous lemmas, leads to an important
consequence on the tangent cones. Let P and N be two antipodal points. Thanks
to Lemma 3.7, we know that any point x in X , distinct from P and N , belongs to
the interior of a minimizing geodesic from P to N . Then Lemma 3.6 implies that
the tangent sphere Sx at x has diameter equal to π. Therefore by the induction
hypothesis Sx is isometric to the spherical suspension of an admissible stratified
space (Y, k) of dimension (n− 2): we can apply Corollary 3.2 to the tangent cone
C(Sx) in order to deduce that C(Sx) is isometric to the product R×C(Y ). If Y has
diameter equal to π, we can iterate this argument and, as we observed in Remark
3.3 we get that C(Sx) is isometric to Rm × C(Y0), where m ≥ 1 and (Y0, k0) is an
admissible stratified space of dimension (n−m− 1) with diameter strictly smaller
than π. Observe that, since there is no singular stratum of codimension 1, m is
either between 1 and (n− 2), and x belongs to the singular set Σ, or m = (n− 1)
and C(Y0) is the real line R, and x is a regular point.

Let us denote f(x) = dg(x, P )− π/2. We consider the set of regular points that
are equidistant from P and N :

Γ0 = {x ∈ Ω : d(x,N) = d(x, P )} .

Observe that Γ0 also coincides with the subset of the regular set in which ϕ and f
vanish, and thus it is not empty.

Our first goal is to show that any point in Γ0 possesses a neighbourhood which
is isometric to the product of a neighbourhood V in Γ0 with some small interval,
endowed with the appropriate warped product metric. This will show that the
metric g locally has the desired form. Then we aim to prove that the regular set
Ω is isometric to Γ0 × [−π/2, π/2] endowed with a warped product metric. Finally,
we will extend the isometry to the whole of X and show that the closure of Γ0 with
respect to the metric g is in fact a stratified space.

Step 1. Let us denote ĝ the metric g restricted to Γ0. We show that for any x
in Γ0 there exist a closed neighbourhood W of x in X , a closed neighbourhood V
of x in Γ0 and an interval [0, Tx) such that the metric g on W is isometric to the
warped product metric dt2 + cos2(t)ĝ on V × [0, Tx). The argument that we use is
similar to the one developed in Proposition 5.1 of [BC12] in order to study the case
of equality in the refined Kato inequality for 1-forms.

Observe that on the regular set Ω the gradient ∇f(x) is well-defined, it has
norm equal to one and is the unit normal vector field of the level hypersurface
f−1(f(x)) ∩ Ω. Then for each point x ∈ Γ0 there is a compact neighbourhood V
of x, closed in Γ0, and an interval [0, Tx) on which the flow γx(t) of the gradient
exists. Since V includes a closed ball centred in x of radius sufficiently small, we
can restrict our study to such ball, and from now on V is a closed ball in Γ0 centred
at x. Observe that γx is a minimizing geodesic on [0, Tx].

The time Tx is defined as follows. For each y in V we can consider the minimal
time of existence for the flow γy, that is:

T (y) = inf {t > 0 such that γy(t) belongs to Σ}
15



Then Tx will be the infimum of all these times over V :

Tx = inf
y∈V

T (y).

This means that Tx is the smallest time for which the flow of ∇f starting at a
point of V intersects the singular set. The function T (y) is lower semi-continuous,
and therefore it has a minimum on the compact neighbourhood V : this means that
there exists y0 in V such that T (y0) = Tx. Let us denote x0 the point in Σ such
that γy0

(Tx) = x0.
By a classical result contained in [Mil63] we get the diffeomorphism:

E : V × [0, Tx) → f−1([0, Tx)) ∩ Ω

E(x, t) = γx(t).

Then we obtain an isometry if we equip V × [0, Tx) with the pull-back metric E∗g.
We can easily extend this isometry to V × {Tx}. In fact, for any y in V we can
define:

E(y, Tx) = lim
t→Tx

E(y, t).

This limit exists since X is compact, thus complete, and the function t 7→ E(x, t)
is Lipschitz with Lipschitz constant equal to one. Moreover, since f is continuous,
we know that for any x in V the point E(y, Tx) belongs to f−1(Tx). Then we have
obtained an isometry E between the product V × [0, Tx] endowed with the metric
E∗g and a closed neighbourhood W of x which is included in f−1([0, Tx]):

E : (V × [0, T ], E∗g) → (W , g).

We claim that the level hypersurfaces V × {t} are umbilical for any t ∈ [0, Tx). In
order to show this observe that E sends V × {t} to a regular subset of the inverse
image of t via f , which we denote Γt = f−1(t) ∩Ω. Recall that, by definition of f ,
Γt is the set of regular points which are at distance equal to (t+ π/2) from P . As
a consequence we have that the function ϕ ◦ E only depends on t:

ϕ(E(x, t)) = cos
(

dg(E(x, t), P ) +
π

2

)

= sin(t).

Moreover, ϕ is an eigenfunction relative to the eigenvalue n, and thus its Hessian
must satisfy the equality ∇dϕ = −ϕg: if we look at this relation in the coordinates
given by the isometry E we get:

E∗(∇dϕ) = − sin(t)dt⊗ dt+ cos(t)∇dt = − sin(t)E∗g.

As a consequence we obtain:

∇dt = − tan(t)E∗g.

This shows that the Hessian of the hypersurfaces V × {t} is proportional to the
metric, therefore that V×{t} is umbilical for any t ∈ [0, Tx). As a consequence, there
exists a function η such that the metric E∗g on V × [0, Tx) is equal to dt2 + η(t)2ĝ,
where ĝ is the metric g restricted to Γ0. But thanks to the previous equality on the
Hessian we know that η must satisfy:

η′(t)

η(t)
= − tan(t), η(0) = 1.

Therefore we deduce that η(t) = cos(t). We have then proven that, locally, the
metric g is isometric to the warped product metric:

E∗g = dt2 + cos2(t)ĝ.

Step 2. We aim to show that for any x in Γ0 the time Tx must be equal to π/2, or,
in other words, that for any y ∈ V the geodesic γy(t) cannot intersect the singular
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set before getting to a point at distance π from P . This will allow us to extend the
isometry E to the product of Γ0 and the interval [−π

2 ,
π
2 ]. We assume by contra-

diction that Tx is strictly smaller than π/2, and we prove that as a consequence x0
must belong to the regular set. In order to do that, we are going to compare the
spherical geometry of V × [0, Tx) with the geometry of the tangent cone at x0.

Observe that, if we consider a minimizing geodesic from P to y0 and its con-
catenation γ with γy0

, this gives a minimizing geodesic from P to x0, because x0 is
exactly at distance Tx + π/2 from P . Lemma 3.7 ensures that γ can be continued
to a minimizing geodesic from P to N . Moreover, as we stated above, Lemma
3.6 and the induction assumption imply that the tangent cone at x0 is isometric
to R × C(Y ), where the first coordinate in this decomposition is the Busemann
function associated to a geodesic joining the vertex of the cone with two antipodal
points in Sx0

. If the diameter of Y is equal to π, C(Sx0
) is isometric to Rm×C(Y0),

where Y0 is an admissible stratified space with diameter strictly less than π and m
is between 1 and (n− 2).

The point y0 can belong either to the interior or to the boundary of V . Let us
assume that y0 belongs to the boundary of V : the other case will follow easily. Let ε
and δ be two positive real numbers, sufficiently small, with δ << ε. Let us consider
xδ = γy0

(T − δ). If we consider a ball B(x0, ε) centred at x0 of radius ε, we know
that the truncated tangent cone at x0 is the following pointed Gromov-Hausdorff
limit as ε goes to zero:

C[0,1)(Sx0
) = lim

ε→0
(B(x0, ε), ε

−2g, x0).

Moreover, the ball B(x0, ε) can be seen as the Gromov-Hausdorff limit of the ball
B(xδ, ε) as δ goes to zero. In fact, the Gromov-Hausdorff distance between the
two balls is less than or equal to the distance between xδ and x0, which eventually
tends to zero. We can write:

C[0,1)(Sx0
) = lim

ε→0
lim
δ→0

(B(xδ , ε), ε
−2g, x0)

Since xδ belongs to the regular set and we have the isometry E, we know part of the
geometry of the ball B(xδ, ε). More precisely, for δ << ε consider a ball B(y0, ε−δ)
in Γ0 and denote by B+(y0, ε − δ) the part of this ball which intersects V : if ε is
small enough we can parametrize B+(y0, ε− δ) by

([0, ε− δ)× S
n−2
+ , ĝ = dρ2 + ρ2dσ+

n−2 + o(ρ2)),

where S
n−2
+ is the upper half sphere of dimension (n − 2). The image via E of

the product B+(y0, ε− δ)× (Tx − ε− δ, Tx − δ] is contained in B(xδ, ε), and it is
endowed of the metric:

gδ = ds2 + cos2(T − δ + s)ĝ.

Observe that in case y0 belongs to the interior of V one can just consider the whole
ball of radius (ε− δ) around y0, which is included in V for ε and δ small enough.

Our goal is to study the limit as δ goes to zero of the product between B+(y0, ε−
δ) and the interval (Tx−ε−δ, Tx−δ] endowed with the metric gδ). Then we rescale
the metric by a factor ε−2 and pass to the limit as ε goes to zero. This will give
a subset of the tangent cone at x0 and will allow to deduce further information on
its geometry. If we consider the interval (Tx − ε− δ, Tx− δ] is because the isometry
E is defined until Tx, and therefore we have information on the metric only in the
regular part of W , which precedes the point x0.

As δ goes to zero, the metric gδ on [0, ε− δ)×B
+
y0

converges in C∞ to the metric
ds2 + cos2(T + s)ĝ on [0, ε)× B+

y0
. This limit is in particular a Gromov-Hausdorff

limit. If we consider the changes of coordinates s = εr and ρ = ετ for r, τ ∈ [0, 1),
17



it is easy to see that [0, ε)× B+
y0

endowed with the rescaled metric ε−2g converges
in the Gromov-Hausdorff sense to:

H = [0, 1)× [0, 1)× S
n−2
+

endowed with the metric:
dr2 + dτ2 + τ2dσ+

n−2.

As a consequence the tangent cone C[0,1)(Sx0
) includes a subset isometric to H .

Since the convergence is a pointed Gromov-Hausdorff convergence and preserve the
base point x0, a subset H0 isometric to the product R+ ×R+ × S

n−2
+ is included in

C(Sx0
).

Recall that in X the variable r was chosen to be equal to s/ε, where s is the
distance between a point and x0 along the geodesic γy0

. There exists a limit for
γy0

in the tangent cone which is a minimizing geodesic γ0 in C(Sx0
) starting from

the vertex x0. Since γy0
can be continued until N , the minimizing limit geodesic γ0

is defined on the whole R and it connects the vertex x0 with two antipodal points
in Sx0

. As a consequence, in the splitting R × C(Y ) of the tangent cone C(Sx0
),

the first coordinate is the opposite of the Busemann function Bγ0
associated to γ0.

Now, when we look at r in this limit of s/ε as ε tends to zero, it is possible to show
that r on H0 coincides with −Bγ0

, that is:

r(x) = lim
t→+∞

(t− dC(Sx0
)(x, γ0(t))).

Indeed we have the following:

r(·) = lim
ε→0

s(·)
ε

= lim
ε→0

(

−Tx − s(·)− Tx
ε

)

=

= lim
ε→0

(

−dg(y0, γy0
(Tx − s(·)) − dg(y0, x0)

ε

)

.

Now observe that ε−1dg(y0, x0) tends to infinity, and to the distance in the tangent
cone C(Sx0

) from the vertex x0. The geodesic γy0
converges to the limit geodesic

γ0, and therefore we get:

r(·) = lim
t→+∞

−
(

dC(Sx0
)(·, γ0(t))− dC(Sx0

)(·, x0)
)

= lim
t→+∞

−
(

dC(Sx0
)(·, γ0(t)) − t

)

.

We have shown that r coincides with minus the Busemann function of the mini-
mizing geodesics γ0, and therefore we can extend it from H0

∼= R+ ×R+ × S
n−2
+ to

the whole tangent cone C(Sx0
). Moreover, recall that Bγ0

is onto on R, and so it
is the extension of r. Therefore, the tangent cone C(Sx0

) includes a subset which
is isometric to R× R+ × S

n−2
+ , which is isometric in turns to R+ × Rn−1 endowed

with the product metric. We also know that C(Sx0
) is isometric to Rm × C(Y0).

Then the previous discussion shows that m must be equal to (n− 1) and C(Y0) is
a stratified space of dimension 1 without boundary. The only possible choice for
C(Y0) is that it is a line R. Therefore we have proven that the tangent cone at x0
is isometric to Rn and that x0 must belong to the regular set of X .

As a consequence, for any point in V the flow of ∇f is defined on the interval
[0, π/2), and since the above discussion is independent of the choice of x in Γ0 we
can define the isometry E on the product Γ0 × [0, π/2):

E :
(

Γ0 ×
[

0,
π

2

)

, E∗g
)

→
(

f−1
([

0,
π

2

))

∩Ω, g
)

,

E(x, t) = γx(t).

We can also extend E to the closed interval, as we did above, by defining:

Ê
(

x,
π

2

)

= lim
t→ π

2

E(x, t)
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Observe that for each x in Γ0 the endpoint of γx is a point at distance π from P ,
but it is not necessarily the same point for all x in Γ0. But thanks to the fact that
E∗g is a warped product metric, the image of Γ0 × {π/2} via Ê consists of only
one point. In fact, consider a curve γ in Γ0 of length L with respect to g. For any
t ∈ [0, π/2) the length of γ × {t} in Γ0 × [0, π/2] endowed with the metric E∗g is
equal to cos2(t)L, and since E is an isometry we have:

Lg(Ê(γ, t)) = cos2(t)Lg(γ) ≤ Lg(γ).

As a consequence, when t is equal to π/2, the length of the image via Ê of γ×{π/2}
is equal to zero, which means that Ê(Γ0, π/2) has diameter equal to zero, and
therefore it consists of only one point at distance π from P . We denote again this
point as N .

We have obtained an isometry Ê:

Ê :
(

Γ0 ×
[

0,
π

2

]

, E∗g
)

→
((

f−1
([

0,
π

2

])

∩ Ω
)

∪ {N}, g
)

.

The same argument can be repeated for negative values of t, in order to show
that for any x in Γ0 the geodesic flow of ∇f exists for t ∈

(

−π
2 , 0

]

and does not

intersect the singular set between x and P . Then we have an isometry Ê:

Ê :
(

Γ0 ×
[

−π
2
,
π

2

]

, E∗g = dt2 + cos2(t)ĝ
)

→ (Ω ∪ {P,N}, g).

Step 3. We finally prove that the metric completion of Γ0 with respect to the metric
E∗g = dt2 + cos2(t)ĝ is a stratified space. This is done by studying the geometry
of the tangent cone at P . Consider ε > 0 and a neighbourhood B(P, ε) of P . The
isometry Ê restricts to an isometry between:

[

−π
2
,−π

2
+ ε

)

× Γ0 → (B(P, ε) ∩ Ω) ∪ {P} = B(p, ε)reg ∪ {P}.

If we consider the pointed Gromov-Hausdorff limit of (B(P, ε)reg ∪{P}, P, ε−2g) for
ε going to zero, the definition of the tangent cone and the fact that the convergence
of the metrics is uniform in the Lipschitz topology ensure that we obtain the cone
(C(Sreg

P ), ds2 + s2hP ), where (SP , hP ) is the tangent sphere at P .
We can consider as well the limit for ε going to zero of:

(15)
([

−π
2
,−π

2
+ ε

)

× Γ0, Ê
−1(P ), ε−2(dt2 + cos2(t)ĝ)

)

We change the variable t = −π/2 + sε and by taking the Taylor expansion of sine
in 0 we obtain:

ε−2(ε2ds2 + sin2(εs)ĝ) → ds2 + s2ĝ as ε→ 0.

Therefore the pointed Gromov-Hausdorff limit of (15) as ε goes to zero is the cone
(C(Γ0), 0, ds

2 + s2ĝ), where we denoted with 0 its vertex. Moreover, the conver-
gence of the metrics is uniform in C∞ on the regular sets. But we know that the tan-
gent cone is unique, and therefore the cones C(Γ0) and C(Sreg

P ) with the respective
metrics must be isometric. Moreover, the convergence is in the Gromov-Hausdorff
sense for pointed length spaces, and then preserve the base point. Therefore the
isometry must also send the vertex of C(Γ0), which is the limit of Ê−1(P ), to the
one of C(Sreg

P ), which is the limit of P . As a consequence, since both s and r are
the distances from the vertices of the cones, each slice {t}×Γ0 in C(Γ0) is isometric
to the slice {t}×Sreg

P . We have then shown that Γ0 is isometric to the regular part
of the tangent sphere Sreg

P . Hence if we take the metric completion X̂ of Γ0 with
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respect to g, X̂ is an admissible stratified space of dimension (n − 1) isometric to
the tangent sphere SP at P . We can extend Ê to X̂ and get:

Ê :
[

−π
2
,
π

2

]

× X̂ → X.

The image of Ê is a compact set in X including the regular set Ω without at most
two points. This latter is dense in X : therefore the image of Ê coincides with the
whole X , Ê is surjective and it is the isometry we were looking for. �

4. A relation with the Yamabe problem

We briefly recall here some of the basic notions about the Yamabe problem.
Given a compact smooth Riemannian manifold (Mn, g) of dimension n ≥ 3, we
define the conformal class of g as:

[g] =
{

g̃ = e2ug, u ∈ C∞(M)
}

.

The question posed by H. Yamabe in 1960 was the following: does a metric with
constant scalar curvature exist within the conformal class of a given Riemann-
ian metric? The answer has been proven to be positive thanks to the works of
N. Trudinger, T. Aubin and R. Schoen.

There is a classical variational formulation for the Yamabe problem. Consider
the Hilbert-Einstein functional:

Q(g̃) =

∫

M

anSg̃dvg̃

Volg̃(M)
n−2

n

an =
n− 2

4(n− 1)
,

and its infimum, the Yamabe constant:

Y (M, [g]) = inf
g̃∈[g]

Q(g̃).

If there exists a conformal metric g̃ attaining the Yamabe constant (and thus a
critical point of the Hilbert-Einstein functional in the conformal class), then g̃
has constant scalar curvature and it is called a Yamabe metric. Observe that a
metric of constant scalar curvature is not necessarily a Yamabe metric, since it is
not necessarily minimizing. Nevertheless, M. Obata proved in [Oba72] that if Mn

carries an Einstein metric g which satisfies Ricg = (n − 1)g, then g is a Yamabe
metric. Furthermore if there exists another conformal metric g̃ in the conformal
class [g], with constant scalar curvature and not homothetic to g, then g̃ is an
Einstein metric as well and (Mn, g) is isometric to the canonical sphere. The proof
of this result is based on the existence of a conformal vector field X on (Mn, g). For
other formulations of the proof, see also Theorem IV.2 in [BE87] and Proposition
1.4 in [Sch89].

In [ACM14] the authors studied the Yamabe problem on stratified spaces with
the same variational approach as above, provided that the scalar curvature satisfies
the appropriate integrability condition. They gave an existence result for a Yamabe
metric which depends on a conformal invariant, called local Yamabe constant. In
[Mon14] we computed this latter under a geometric assumption on the links. We
prove here a result analogous to the one of [Oba72] for admissible stratified spaces:

Theorem 4.1. Let (Xn, g) be an admissible stratified space with Einstein metric.

Then g is a Yamabe metric. If there exists g̃ in the conformal class of g, not

homothetic to g, with constant scalar curvature, then g̃ is an Einstein metric as

well and (Xn, g) is isometric to the spherical suspension of an Einstein admissible

stratified space of dimension (n− 1).
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Observe that we have proven in [Mon14] that the Sobolev inequality (3) implies
a lower bound for the Yamabe constant of an admissible stratified space, which is
attained when the metric is Einstein:

Proposition 4.2. Let (Xn, g) be an admissible stratified space. Then its Yamabe

constant satisfies:

Y (X, [g]) ≥ n(n− 2)

4
Volg(X)

2
n ,

with equality if g is an Einstein metric.

In fact, it suffices to compute Q(g) for an Einstein metric to get exactly the
right-hand side in the previous inequality. Therefore, we have already proven the
first part of Theorem 4.1, that is an Einstein metric on an admissible stratified
space is a Yamabe metric. We give here an alternative proof under the assumption
that a non trivial Yamabe minimizer exists, that means, there exists a non trivial
solution u ∈W 1,2(X) ∩ L∞(X) to the Yamabe equation:

∆gu+ anSgu = anSg̃u
n+2

n−2 , an =
n− 2

4(n− 1)
.

The transformation laws for the scalar curvature under conformal change (see
Chapter 1, Section J in [Bes08]) imply that for a solution u to the previous equation,
the metric g̃ = u

4
n−2 g is a Yamabe metric. Observe that assuming the existence

of g̃ in the conformal class of g, not homothetic to g and with constant scalar
curvature, is equivalent to say that there exists a non-trivial solution u to the
Yamabe equation and that g̃ can be written as u

4
n−2 g. Moreover, we can assume

without loss of generality that the scalar curvature Sg̃ of g̃ is equal to Sg.
We divide the proof of Theorem 4.1 into two steps: first we prove that if g̃ is a

metric conformal to g, not homothetic to g, with constant scalar curvature, then g̃
is an Einstein metric. This implies the existence of a conformal vector field on an
admissible stratified space. We partially follow an argument of J. Viaclovsky (see
the proof of Theorem 1.3 in [Via10]). We then give the alternative proof of the
fact that an Einstein metric is a Yamabe metric: the main interest of the proof is
that it shows the existence of an eigenfunction relative to the eigenvalue n. As a
consequence we can conclude by applying the rigidity result of Theorem 3.1.

Theorem 4.3. Let (X, g) be an admissible Einstein stratified space of dimension

n. Assume that there exists a metric g̃ in the conformal class of g, not homothetic

to g, with constant scalar curvature. Then g̃ is an Einstein metric and there exists

a function φ satisfying:

(16) ∇dφ = −∆gφ

n
g.

In particular, the vector field X = dφ is a conformal vector field such that LXg =
−2φg.

Before proving this theorem we recall some results contained in [Mon14] and in
[Mon15] in order to deduce some further regularity on a Yamabe minimizer: we are
going to show that if u solves the Yamabe equation, then it belongs to the Sobolev
space W 2,2(X) and its gradient is bounded.

Proposition 4.4. Let (Xn, g) be a stratified space. Let F be a positive locally

Lipschitz function and u ∈ W 1,2(X) ∩ L∞(X) be a non-negative solution to the

equation ∆gu = F (u). Assume that there exists a positive constant c such that:

(17) ∆g|du| ≤ c|du|.
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If for any x in X the first non-zero eigenvalue of the Laplacian on the tangent

sphere λ1(Sx) is larger than or equal to (n − 1), then for any ε > 0 the following

control of the gradient away from an ε-tubular neighbourhood of the singular set Σ
holds:

(18) ‖du‖(X\Σε) ≤ C
√

| ln ε|.
where C is a positive constant not depending on ε.

This proposition is a consequence of Theorem A in [ACM15] and of Moser it-
eration technique (see the proof of Proposition 1.15 in [Mon15]). On a admissible
stratified space (Xn, g), the condition (17) is always satisfied thanks to the lower
bound on the Ricci tensor and the Bochner-Lichnerowicz formula (see Proposition
2.3 in [Mon15]). Furthermore, a Ricci lower bound on (Xn, g) implies an analogous
Ricci lower bound on each tangent sphere (Remark 1.2): therefore, thanks to the
Lichnerowicz singular theorem, the assumption on λ1(Sx) holds for any x in an
admissible stratified space. We can then reformulate the previous proposition as
follows:

Proposition 4.5. Let (Xn, g) an admissible stratified space and u, F as in the

previous statement. Then for any ε > 0 the estimates (18) holds on the gradient

|∇u|.

Under the assumptions of Theorem 4.3, there exists a metric g̃ = u
4

n−2 g with
constant scalar curvature Sg̃ equal to Sg, where u is a non-negative solution to:

∆gu+ anSgu = anSgu
n+2

n−2 .

Since Sg is equal to a constant, the function:

F (x) = (x
4

n−2 − 1)anSgx.

is a locally Lipschitz function, and then we can apply Proposition 4.5 to the Yam-
abe minimizer u. Furthermore, we can deduce that the gradient of u belongs
to W 1,2(X) ∩ L∞(X): this is done by means of an appropriate family of cut-off
functions and with an argument that we developed in the proof of the singular
Lichnerowicz theorem.

Lemma 4.6. Let (X, g) be an admissible stratified space of dimension n with Ein-

stein metric. Then the gradient |∇u| of a solution u to the Yamabe equation belongs

to L∞(X) ∩W 1,2(X).

We briefly sketch the key points of the proof. The details can be found in the
proof of Theorem 2.5 in [Mon15]. Let u ∈ W 1,2(X)∩L∞(X) be a Yamabe minimizer
and F as above. On the regular set the Bochner-Lichnerowicz formula holds, and
therefore we have:

∇∗∇du +Ricg(du) = F ′(u)du on Ω.

Since u is bounded and F is locally Lipschitz, there exists a positive constant c such
that |F ′(u)| ≤ c. Moreover, thanks to the fact that Ricg = (n− 1)g there exists a
positive constant c1 such that:

1

2
∆g(|∇u|2) = (∇∗∇du, du)− |∇du|2 ≤ c1|∇u|2 − |∇du|2.

In the proof of the singular Lichnerowicz theorem in [Mon14] we defined a family of
cut-off functions ρε, 0 ≤ ρε ≤ 1, being equal to one outside a tubular neighbourhood
Σ2ε of the singular set, vanishing on Σε. Furthermore, if the estimate (18) holds
for u, then the cut-off functions ρε are constructed in such a way that they satisfy:

lim
ε→0

∫

X

(∇u,∇ρε)dvg = 0, lim
ε→0

∫

X

∆g(ρε)|∇u|2dvg = 0.
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If we multiply the previous inequality by ρε and integrate by parts we obtain:

(19)
1

2

∫

X

(∆gρε)|∇u|2dvg ≤ c1

∫

X

ρε|∇u|2dvg −
∫

X

ρε|∇du|2dvg.

The left-hand side of (19) tends to zero as ε tends to 0: as a consequence, the norm
in L2(X) of ∇du is bounded by the one of |∇u|, which is finite. This means that
∇|∇u| belongs to L2(X), and |∇u| to W 1,2(X).

We also know that on the regular set Ω the inequality ∆g|∇u| ≤ c1|∇u| is sat-
isfied. One can prove that this implies the weak inequality ∆g|∇u| ≤ c1|∇u| on
the whole X , again by integrating by parts and by using the cut-off functions ρε.
Finally, a positive function f in W 1,2(X) satisfying the weak inequality ∆gf ≤ c1f
on X belongs to L∞(X), thanks to the Moser iteration technique (see Proposition
1.8 in [ACM14]). Therefore u belongs to W 2,2(X) and its gradient |∇u| is bounded.

We are now in position to prove Theorem 4.3.

Proof of Theorem 4.3. By assumption, there exists a conformal metric g̃ ∈ [g] with
constant scalar curvature: we can assume without loss of generality that Sg̃ = Sg =
n(n− 1). Since g̃ is not homothetic to g, there exists a function u ∈ W 1,2(X)X ∩
L∞(X) solving the Yamabe equation:

∆gu+
n(n− 2)

4
u =

n(n− 2)

4
u

n+2

n−2

and such that g̃ = u
4

n−2 g. In order to simplify the transformation formulas under
conformal change, we can define φ = u−

2
n−2 , so that g̃ = φ−2g. We know from

Theorem 1.12 in [ACM14] that u, and thus φ, is positive and bounded. By the
previous discussion we also have that the gradient of u, and therefore the gradient
of φ, belongs to L∞(X).

Consider the traceless Ricci tensor Eg̃ and recall that g̃ is an Einstein metric if
and only if Eg̃ vanishes: our goal is to show that this is the case. The transformation
law for the traceless Ricci tensor under a conformal change (see for example [Bes08])
gives us the following formula for Eg̃:

Eg̃ = Eg + (n− 2)φ−1
(

∇2φ+
∆gφ

n
g
)

where the covariant derivatives are taken with respect to g. Since by assumption g
is an Einstein metric, Eg = 0. Then consider the following integral:

Iε =

∫

X

ρεφ|Eg̃ |2gdvg

where ρε is chosen like in the proof of Lemma 4.6. If we show that Iε tends to zero
as ε goes to zero, then the norm of Eg̃ must vanish: as a consequence we will obtain
that g̃ is an Einstein metric and that its conformal factor φ satisfies (16). Let us
rewrite Iε in the appropriate form:

Iε =

∫

X

ρεφ

(

Eg̃, (n− 2)φ−1

(

∇dφ+
∆gφ

n
g

))

g

dvg

= (n− 2)

∫

X

ρε

(

Eg̃,∇dφ +
∆gφ

n
g

)

g

dvg

= (n− 2)

∫

X

ρε (Eg̃,∇dφ)g dvg.

Then we integrate by parts:
∫

X

ρε (Eg̃,∇dφ)g dvg =

∫

X

(Eij
g̃ ∇jρε∇iφ+ ρε∇jE

ij
g̃ ∇iφ)dvg .
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Since the scalar curvature of g̃ is constant, by the Bianchi identity (see also [BE87]),
which holds on the regular set of X , the second term of this integral is equal to
zero. The first one leads to:

(20) Iε = (n− 2)2
∫

X

φ−1

(

∇dφ(∇ρε,∇φ) +
∆gφ

n
(∇ρε,∇φ)g

)

dvg .

Observe that φ−1 is positive and bounded, because the solution u to the Yamabe
equation is positive and bounded thanks to Theorem 1.12 in [ACM14]. We claim
that the Laplacian of φ is bounded as well. In fact, if we denote p = − 2

n−2 we have:

∆gφ = pup−1

(

∆gu− (p− 1)
|∇u|2
u

)

.

As we recalled above, the function u is bounded and positive, then its Laplacian
∆gu is bounded, since it is equal to:

∆gu =
n(n− 2)

4
u(u

4
n−2 − 1).

Moreover, by the previous Lemma the gradient |∇u| belongs to L∞(X), so that the
same holds for ∆gφ. Therefore, if we consider the last term in (20), we know that
ρε is chosen in such a way that the integral of (∇ρε,∇u) goes to zero as ε tends to
zero.

As for the first term in (20), we can integrate by parts and obtain:
∫

X

∇dφ(∇ρε,∇φ)dvg =
1

2

∫

X

ρε∆g|∇φ|2dvg =
1

2

∫

X

(∆gρε)|∇φ|2dvg.

The cut-off functions ρε are chosen in such a way that this last term tends to zero
as ε goes to zero as well.

As a consequence, we have shown that Iε tends to zero as ε goes to zero. There-
fore we obtain that the norm of the traceless Ricci tensor Eg̃ is equal to zero, the
metric g̃ is an Einstein metric and the function φ satisfies (16), as we wished. �

A scalar function solving the equation (16) is called in the literature a concircu-
lar scalar field. The existence of a concircular scalar field or of a conformal vector
field on a compact, or complete, smooth manifold can lead to various consequences.
For example, Y. Tashiro in [Tas65] classified complete manifolds possessing a con-
circular scalar field. See also Sections 2 and 3 of [Mon99] for a brief but complete
presentation of some known results about the subject.

In our case, the previous theorem leads to the following:

Corollary 4.7. Let (X, g) be an admissible Einstein stratified space of dimension

n admitting a Yamabe minimizer

g̃ = φ−2/(n−2)g

Assume that φ is not a constant function. Then the Einstein metric g attains the

Yamabe constant, which is consequently equal to

Y (X, [g]) =
n(n− 2)

4
Volg(X)

2
n .

Proof. We have proven in the previous theorem that any metric with constant scalar
curvature in the conformal class of g is an Einstein metric and it is determined by
a positive solution of (16). Up to multiplying by a constant, a positive solution of
(16) is given by

φt = (1− t)φ+ t

for some t ∈ [0, 1). Let us denote:

ut = φ
− 2n

n−2

t .
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the corresponding solution to the Yamabe equation. The metric gt = φ−2
t g is still

an Einstein metric in the conformal class of g and has the same scalar curvature as
g.

We want to show that the volume of X with respect to the metric gt is constant
in t: this means that it is constant among the metrics with constant scalar curvature
equal to n(n− 1). In this way, the ratio

Q(g̃) =

an

∫

X

Scalg̃dVg̃

Volg̃(X)1−
2
n

does not decrease in the set of conformal metrics with constant scalar curvature.
As a consequence, the Yamabe constant of (X, g) will be attained by g and it is
equal to:

Y (X, [g]) =
n(n− 2)

4
Volg(X)

2
n .

The volume of X with respect to gt is given by the formula

Volgt(X) =

∫

X

u
2n

n−2

t dvg =

∫

X

dvgt .

where we denote with dvgt the volume element with respect to gt. If we differentiate
with respect to t we get

(21)
d
dt

Volgt(X) =
2n

n− 2

∫

X

u
n+2

n−2

t u̇tdvg =
2n

n− 2

∫

X

u̇t
ut
dvgt .

We are going to show that this integral is equal to zero. If we set

vh =
ut+h

ut
.

gh = v
4

n−2

h gt = u
4

n−2

t+h g.

then vh satisfies the Yamabe equation with respect to gt:

∆gtvh +
n(n− 2)

4
vh =

n(n− 2)

4
v

n+2

n−2

h .

By deriving this equality with respect to h we obtain

∆gt v̇h +
n(n− 2)

4
v̇h =

n(n+ 2)

4
v

4
n−2

h v̇h.

and when h = 0 we have as a consequence ∆gt v̇0 = nv̇0, that is v0 is an eigenfunction
relative to the first eigenvalue n of ∆gt . Any eigenfunction relative to the first
eigenvalue has mean equal to zero over X , so that we have:

∫

X

v̇0dVgt = 0.

But by definition v̇0 is equal to
u̇t
ut

. Recalling (21) we have obtained that the volume

of X is constant with respect to t: this implies that the Einstein metric g attains
the Yamabe constant, as we wished. �

Corollary 4.8. Let (Xn, g) be an Einstein admissible stratified space. If there ex-

ists g̃ in the conformal class of g, not homothetic to g, with constant scalar curva-

ture, then (Xn, g) is isometric to the spherical suspension of an Einstein admissible

stratified space of dimension (n− 1).

Proof. The proof of the previous Corollary implies that there exists an eigenfunction
v̇0 associated to the eigenvalue n, therefore we can apply Theorem 3.1. �
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If we collect Theorem 4.3 and Corollaries 4.7 and 4.8, we have proven Theorem
4.1.
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