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Abstract

This paper proposes an automatic modal analysis approach for signals of high-

rise buildings recorded under real-world ambient excitations. The fact of work-

ing over such type of signals is faced with several challenges: the time-domain

convolution between the system impulse response and the seismic noise, the ex-

istence of several components, the presence of closely-spaced frequency modes,

with high additive noises, and low, exponential and damped amplitudes. The

proposed approach handles these challenges simultaneously without the need

for a user intervention. It is based on a filter-free Random Decrement Tech-

nique to estimate the free-decay response, followed by a spectral-based method

for a rough modal estimate and finalized by a Maximum-Likelihood Estimation

process to refine the modal estimates. Each of these processes is responsible to

tackle one or more of the aforementioned challenges in the aim to provide an

automatic and moreover a reliable modal analysis of the studied signals.

Keywords: Automatic modal analysis, ambient vibrations, Random

Decrement Technique, damping ratios, closely-spaced frequency.

∗Corresponding author
Email addresses: fatima.nasser@gipsa-lab.grenoble-inp.fr (Fatima Nasser),

zhong-yang.li@gipsa-lab.grenoble-inp.fr (Zhongyang Li),
nadine.martin@gipsa-lab.grenoble-inp.fr (Nadine Martin),
Pilippe.gueguen@obs.ujf-grenoble.fr (Philippe Gueguen)

Preprint submitted to Journal of Mechanical Systems and Signal ProcessingNovember 24, 2015



1. Introduction

As the need for continuous monitoring of a building health is increasing, so

does the need for automatic modal analysis techniques. Such techniques can

assess the structural health in a passive way without resorting to a manual user

intervention.5

In this regard, several automatic techniques of output-only modal identifi-

cation have been proposed in the last decade. The first proposal can be found

in [1] and is based on the least square complex frequency method [2]. A s-

tochastic subspace identification (SSI) method has been proposed in [3] and has

been applied to monitor the dynamic behavior of a Bridge in Switzerland, and10

to track the modal changes versus the environmental conditions of a bridge in

England [4]. [5] has proposed an automated modal analysis procedure based on

SSI as well. Such a proposition relied on the selection of physical poles on a

stabilization diagram which precludes the full automation of the modal analysis

procedure. A fully automated proposition in this regard has been made by [6].15

It is based either on a frequency domain technique including specific indicators

for the automation, or on an SSI multipath merging technique which provides a

simple stabilization diagram analyzed with an alignment criterion. Porto univer-

sity [7, 8, 9] has proposed another automated approach based on a covariance

driven SSI (Cov-SSI) and on a clustering algorithm for stable pole selection.20

A partially automated method based on a Frequency Domain Decomposition

(FDD) approach for multi-channel monitoring system has been also proposed

in Porto university. [10] has proposed an automated method based on a blind

source separation method applied on a set of time series. An automated FDD is

reported in [11] for multi-channel measurements. Based on the FDD method, in25

[12] an algorithm is developed for fully automated operational modal analysis.

[13] proposed a mode clustering as a preliminary step for performing a physical

mode selection.
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However, the existing methods have certain limitations that can be summa-

rized as follows: (1) Very sensitive to noise, which makes the identification of30

higher frequency, highly damped, poorly excited and closely-spaced frequency

modes difficult to be identified. (2) Relies on a threshold-based peak detection,

at which a preliminary calibration process is required. Such a calibration gets

worse in the presence of noisy measurements which results in false-alarmed peak-

s. (3) Only applicable when multi-channel records are available which requires35

more than one sensor to be used.

The work presented in this paper can be thought of as a contribution to

avoid the aforementioned limitations of the existing methods. First, we propose

a filter-free random decrement technique to automatically estimate a free-decay

response. Second, we propose a non-parametric spectral-based method to au-40

tomatically identify the number of modes in the estimated free-decay response

and to estimate the associated modal parameters of each of the identified modes.

Finally, we propose a parametric method based on a maximum-likelihood esti-

mator to refine the modal parameter estimation and provide more reliable and

non-biased results especially in the context of closely-spaced modes and highly45

damped ones.

These steps make the proposed approach of this paper applicable over a

single-channel record of multi-mode signals despite of the noise level, further-

more through the use of the statistical properties of the estimator, the local

peaks of the multi-mode signal are detected by a detection method which is50

insensitive to the settings.

The remainder of this paper is organized as follows: Section 2 presents the

Filter-Free Random Decrement Technique and defines the output model as a

Multi-mode Random Decrement Signature. Section 3 derives an original non-

parametric approach for detecting the number of modes and estimating the55

modal parameters. In section 4 a Maximum-Likelihood Estimation is proposed

for refining the modal parameter estimation. Section 5 presents the results of

the proposed AMBA over six simulated signals. Finally, conclusions are drawn

in section 6.
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2. Filter-free Random Decrement Technique60

When aiming to estimate the modal parameters, one first important step

to take into consideration is the estimation of the free-decay response. In this

context, two estimation family methods exist in the literature, one stems from

the correlation function of the ambient response [14, 15], the second one from

the well-known Random Decrement Technique (RDT) [16, 17]. Both ways of65

estimate need the assumption of a white noise for the ambient vibration and

have advantages and drawbacks due to different estimation processes. In the

two cases when dealing with multi-component signals which is often the case

for actual buildings, we need then either to pre-filter the signal, or to propose

a way of separating the different modes directly from the free decay response.70

For example, [15] proposed to apply a time-scale transform and then to extract

the instantaneous frequencies of the different modes by a ridge method. The

limitations of this approach are the wavelet choice and the Fourier resolution

inherent to a non-parametric time-frequency approach.

In this paper, we focus on the RDT for the estimation of the free-decay re-75

sponse. It is a method proposed by Cole [18] in 1968 as an efficient method to

extract a free-decay signature equivalent to the system impulse response that

is denoted as RDS. It was first used by Ibrahim [19] in 1977 for modal identi-

fication. Then Vandiver et al. in 1982 [20] derived its mathematical basis. In

the context of our work, to tackle the challenge of the time-domain convolution80

between the impulse response and the seismic noise, we proposed to first use

the RDT.

When the RDT was first proposed by Cole, it was not directly applied to

a multi-component time series of the structural response, but was only based

on a Single Degree of Freedom (SDOF) system [18]. The data was necessarily85

filtered prior to the RDT application (c.f Fig. 1).

However, it is well-known that the filtering process is a critical step especially

in situations where data are difficult to be analyzed, i.e., low signal to noise

ratio, closely-spaced frequency modes, heavily damped modes, etc., which are
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Figure 1: The general concept of the Random Decrement Technique.

the characteristics of almost all the real-world signals that generally have a large90

number of modes.

Accordingly, filtering is one of the very delicate steps when dealing with the

RDT. Tuning the filtering process manually is very time consuming, and totally

dependent on the user.

As the main objective of this work is to automate the estimation process of95

the modal parameters using the RDT, this paper thus proposed an approach

which skips this preliminary filtering. Such a procedure is referred to as a

Filter-Free Random Decrement Technique that leads to the estimation of the

Multi-mode Random Decrement Signature (MRDS) (Fig. 2).

The originality of the Filter-Free RDT is its ability to: (1) avoid the dif-100

ficulty encountered in the filtering process especially in situations where data

are difficult to be analyzed, i.e., low signal-to-noise ratio levels, closely-spaced

frequency modes, and heavily damped modes, and (2) skip the required user

intervention that definitely precludes the automatic estimation procedure.

Figure 2: Illustration of the Filter-Free Random Decrement Technique.

An MRDS is characterized by the same number of modes K, the same damp-105

ing ratio ξk and natural frequency fk as the impulse response h[n] of the mea-
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sured building vibration y[n], but not the initial phase and the initial amplitude,

as these two parameters are changed due to the averaging principle of the RDT.

The measured building vibration y[n] is given as in [21]

y[n] = g[n] + e[n],

where g[n] = h[n] ∗ p[n]
(1)

with h[n] =
K∑
k=1

A0kexp−2πfkξknsin(ωDkn+ φ0k),∀k ∈ [1,K], (2)

where n is the normalized discrete time index, g[n] is the noise-free part of

the building vibration, h[n] is the impulse response of a building. The initial110

amplitude (A0k = −1/ωDk) , the damping ratio (ξk), the natural frequency (fk),

the initial phase (φ0k), and the number of modes (K) are the parameters that

feature h[n]. ωDk = 2πfk
√

1− ξ2
k is the damped pseudo-pulsation, p[n] and e[n]

are the seismic and the additive noises respectively, both assumed to be white

Gaussian of zero mean and unknown variance. The convolution operator is ∗.115

Considering all the above, in this paper we proposed a signal model for the

estimated MRDS s[n] as

s[n] = h[n] + v[n], (3)

with h[n] =
K∑
k=1

B0kexp−2πfkξkn sin(2πfkn+ ϕ0k),∀k ∈ [1,K], (4)

where v[n] is the residue of the RDT considered as an additive white Gaussian

noise with zero mean and unknown variance. h[n] is a deterministic multi-mode

process that keeps the same characteristics as h[n] of Eq. (2) but not for the

initial phase ϕ0k and the initial amplitude B0k. It should be noted that the

term
√

1− ξ2
k of Eq. (2) is approximately equal to 1 in the considered signal120

model due to the fact that the range of the damping ratio in the real-world cases

is rarely greater than 10%.

In this paper, this signal model is used for deriving a maximum likelihood
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approach in order to refine the modal parameter estimates so as to meet the

above cited constraints.125

3. Preliminary estimation of the modal parameters

The issue is now to handle the presence of multi-modes in the estimated

MRDS, at which for each mode a natural frequency and a damping ratio are

to be estimated. For this purpose, we proposed a spectral-based method based

on the Welch spectral estimation of the MRDS. Furthermore, we proposed to130

include a peak-detection method, namely the one proposed by Durnerin [22], to

automatically detect the number of modes in the MRDS.

3.1. Hypothesis Test for Peak Detection and Removal

The spectrum of s[n] of Eq. (3) can be expressed as

Ss[f ] = Sh[f ] + Sv[f ], (5)

where Sh[f ] is the spectrum of the noise-free part h[n], and Sv[f ] is the spectrum135

of the random part v[n]. The purpose of the detector is to decide for each

frequency f of the spectrum Ss[f ] whether s[n] consists of only noise v[n], or

the sum of h[n] and the noise v[n]. For that purpose, a statistical test between

the two hypotheses can be written as in [23]

T [f ] = Ss[f ]
Sv[f ]

H1

≷

H0

λ, (6)

with T [f ] a random variable, λ the detection threshold, and the two hypotheses140

deduced from Eq. 5 being defined as

H0 : Ss[f ] = Sv[f ],

H1 : Ss[f ] = Sh[f ] + Sv[f ],
(7)
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In this study, the probability density of H1 is unknown, so the spectral peak

detector as proposed in [22] is applied. Such a detection is based on the Neyman-

Pearson test where the probability of false alarm PFA is given a priori to be

able to fix the threshold λ such as145

PFA =
∫ +∞

λ

pT (f)|H0(x)dx, (8)

PFA is likely to retain H1 while H0 is true. pT (f)|H0 = χr2 is the probability

density of T (f) under the hypothesis H0. Indeed, it has been shown in [22] that

all the Fourier estimators under the hypothesis H0 can be considered propor-

tional to a random variable following a χr2 distribution of degree of freedom r,

with r being dependent on the number of segments and their overlapping.150

The noise spectrum Sv[f ] of Eq. (5) is unknown and therefore must be

estimated in order to apply Eq. (6) for detecting the modes in the spectrum.

3.2. Noise Spectrum Estimation

Two types of errors can be encountered in the estimation of the noise spec-

trum: the underestimation and the overestimation. In the first case, some of155

the modes can be wrongly identified as noise. In the second case, noise peaks

could be considered as modes and cause false alarms. These two errors should

be avoided in order to ensure the robustness of the approach.

The unknown noise spectrum Sv[f ] of Eq. 5 is proposed to be approximated

as Ŝv[f ] through an iterative process; namely, the multipass filtering technique160

developed in [22], and shown in Fig. 3.

This technique is initialized with a median filter

Ŝv1[f ] = FILTmed{Ss[f −
(Lf − 1)

2 , · · · , f + (Lf − 1)
2 ]}, (9)

where Ŝv1[f ] is the noise estimation of the first iteration, FILTmed{·} is the

median filter, and Lf is an odd integer specifying the length of the sliding filter
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Figure 3: An overall flowchart of the noise spectrum estimation process.

window. Normally Lf is defined as

3Bmain( Fs
fres

) ≤ Lf ≤ 4Bmain( Fs
fres

), (10)

with Bmain being the number of bins between the two zeros of the main lobe of165

the chosen window function, for Hamming window Bmain = 4. Fs the sampling

frequency of the signal, and fres the frequency resolution of the spectrum.

The method comprises P iterations of nonlinear filtering. The noise spec-

trum estimate is refined at each iteration ∀p ∈ [1, P ] by suppressing the peaks

belonging to the spectrum Sp[f ]. The refined spectrum is then recorded Ŝp[f ].170

Each following iteration has two steps. In the first step, the peaks corre-

sponding to H1 are removed by applying the hypothesis test described in sec-

tion 3.1, with a probability of false alarm referred to as PFAv and the current
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estimated noise spectrum Ŝp−1[f ]. The second step smooths the remaining part

Sp[f ] by an average filter with a sliding window of M points. The final noise175

spectrum estimation Ŝv[f ] is the output after P iterations. The choice of the

number of P is set to 3 to 5 iterations since experimentally the noise spectrum

stops changing after such a range.

3.3. Mode detection and frequency estimation

As soon as the noise spectrum is estimated, the peaks of the spectrum Ss[f ]180

can be calculated using Eq. (6) where

1- λ in Eq. (6) is deduced from a probability of false alarm PFAd as in Eq.

(8).

2- Sv[f ] in Eq. (6) is substituted using the estimated noise spectrum Ŝv[f ]

of section 3.2.185
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Figure 4: (a) Application of the peak detection method on the Welch spectrum of a
simulated signal with f = 1, 2 and 5 Hz and ξ = 1, 2 and 3% respectively, (b) a zoom on the

three detected modes.

The peaks are defined as the vertex of the bell shapes above the detection

threshold λ. The number of modes K of h[n] of Eq. 2 are estimated as the

number of the detected peaks. In [22] a spectral window matching technique

is used to estimate the frequency of the peak; however, in this study, since

only rough estimates are desired in the preliminary estimation of the modal190
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parameters procedure, the maximum of the bell shape is defined to be the

position f of each peak which defines the frequency estimation of each of the

associated peaks.

The peak detection is illustrated in Fig. 4 with a simulated signal of 180000

points length, sampled at 200 Hz, consists of three modes located at 1 Hz, 2 Hz,195

and 5 Hz and damped by 1%, 2% and 3% respectively. The detection threshold

is calculated with a probability of false alarm PFAv = 0.1, and another

probability of false alarm of the noise spectrum estimation PFAd = 0.1.

Fig. 4 presents a proper functionality of the mode detection and frequency

estimation procedure. The three modes of interest are being correctly identified200

with reasonable frequency location as compared with the theoretical ones, with

a normalized error ef̂ ′ = |f − f̂ ′ | /f ≤ 0.03 %.

3.4. Damping Ratio Estimation

Hereby, we address the issue of estimating the damping ratio for all the esti-

mated modes of the MRDS. In this paper, the estimation is achieved using the205

ratio of the spectra of two neighboring segments over s[n]. These two segments

are of the same length Lt = 2/3Lrds and placed one at the beginning of the

MRDS and the other at its end. They have an overlapping of 50% (Fig. 5 (a)).

The periodogram on each segment is calculated using a Hamming window

to have more distinct frequency representation of the mode. The two applied210

windows are defined as W1 = [0, 2/3Lrds] and W2 = [2/3Lrds, Lrds] on the

two segments respectively. The windowing of the two segments yields two peri-

odograms S1[f ] (Fig. 5 (b)) and S2[f ] (Fig. 5 (c)).

Hereinafter, each segment is expressed in the time-domain in a vector form

as215

s1 =
[
s[1], · · · , s[ 23Lrds]

]
, (11)

s2 =
[
s[1 + 1

3Lrds], · · · , Lrds]
]
, (12)
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Figure 5: (a) An MRDS being split up into two segments of equal length with 50%
overlapping, (b) and (c) the periodograms of the two segments respectively.

where s1 and s2 are the MRDS on the first and the second segment respectively.

Further on, s1 and s2 can be decomposed as the sum of modes

sj =
K∑
k=1

sj,k,∀k ∈ [1,K], (13)

where j = 1, 2 being an index to present the two vectors s1 and s2, and

s1,k =
[
sk[1], · · · , sk[2/3Lrds]], and s2,k = [sk[1+1/3Lrds], · · · , sk[Lrds]] are the

RDS vectors of the mode k (Eq. (3)) over each segment.220

For each segment j we have

FT {sj} =
K∑
k=1
Sj,k[f ] = Sj [f ]. (14)

At frequency fk with

FT {sj,k} = Sj,k[f ], (15)

where FT {.} denotes the Discrete Fourier Transform, and Sj,k is the vector of

the spectrum denoted as Sj,k[f ].

Since if the power of the modes are independently distributed in the frequency-

domain, then

Sj [fk] = Sj,k[fk]. (16)
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Therefore225

S2[fk]
S1[fk] = S2,k[fk]

S1,k[fk] . (17)

If we assume that the noise in the MRDS is sufficiently reduced, then ac-

cording to Eq. (3), the estimation of the peak amplitude becomes

S2[fk]
S1[fk] = exp−α

1
3Lrds , (18)

where α = 2πfkξk, with fk and ξk being the frequency and the damping ratio

of the MRDS for each mode k, ∀k ∈ [1,K]. For each detected peak at the two

time instants 1/3Lrds and 2/3Lrds we estimate the damping ratio as230

ξ̂′k = log (S1[fk])− log (S2[fk])
2πfk Lrds

3
. (19)

4. Refined estimation of the modal parameters

Once the number of modes of the MRDS along with the associated modal

parameters are estimated, we propose a refined parametric estimation method in

order to improve the frequency resolution and to be able to better estimate the

closely-spaced frequency modes as compared to the non-parametric approach.235

The method is based on a Maximum-Likelihood Estimation approach. This

method fits well the challenge of closely-spaced frequency modes as well.

The parameters of each mode of Eq. (3) form a vector θ,

θ = [θT1 , · · · ,θTk ] = [B0k, ξk, fk, ϕ0k]T ,∀k ∈ [1,K], (20)

where T is the transpose symbol, and B0k, ξk, fk and ϕ0k are the initial ampli-

tude, the damping ratio, the natural frequency, and the initial phase of the kth240

mode respectively.

The MLE of θ is considered to be equivalent to the least square approach

under the assumption of white Gaussian additive noise [24]. Thus it results in
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the following non-linear equation

θ̂ = arg max
θ∈N4k

lMLE(θ) = arg min
θ∈N4k

LS(θ), (21)

LS(θ) =
L/2∑

n=−L/2

|s[n]− h[n; θ]|2. (22)

LS(θ) is the least square function. s[n] is the MRDS (Eq. (3)), h[n; θ] is the245

noise-free part of Eq. (3) where all its parameters are defined by θ.

LS(θ) is multidimensional and nonlinear. Thus a direct minimization of

Eq. (22) is difficult due to the high non-linearity of the function and the pa-

rameter number. Classical optimization techniques such as gradient descent,

Gauss-Newton and EM algorithms do not ensure convergence to the global min-250

imum when local minima are numerous. This problem can be overcome with

meta-heuristic approaches. In the context of this paper, we proposed to use

the Simulated Annealing technique [25] for its efficiency when a desired glob-

al extremum is hidden in many local extrema, and also because of its simple

implementation.255

5. Application of the Proposed Approach over Simulated Data

The aim of this section is to test the method proposed in terms of signal pro-

cessing performance. Simulated vibration signals have been generated according

to a physical model and Monte Carlo Simulations have provided the statistical260

properties of the result. Finally, the same signals have been processed manually

in order to highlight the performance gain. The data are generated using a

model of high-rise building defined as a continuous beam model. In this model,

the mass of each storey of the building is considered to be mostly concentrated

at its floor, and a lumped mass modeling is assumed for this structure. There-265

fore, the Duhamel integral gives the elastic motion of the building at each floor

14



knowing only the mass of each floor, the modal parameters (namely the mode

shapes , frequencies and damping ratios), and the ground motion [26].

Six different 50-story building models are simulated in order to reflect as

possible a panel of high-rise buildings with different structural designs. The270

acceleration response of the top floor of each of the simulated buildings is com-

puted and denoted Top1 to Top6 respectively. According to their different spec-

tral structures, the six signals are categorized as: well-spaced, quasi-spaced, and

closely-spaced frequency modes as shown in Tab. 1. Only the frequencies and

the damping ratios are considered in this table as these two parameters keep the275

same characteristics as the impulse response of the considered physical model

of Eq. 2. This is not the case of the amplitude and the damping ratio that have

changing values due to the stacking and averaging process of the RDT.

Table 1: The six simulated signals denoted as Top1, Top2, Top3, Top4, Top5, and Top6,
where f indicates the simulated frequency in (Hz) and ξ the simulated damping ratio in (%).

Well-separated Quasi-separated Closely-spaced
Top1 Top2 Top3 Top4 Top5 Top6

mode k f ξ f ξ f ξ f ξ f ξ f ξ
1st 1 1 1 0.5 0.4 1 0.4 0.5 1 1 1 0.5
2nd 2 2 2 0.7 1.2 2 1.2 0.7 1.2 2 1.2 0.7
3rd 5 3 5 1 2 3 2 1 NA NA NA NA
4th 7 4 7 1.5 NA NA NA NA NA NA NA NA

All the six simulated signals are generated with a length of 360, 000 points,

and a sampling frequency of 200 Hz. The application of AMBA is tested under280

3 different signal-to-noise ratio levels (SNR), 0 dB, 9 dB, and 15 dB and over

100 runs of the noise in order to proceed to Monte Carlo simulations.

The filter-free RDT is applied over the multi-component simulated signals

in question. The estimated MRDS is then decimated to a Nyquist rate of 20 Hz

to reduce the computation time. The triggering condition used in this section is285

the positive point type [27]. Indeed, due to the high content of noise we chose to

use such a triggering condition, so that sufficient triggering points are available.

The length of the segments Nrds that are stacked and averaged in the RDT

of all the simulated signals is chosen carefully based on Monte-Carlo simulations
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[28]. For Top1 and Top2, the Nrds is set to be 5 periods for all the SNR levels.290

Similarly, for Top3 and Top4 except when the SNR is equal to 0 dB, the Nrds
was set to be equal to 7 periods. In the case of closely-spaced frequency modes,

Top5 and Top6, the Nrds was set to 12 periods, this choice helps increasing the

frequency resolution over the Welch spectrum, and thus allows identifying the

closely-spaced frequency modes.295

The statistical results provided by the Monte Carlo simulation are in tables

2, 3 and 4. The accuracy of the estimation is quantified by the error E as

E = 1
D

D∑
i=1

|x− x̂i|
x

, (23)

where x describes either a simulated natural frequency or a damping ratio of the

mode under study, D is the number of the noise realizations, x̂i is the estimated

value of x ∀i ∈ [1, D].300

Tables 2, 3 and 4 show that the mean estimated frequencies of the six sim-

ulated signals are stable across all modes with a relative error of estimation E

less than 5%. This error becomes noticeable (E ≤ 10%) only for the modes

where the damping ratio is 3% < ξ ≤ 4%. The estimation is not deteriorated

until the SNR reaches 0 dB, where the error is then 10% < E ≤ 30%, and the305

noise variance is equal to the average signal power.

The errors of the mean values of the estimated damping ratios are in the

range 10% < E ≤ 15%. The most significant outliers occur for the modes of high

frequency with a damping ratio greater than or equal to 3%. Given that the

modes in high frequencies damp faster than those of their lower counterparts,310

this makes them indistinguishable from noise. Moreover, the amplitude of the

RDS gets smaller at its end. As the amplitude for highly damped modes get

smaller rapidly, then the estimation will be biased by this reduction and the

error E will be rather high ≤ 20%. The error of the modes possessing both

high damping and high frequency becomes higher when the noisy observation315

is generated with low SNR level (E ≤ 30%).

For the purpose of comparison without statistical purpose, the classical RDT
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with a preliminary manual filtering process is applied over the six simulated

signals. The Butterworth filter is used to filter each mode k.

The comparative results are shown in Fig. 6 and Fig. 7 in terms of an320

estimation error of the frequencies and the damping ratios respectively.
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Figure 6: Estimated frequency using AMBA via a filter-free RDT (+) and an RDT
pre-processed by filtering (o).
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Figure 7: Estimated damping ratio using AMBA via a filter-free RDT (+) and an RDT
pre-processed by filtering (o).

The modal estimation of the signals of the first two categories in Tab. 1,
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i.e., Top1, Top2, Top3 and Top4 where the modes are sufficiently spaced, ex-

hibit nearly the same estimation results of frequency and damping ratio for

both approaches, the filter-free RDT and the RDT pre-processed by a manual325

filtering. The frequency estimation error in Fig. 6 is less than 10%, and that

of the damping ratio in Fig. 7 is less than 20%. The estimation results of the

frequencies and the damping ratios were deteriorated when the SNR is 0 dB,

the error thus becomes noticeable (E ≥ 30%).

For the signals with closely-spaced frequency modes, i.e., Top5, and Top6,330

the accuracy of AMBA with the filter-free RDT is higher than that of the RDT

pre-processed by a manual filtering. The error of the frequency estimation in

AMBA presents more than 20% gain as compared to the manual method. The

error of the damping ratio estimation is improved by 15% as well.

This section shows the interest of AMBA. It shows its importance for the335

cases where filtering becomes very difficult like the case of closely-spaced modes

with high additive noises. Moreover the performances are hold for the other

cases.

6. Conclusions

This paper proposed a new automatic modal analysis approach for multi-340

component signals of high-rise buildings subjected to ambient vibrations. This

approach is called an Automatic Model-Based Approach (AMBA).

AMBA starts by applying the Random Decrement Technique (RDT) directly

over the multi-component signal to extract a free-response equivalent to the

system impulse response. Such an application skips the preliminary filtering345

process prior to the RDT analysis, and thus is named a filter-free RDT. It leads

to the estimation of a Multi-mode Random Decrement Signature, referred to as

an MRDS.

In a second stage of AMBA, a non-parametric spectral-based method is then

proposed to estimate the modal parameters of the MRDS. This stage relies on a350

global spectrum estimation of the MRDS to keep the best frequency resolution.
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Over the estimated spectrum, an automatic peak-detection method is applied

to extract the peaks from the noise spectrum that is estimated by a multi-pass

filtering. A modal estimate is then achieved for each of the detected modes.

However, the spectral-based method is limited to the resolution of the Fourier355

spectrum. To solve such a limitation, the modal parameters of the MRDS are

then refined in a final stage using a parametric maximum likelihood strategy.

Considering all the above, AMBA is applicable over a single-channel record,

has no parameters to be set, and no manual initialization phase. It is not

restricted to SDOF systems, i.e., it deals with multi-mode ambient vibration360

signals, and takes into consideration the estimation of the damping ratio, and

the closely-spaced frequency modes. AMBA is capable of distinguishing the

true modes from the noisy ones thanks to an automatic peak-detection method

which avoids any user interaction.

The application of AMBA has been assessed over simulated data generated365

using a continuous beam model excited by a Gaussian white noise. The results

obtained from 100 runs have been analyzed in order to assess the application

of AMBA in terms of robustness, accuracy and precision. Encouraging results

have been obtained despite low SNR levels and different signal categories, in

particular the possibility to estimate damping ratios in a robust and automatic370

way.

Further validations of AMBA over real-world ambient vibration signals are

in progress. Also some investigations should be held to assess the performance

of AMBA in view of continuous and long-term structural health monitoring

applications.375
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