
HAL Id: hal-01233081
https://hal.science/hal-01233081

Submitted on 24 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bonding a linearly piezoelectric patch on a linearly
elastic body

Christian Licht, Somsak Orankitjaroen, Patcharakorn Viriyasrisuwattana,
Thibaut Weller

To cite this version:
Christian Licht, Somsak Orankitjaroen, Patcharakorn Viriyasrisuwattana, Thibaut Weller. Bonding
a linearly piezoelectric patch on a linearly elastic body. Comptes Rendus Mécanique, 2014, 342 (4),
pp.234-239. �10.1016/j.crme.2014.01.003�. �hal-01233081�

https://hal.science/hal-01233081
https://hal.archives-ouvertes.fr


Bonding a linearly piezoelectric patch on a linearly elastic
body

Analyse asymptotique d’un patch linéairement piézoélectrique lié à un
corps linéairement élastique

Christian Licht a,b,c,∗, Somsak Orankitjaroen b,c,
Patcharakorn Viriyasrisuwattana b,c, Thibaut Weller a,∗
a LMGC, UMR-CNRS 5508, Université Montpellier-2, case courier 048, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
b Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
c Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand

a b s t r a c t

A rigorous study of the asymptotic behavior of the system constituted by a very thin
linearly piezoelectric plate bonded on a linearly elastic body supplies various models for
an elastic body monitored by a piezoelectric patch.

r é s u m é

Une étude rigoureuse du comportement asymptotique du système constitué par une plaque
linéairement piézoélectrique collée sur un corps linéairement élastique fournit divers
modèles de contrôle de structures élastiques par des patches piézoélectriques.

1. Introduction

Many studies dealing with the mathematical modeling of piezoelectric devices were devoted to the behavior of the sole 
patches and provided various asymptotic models for thin linearly piezoelectric plates (see [1] and the references therein). 
However, the essential technological interest of piezoelectric patches being the monitoring of a deformable body they are 
bonded to, here we intend to propose various asymptotic models for the behavior of the body through the study of the system 
constituted by a very thin linearly piezoelectric flat patch perfectly bonded to a linearly elastic three-dimensional body. 
A reference configuration for the body is an open set Ω laying in {x3 < 0} whose part of its Lipschitz-continuous boundary 
∂Ω  is a non-empty domain S in {x3 = 0} and such that S × (−L, 0) is included in Ω for some positive real number L, while 
the patch occupies Bε := S × (0, ε), ε being a small real number; let Oε := Ω ∪ S ∪ Bε . The body is clamped on a part Γ0
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of ∂Ω \ S with a positive two-dimensional Hausdorff measure H2(Γ0), and subjected to body forces and surface forces on
Γ1 := ∂Ω \ (S ∪ Γ0) of densities f and F . Moreover, for all δ in R, let Sδ denote S + δe3, {e1, e2, e3} being a basis of the
Euclidean physical space assimilated to R3, surface forces of density G acts on Sε whilst the patch is free of mechanical
loading and electric charges in Bε and on its lateral boundary ∂ S × (0, ε). If uε , e(uε), σε denote the fields of displacement,
strain and stress in Oε and ϕε , Dε stand for the electric potential and the electric displacement, part of the equations
describing the electromechanical equilibrium read as:⎧⎪⎪⎨⎪⎪⎩

divσε = f̃ in Oε, uε = 0 on Γ0, σ εn = F on Γ1, σ εn = Gε on Sε, σ εn = 0 on ∂ S × (0, ε)

div Dε = 0 in Bε, Dε · n = 0 on ∂ S × (0, ε)

σ ε = ae
(
uε

)
in Ω,

(
σε, Dε

) = 1

ε
M

(
e
(
uε

)
,∇ϕε

)
in Bε

(1)

f̃ is the extension of f to Bε by 0, n is the unit outward normal and a denotes the elasticity tensor which satisfies:

a ∈ L∞(
Ω; Lin

(
S3)), ∃c; c|e|2 � a(x)e · e, ∀e ∈ S3, a.e. x ∈ Ω (2)

where Lin(SN ) is the space of linear operators on the space SN of N × N symmetric matrices whose inner product and norm
are noted · and | · | as in R3. If H := S3 × R3 is equipped with an inner product and a norm also denoted as previously,
then M is an element of L∞(S ×R; Lin(H)) independent of x3 satisfying:

M =
[

α −β

βT γ

]
, ∃κ > 0; κ |e|2 � α(x)e · e, κ |g|2 � γ (x)g · g, ∀(e, g) ∈H, a.e. x ∈ S ×R (3)

The models will be distinguished according to the additional necessary boundary conditions on Sε and S , characterized by
an index p in {1,2}2. Case p1 = 1 corresponds to a condition for the electric displacement on Sε:

Dε · n = qε on Sε (4)1

qε being a density of electrical charges, while p1 = 2 corresponds to a condition of given electrical potential:

ϕε = ϕε
0 on Sε (4)2

roughly speaking, p1 = 1 deals with patches used as sensors, whereas p1 = 2 concerns actuators (see [1,2]). Index p2
accounts for the status of the interface between the patch and the body: p2 = 1 corresponds to an electrically impermeable
interface, p2 = 2 corresponds to a grounded interface:

Dε · n = 0 on S (5)1

ϕε = 0 on S (5)2

It will be convenient to use the following notations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k̂ := (ê, ĝ), ê := (eαβ)α, β∈{1,2}, ĝ := (g1, g2), ∀k = (e, g) ∈H

ẽ ∈ S3; ẽαβ = eαβ, 1 � α,β � 2, ẽi3 = 0, 1 � i � 3,∀e ∈ S2

k(r) = k(v,ψ) := (
e(v),∇ψ

)
, ∀r = (v,ψ) ∈ H1(Bε;R3) × H1(Bε

)
e(v) ∈ D′(S;S2); (

e(v)
)
αβ

= 1

2
(∂α vβ + ∂β vα), ∀v ∈ D′(S;R2)

(6)

where the same symbol e(·) stands for the symmetrized gradient in the sense of distributions of D′(O;R3), O ∈
{Ω, Bε,Oε}, or D′(S;R2). Moreover we introduce some spaces, linear and bilinear forms in order to supply a variational
formulation of (1)–(5). An electromechanical state will be an element r = (v,ψ) of

V p := H1
Γ0

(
Oε;R3) × Φp, Φ(1,1) = H1(Bε

)
, Φ(1,2) = H1

S

(
Bε

)
, Φ(2,1) = H1

Sε

(
Bε

)
, Φ(2,2) = H1

S∪Sε

(
Bε

)
(7)

where, for any domain O of R3, H1
Γ (O;R3) and H1

Γ (O) respectively denote the subspaces of H1(O;R3) and H1(O) of all
elements with vanishing traces on a part Γ of ∂O. One makes the following assumptions on the data:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ0 denotes the restriction to S of an element of H1/2({x3 = 0}) still denoted by ϕ0

( f , F , G,q) ∈ L2(Ω;R3) × L2(Γ1;R3) × L2(S;R3) × L2(S
)
,

∫
S

q dx̂ = 0

Gε(x + εe3) = G(x), qε(x + εe3) = q(x), ϕε
0 (x + εe3) = εϕ0(x), a.e. x ∈ S

(8)

It is well known that for all ϕ0 in H1/2({x3 = 0}), there exists an element of H1(S × (−L,0)) when p2 = 1, H1
S−L (S × (−L,0))

when p2 = 2, still denoted by ϕ0 whose trace on S is ϕ0. Hence the element ϕε
o,p of Φp defined by ϕε

o,p(x) = εϕ0(x̂, (x3 −
ε)L/ε) satisfies:



ϕε
o,p := ϕε

0 on Sε,
1

ε

∫
Bε

∣∣∇ϕε
o,p

∣∣2
dx � C (9)

Let Mp and Lp be defined by:

Mp(s, r) :=
∫
Ω

ae(u) · e(v)dx + 1

ε

∫
Bε

Mk(s) · k(r)dx, ∀s = (u,ϕ), ∀r = (v,ψ) ∈ V p

L(1,p2)(r) =
∫
Ω

f · v dx +
∫
Γ1

F · v dH2 +
∫
Sε

Gε · v dx̂ +
∫
Sε

qε · ψ dx̂, ∀r = (v,ψ) ∈ V (1,p2)

L(2,p2)(r) =
∫
Ω

f · v dx +
∫
Γ1

F · v dH2 +
∫
Sε

Gε · v dx̂ − 1

ε

∫
Bε

Mk
(
0,ϕε

o,p

) · k(r)dx, ∀r = (v,ψ) ∈ V (2,p2) (10)

It is straightforward to check that Mp is continuous and coercive on V p (actually on H1
Γ0

(Ω;R3)×(Φp/R) when p = (1,1)),
Lp is continuous on V p , and seeking an equilibrium state leads to the problem(

P ε
p

)
: Find s̃εp = (

uε
p, ϕ̃ε

p

)
in V p such that Mp

(
s̃εp, r

) = Lp(r), ∀r ∈ V p (11)

which by the Lax–Milgram lemma has a unique solution (if one adds the condition 〈ϕ̃ε
p〉ε := 1

|Sε |
∫

Sε ϕ̃ε
p dx̂ = 0 when p =

(1,1)). Then an equilibrium state is sεp = s̃εp + (0,ϕε
o,p).

2. The asymptotic models

We will propose our four models by studying the asymptotic behavior of sεp , when ε goes to zero, in three steps:

Step 1 (a priori estimates): By taking r = s̃εp in the formulation of (P ε
p) and by due account of (2), (3), (8), (9) and of the

following Lemma 2.1, we have:

∃C > 0;
∫
Ω

∣∣e(uε
p

)∣∣2
dx + 1

ε

∫
Bε

(∣∣e(uε
p

)∣∣2 + ∣∣∇ϕε
p

∣∣2)
dx � C (12)

Lemma 2.1. There hold:

(i) |v|2
L2(Sε;R3)

� C(|e(v)|2
L2(Ω;S3)

+ |e(v)|2
L2(Bε,S3)

), ∀v ∈ H1
Γ0

(Oε;R3),

(ii)
∫

Sε |ψ − 〈ψ〉ε|2 dx̂ � C
ε

∫
Bε |∇ψ |2 dx, ∀ψ ∈ H1(Bε),

(iii)
∫

Bε ψ2 dx � c[ε ∫
Γ

ψ2 dx̂ + ε2
∫

Bε |∇ψ |2 dx], ∀ψ ∈ H1(Bε), ∀Γ ∈ {S, Sε}.

Proof. Points (ii)–(iii) are standard due to the cylindrical geometry of Bε . To prove (i), it suffices to introduce a
C∞([−L, L/3]) cut-off function η such that:

η = 0 on

[
−L,−2L

3

]
, η = 1 on

[
− L

3
,

L

3

]
, 0 � η � 1, 0 � dη

dx3
� 4

L
on

[
−2L

3
,− L

3

]
(13)

and to apply the Korn inequality in H1
S−L+ε (S × (−L + ε, ε);R3) to ηv by noticing that the constant in Korn’s inequality

does not depend on ε. �
Therefore the Cauchy–Schwarz inequality and (12) make it possible to define the following element of L2(S;H):

k
(
ε, sεp

) = (
e
(
ε, uε

p

)
, g

(
ε,ϕε

p

)) := 1

ε

ε∫
0

(
e
(
uε

p

)
,∇ϕε

p

)
(·, x3)dx3 (14)

which satisfies:∣∣k(
ε, sεp

)∣∣
L2(S;H)

� C (15)

thus there exists a nonrelabeled subsequence such that k(ε, sεp) converges weakly in L2(S;H) toward some k̄p . The interest
of introducing k(ε, sεp) is that



̂k
(
ε, sεp

) = (
e
(
Û ε

p
)
,∇φε

p

)
,

(
U ε

p, φε
p

) := 1

ε

ε∫
0

sεp(·, x3)dx3 (16)

which will enable us to identify k̄p .

Step 2 (Convergence of (sε
p)):

Proposition 2.1. Let V := {v ∈ H1
Γ0

(Ω;R3); v̂ ∈ H1(S;R2)}, then there exists (ūp, φ̄p) in V × H1(S) such that, when ε goes to zero,

(i) the restriction to Ω of uε
p converges weakly in H1

Γ0
(Ω;R3) toward ūp ;

(ii) (Û ε
p, φε

p) converges weakly in H1(S;R2 ×R), and consequently strongly in L2(S;R2 ×R) toward (̂̄up, φ̄p),̂̄kp = (e(̂̄up),∇φ̄p),

and φ̄p = 0 when p �= (1,1).

Proof. The estimate (12) yields that a nonrelabeled subsequence (uε
p) has restriction to Ω which weakly converges in

H1
Γ0

(Ω;R3) and whose trace on S strongly converges in L2(S;R3). Hence, regarding U ε
p , it remains to show

lim
ε→0

Iε = 0, Iε :=
∫
S

1

ε2

( ε∫
0

( x3∫
0

∣∣∂3uε
p(x̂, t)

∣∣ dt

)
dx3

)2

dx̂ (17)

The repeated use of the Cauchy–Schwarz inequality leads to Iε � ε
∫

Bε |∇uε
p |2 dx, and (12), (13) yield:

ε

∫
Bε

∣∣∇uε
p

∣∣2
dx = ε

∫
Bε

∣∣∇(
ηuε

p

)∣∣2
dx � ε

∫
Oε

∣∣∇(
ηuε

p

)∣∣2
dx

� Cε

∫
S×(−L+ε,ε)

∣∣e(ηuε
p

)∣∣2
dx � Cε

(∣∣e(uε
p

)∣∣2
L2(Ω;S3)

+ ∣∣e(uε
p

)∣∣2
L2(Bε;S3)

)
� Cε �

Moreover (16) implies that e(U ε
p) converges in D′(S;S2) toward both e(ûp) and ̂̄e, thus ūp belongs to V and ̂̄e = e(̂ūp)!

Lastly, as
∫

S |φε
p|2 dx � 1

ε

∫
Bε |ϕε

p|2 dx, (12), Lemma 2.1(iii) and (ii) with 〈ϕε
(1,1)

〉ε = 0 yield that φε
p is bounded in L2(S) and

converges strongly toward 0 when p �= (1,1). In the next step, we will show that (U p, ḡp) is necessarily the unique solution
to a variational problem so that the whole sequences do converge.

Step 3 (Identification of (ū p, φ̄p)): First, the decomposition⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H =H1

p ⊕H2
p ⊕H3

p

p1 = 1: H1
p := {

h = (e, g) ∈H; ei3 = 0, g3 = 0
}
, H2

p := {
h = (e, g) ∈H; ê = 0, ĝ = 0

}
, H3

p := {0}
p1 = 2: H1

p = {
h = (e, g) ∈ H; ei3 = 0, ĝ = 0

}
, H2

p = {
(e, g) ∈H; ê = 0, g = 0

}
,

H3
p = {

(e, g) ∈ H; e = 0, g3 = 0
} (18)

induces a decomposition of M in linear operators Mij
p mapping Hi

p into H
j
p . The key point in the identification of (ūp, φ̄p)

is to establish:

(Mk̄p)2 = 0 (19)

where hi denotes the projection on Hi
p of any h of H. As (14) and (12) imply:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

ε

∫
Bε

M
(
e
(
uε

p

)
,∇ϕε

p

) · θ dx =
∫
S

M
(
e
(
ε, uε

p

)
, g

(
ε,ϕε

p

)) · θ dx̂

lim
ε→0

1

ε

∫
Bε

M
(
e
(
uε

p

)
,∇ϕε

p

)
(x) · x3θ(x̂)dx = 0, ∀θ ∈ L2(S;H)

(20)

equality (19) is a mere consequence of choosing the following test functions in the formulation of (P ε
p):



{
I r = (

I v,0
)
, I = 1,2; I v = 0 in Ω, 1 v = (0, x3θ), 2 v = (x3θ,0), θ ∈ C∞

0

(
S;RI

)
, in Bε

r = (0,ψ), ψ(x) = x3θ(x̂), θ ∈ C∞
0 (S)

(21)

Hence, as (18) and point (ii) in Proposition 2.1 yield (k̄p)3 = 0, we deduce:

(Mk̄p)1 = M̃p(k̄p)1; M̃p := M11
p − M12

p

(
M22

p

)−1
M21

p (22)

Next, for all (v,ψ) in V K L(Bε) × Ψp , defined by:

V K L
(

Bε
) = {

v ∈ H1(Bε;R3); ∃(
v M , v F ) ∈ H1(S;R2) × H2(S); v̂(x) = v M(x̂) − x3∇v F (x̂), v3(x) = v F (x̂),

a.e. x ∈ Bε
}

Ψp = {
ψ; ψ(x) = (x3 − ε)p1−1θ(x̂), θ ∈ H2−p1(S)

}
if p2 = 1, Ψp = {0} if p2 = 2 (23)

the couple (ẽ(v̂),∇ψ) belongs to H1
p almost everywhere in S , then (20) and (22) give:

lim
ε→0

1

ε

∫
Bε

M
(
e
(
uε

p

)
,∇ϕε

p

) · (e(v),∇ψ
)

dx =
∫
S

Mkp · (ẽ(v̂),∇ψ
)

dx̂ =
∫
S

M̃p(kp)1 · (ẽ(v̂),∇ψ
)

dx̂ (24)

while, obviously, limε→0
∫

Sε Gε · v dx̂ + ∫
Sε qε · ψ dx̂ = ∫

S G · v dx̂ + ∫
S q · ψ dx̂.

Lastly the very definitions of g(ε,ϕε
p) and M̃p implying (g(2,2))3 = ϕ0 and M̃k · k � 2κ |k|2 for all k in H1

p , Jensen’s
inequality and a standard argument of lower semi-continuity achieve the proof of the following convergence result which
supplies our asymptotic models in the form of variational problems (P p):

Theorem 2.1. When ε tends to zero, (uε
p, (k(ε,ϕε

p))1) converges strongly in H1(Ω;R3) × L2(S2 ×R3−p1 ) toward (ūp, (e(̂̄up), E p))

where (ūp, E p) is the unique solution to:

(P p)

{
Find (u, E) ∈ (p1 − 1)(p2 − 1)(0,ϕ0) + V × Ep such that

Mp
(
(u, E),

(
v, E ′)) = Lp

(
v, E ′) ∀(

v, E ′) ∈ V × Ep

where

E(1,1) :=
{

E ∈ L2(S;R2); ∃!φ := (∇)−1 E ∈ H1
m(S) :=

{
ψ ∈ H1(S);

∫
S

ψ(x̂)dx̂ = 0

}
; E = ∇φ

}
E(1,2) = {0}, E(2,1) = L2(S), E(2,2) = {0}
Mp

(
(u, E),

(
v, E ′)) :=

∫
Ω

ae(u) · e(v)dx +
∫
S

M̃p
(
e(û), E

) · (e(v̂), E ′) dx̂

Lp
(

v, E ′) =
∫
Ω

f · v dx +
∫
Γ1

F · v dH2 +
∫
S

G · v dx̂ + (2 − p1)

∫
S

q(∇)−1 E ′ dx̂

and any element of H1
p is understood as an element of S2 ×R3−p1 .

When p2 = 1, the model involves an additional state variable to the sole displacement, which is the limit of the average
in the transverse direction of the efficient components of the electrical field in the patch. As it can be eliminated, (P p)

models the equilibrium of the genuine body subjected to the loading ( f , F , G) and reinforced along S , this reinforcement
being nonlocal if p = (1,1).

3. Concluding remarks

When p = (1,2) or p = (2,1), the electric data q or ϕ0 do not have any influence on the limit model which corresponds
to a purely elastic surface reinforcement of the body along S . However, the characteristics of this reinforcement may depend
on the dielectric or piezoelectric coefficients as much as such terms appear in the expression of Mp (see [1], where the
systematic influence of crystal symmetries has been carried out). On the contrary, electrical data q or ϕ0 plays a role in
models (1,1) and (2,2). More precisely, f , F and G being fixed, the mapping ϕ0 �→ S(2,2)ϕ0 = ū(2,2) is one-to-one, it
is “theoretically” possible to determine what could be the electrical potential to apply on Sε in order to get a desired
displacement in the range of S(2,2) . An approximate procedure may be done easily by finite elements. Another application
is that the patch may shift the spectrum of the body in an interesting way, that is why we may regard the patch as an



actuator. When p = (1,1) the mapping q �→ S(1,1)q = ū(1,1) is also one to one, thus the measurement of qε may supply the
knowledge of the state of displacements: the patch acts as a sensor!

By using the same technique of averaging the strain and electrical fields in the transverse direction it is possible to treat
the easier case, from the mathematical point of view, of piezoelectric patches embedded inside an elastic body.
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