
HAL Id: hal-01232938
https://hal.science/hal-01232938v1

Preprint submitted on 24 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving kriging surrogates of high-dimensional design
models by Partial Least Squares dimension reduction
Mohamed-Amine Bouhlel, Nathalie Bartoli, Abdelkader Otsmane, Joseph

Morlier

To cite this version:
Mohamed-Amine Bouhlel, Nathalie Bartoli, Abdelkader Otsmane, Joseph Morlier. Improving kriging
surrogates of high-dimensional design models by Partial Least Squares dimension reduction. 2015.
�hal-01232938�

https://hal.science/hal-01232938v1
https://hal.archives-ouvertes.fr


Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Mohamed Amine Bouhlel · Nathalie Bartoli · Abdelkader Otsmane ·
Joseph Morlier

Improving kriging surrogates of high-dimensional design
models by Partial Least Squares dimension reduction

Received: date / Revised: date

Abstract Engineering computer codes are often compu-
tationally expensive. To lighten this load, we exploit new
covariance kernels to replace computationally expensive
codes with surrogate models. For input spaces with large
dimensions, using the Kriging model in the standard way
is computationally expensive because a large covariance
matrix must be inverted several times to estimate the pa-
rameters of the model. We address this issue herein by
constructing a covariance kernel that depends on only
a few parameters. The new kernel is constructed based
on information obtained from the Partial Least Squares
method. Promising results are obtained for numerical ex-
amples with up to 100 dimensions, and significant com-
putational gain is obtained while maintaining sufficient
accuracy.

Keywords Kriging · Partial Least Squares · Experi-
ment design · Metamodels

M. A. Bouhlel
SNECMA, Rond-point René Ravaud-Réau, 77550 Moissy-
Cramayel, France
Tel.: +33-(0)5-62252938
E-mail: mohamed.bouhlel@onera.fr
E-mail: mohamed.amine.bouhlel@gmail.com

N. Bartoli
ONERA, 2 avenue Édouard Belin, 31055 Toulouse, France
Tel.: +33-(0)5-62252644
E-mail: nathalie.bartoli@onera.fr

J. Morlier
Université de Toulouse, Institut Clément Ader, ISAE, 10 Av-
enue Edouard Belin, 31055 Toulouse Cedex 4, France
Tel.: +33-(0)5-61338131
E-mail: joseph.morlier@isae.fr

A. Otsmane
SNECMA, Rond-point René Ravaud-Réau, 77550 Moissy-
Cramayel, France
Tel.: +33-(0)1-60599887
E-mail: abdelkader.otsmane@snecma.fr

Symbols and notation

Matrices and vectors are in bold type.

Symbol Meaning

det determinant of a matrix
| · | absolute value
R set of real numbers
R+ set of positive real numbers
n number of sampling points
d dimensions
h number of principal components retained
x 1× d vector
xj jth element of a vector x
X n× d matrix containing sampling points
y n× 1 vector containing simulation of X
x(i) ith training point for i = 1, . . . , n

(a 1× d vector)
w(l) d× 1 vector containing X weights given by

the lth PLS iteration for l = 1, . . . , h
X(0) X
X(l−1) Matrix containing residual of inner

regression of (l − 1)st PLS iteration for
l = 1, . . . , h

k(·, ·) covariance function
N (0, k(·, ·)) Distribution of a Gaussian process with

mean function 0 and covariance function
k(·, ·)

xt Superscript t denotes the transpose
operation of the vector x

1 Introduction and main contribution

In recent decades, because simulation models have striven
to more accurately represent the true physics of phe-
nomena, computational tools in engineering have become
ever more complex and computationally expensive. To
address this new challenge, a large number of input de-
sign variables, such as geometric representation, are of-
ten considered. Thus, to analyze the sensitivity of input
design variables (this is called a “sensitivity analysis”)



2

or to search for the best point of a physical objective
under certain physical constraints (i.e., global optimiza-
tion), a large number of computing iterations are re-
quired, which is impractical when using simulations in
real time. This is the main reason that surrogate model-
ing techniques have been growing in popularity in recent
years. Surrogate models, also called metamodels, are vi-
tal in this context and are widely used as substitutes for
time-consuming high-fidelity models. They are mathe-
matical tools that approximate coded simulations of a
few well-chosen experiments that serve as models for the
design of experiments. The main role of surrogate mod-
els is to describe the underlying physics of the phenom-
ena in question. Different types of surrogate models can
be found in the literature, such as regression, smooth-
ing spline [Wahba and Craven (1978); Wahba (1990)],
neural networks [Haykin (1998)], radial basis functions
[Buhmann (2003)] and Gaussian-process modeling [Ras-
mussen and Williams (2006)].

In this article, we focus on the kriging model because
it estimates the prediction error. This model is also re-
ferred to as the Gaussian-process model [Rasmussen and
Williams (2006)] and was presented first in geostatis-
tics [see, e.g., Cressie (1988) or Goovaerts (1997)] be-
fore being extended to computer experiments and ma-
chine learning [Schonlau (1998); Sasena (2002); Jones
et al (1998); Picheny et al (2010)]. The kriging model
has become increasingly popular due to its flexibility
in accurately imitating the dynamics of computationally
expensive simulations and its ability to estimate the er-
ror of the predictor. However, it suffers from some well-
known drawbacks in high dimension, which may be due
to multiple causes. For starters, the size of the covariance
matrix of the kriging model may increase dramatically
if the model requires a large number of sample points.
As a result, inverting the covariance matrix is compu-
tationally expensive. The second drawback is the opti-
mization of the subproblem, which involves estimating
the hyper-parameters for the covariance matrix. This is
a complex problem that requires inverting the covariance
matrix several times. Some recent works have addressed
the drawbacks of high-dimensional Gaussian processes
[Hensman et al (2013); Damianou and Lawrence (2013);
Durrande et al (2012)] or the large-scale sampling of data
[Sakata et al (2004)]. One way to reduce CPU time when
constructing a kriging model is to reduce the number of
hyper-parameters, but this approach assumes that the
kriging model exhibits the same dynamics in all direc-
tions [Mera (2007)].

Thus, because estimating the kriging parameters can
be time consuming, especially with dimensions as large
as 100, we present herein a new method that combines
the kriging model with the Partial Least Squares (PLS)
technique to obtain a fast predictor. Like the method of
principle components analysis (PCA), the PLS technique
reduces dimension and reveals how inputs depend on out-
puts. PLS is used in this work because PCA only exposes

dependencies between inputs. Information given by PLS
is integrated in the covariance structure of the kriging
model to reduce the number of hyper-parameters. The
combination of kriging and PLS is abbreviated KPLS
and allows us to build a fast kriging model because it
requires fewer hyper-parameters in its covariance func-
tion; all without eliminating any input variables from the
original problem.

The KPLS methods is used for many academic and
industrial verifications, and promising results have been
obtained for problems with up to 100 dimensions. The
cases used in this paper do not exceed 100 input vari-
ables, which should be quite sufficient for most engineer-
ing problems. Problems with more than 100 inputs may
lead to memory difficulties with the toolbox Scikit-learn
(version 0.14), on which the KPLS method is based.

This paper is organized as follows: Section 2 summa-
rizes the theoretical basis of the universal kriging model,
recalling the key equations. The proposed KPLS model is
then described in detail in section 3 by using the kriging
equations. Section 4 compares and analyzes the results
of the KPLS model with those of the kriging model when
applied to classic analytical examples and some complex
engineering examples. Finally, section 5 concludes and
gives some perspectives.

2 Universal kriging model

To understand the mathematics of the proposed meth-
ods, we first review the kriging equations. The objective
is to introduce the notation and to briefly describe the
theory behind the kriging model. Assume that we have
evaluated a cost deterministic function of n points x(i)

(i = 1, . . . , n) with

x(i) =
[
x
(i)
1 , . . . ,x

(i)
d

]
∈ B ⊂ Rd,

and we denote X by the matrix [x(1)t, . . . ,x(n)t]t. For
simplicity, B is considered to be a hypercube expressed
by the product between intervals of each direction space,

i.e., B =
∏d

j=1[aj , bj ], where aj , bj ∈ R with aj ≤ bj for
j = 1, . . . , d. Simulating these n inputs gives the outputs
y = [y(1), . . . , y(n)]t with y(i) = y(x(i)) for i = 1, . . . , n.
We use ŷ(x) to denote the prediction of the true function
y(x) which is considered as a realization of a stochastic
process Y (x) for all x ∈ B. For the universal kriging
model [Roustant et al (2012); Picheny et al (2010)], Y is
written as

Y (x) =

m∑
j=1

βjfj(x) + Z(x), (1)

where, for j = 1, . . . ,m, fj is a known independent ba-
sis function, βj ∈ R is an unknown parameter, and Z
is a Gaussian process defined by Z(x) ∼ N (0, k), with
k being a stationary covariance function, also called a



3

covariance kernel. The kernel function k can be written
as

k(x,x′) = σ2r(x,x′) = σ2rxx′ ∀ x,x′ ∈ B, (2)

where σ2 is the process variance and rxx′ is the cor-
relation function between x and x′. However, the cor-
relation function r depends on some hyper-parameters
θ and, for constructing the kriging model, are consid-
ered to be known. We also denote the n × 1 vector as
rxX = [rxx(1) , . . . , rxx(n) ]t and the n× n covariance ma-
trix as R = [rx(1)X, . . . , rx(n)X].

2.1 Derivation of prediction formula

Under the hypothesis above, the best linear unbiased pre-
dictor for y(x), given the observations y, is

ŷ(x) = f(x)tβ̂ + rtxXR−1
(
y − Fβ̂

)
, (3)

where f(x) = [f1(x), . . . , fm(x)]t is the m × 1 vector of

basis functions, F =
[
f(x(1)), . . . , f(x(n))

]t
is the n ×m

matrix, and β̂ is the vector of generalized least-square
estimates of β = [β1, . . . , βm]t, which is given by

β̂ =

 β̂1...
β̂m

 =
(
FtR−1F

)−1
FtR−1y. (4)

Moreover, the universal kriging model provides an
estimate of the variance of the prediction, which is given
by

s2(x) = σ̂2
(
1− rtxXR−1rxX

)
, (5)

with

σ̂2 =
1

n

(
y − Fβ̂

)t
R−1

(
y − Fβ̂

)
. (6)

For more details of the derivation of the prediction
formula, see, for instance, [Sasena (2002) or Schonlau
(1998)]. The theory of the proposed method has been
expressed in the same way as for the universal kriging
model. The numerical examples in section 4 use the or-
dinary kriging model, which is a special case of the uni-
versal model, but with f(x) = {1} (and m = 1). For the
ordinary kriging model, equations (3), (4), and (6) are
then replaced by the equations given in appendix A.

Note that the assumption of known covariance with
known hyper-parameters θ is unrealistic in reality and
they are often unknown. For this reason, the covariance
function is typically chosen from among a parametric
family of kernels. Table 12 in appendix B gives some
examples of typical stationary kernels. The number of
hyper-parameters required for the estimate is typically
greater than (or equal to) the number of input variables.

In this work, we use in the following a Gaussian expo-
nential kernel:

k(x,x′) = σ2
d∏

i=1

exp
(
−θi (xi − x′i)

2
)
∀ θi ∈ R+.

By applying some elementary operations to existing
kernels, we can construct new kernels. In this work, we
use the property that the tensor product of covariances is
a covariance kernel in the product space. More details are
available in [Rasmussen and Williams (2006); Durrande
(2011); Bishop (2007); Liem and Martins (2014)].

2.2 Estimation of hyper-parameters θ

The key point of the kriging approximation is how it
estimates the hyper-parameters θ, so its main steps are
recalled here, along with some mathematical details.

One of the major challenges when building a krig-
ing model is the complexity and difficulty of estimating
the hyper-parameters θ, in particular when dealing with
problems with many dimensions or with a large number
of sampling points. In fact, using equation (3) to make
a kriging prediction requires inverting an n × n matrix,
which typically has a cost O

(
n3
)
, where n is the number

of sampling points [Braham et al (2014)]. The hyper-
parameters are estimated by using maximum likelihood
(ML) or cross validation (CV), which are based on ob-
servations. Bachoc compared the ML and CV techniques
[Bachoc (2013)] and concluded that, in most cases stud-
ied, the CV variance is larger. The ML method is widely
used to estimate the hyper-parameters θ; it is also used
in this paper. In practice, the following log-ML estimate
is often used:

log-ML(θ) = −1

2

[
n ln(2πσ2) + ln(detR(θ))

+(y − Fβ)tR(θ)−1(y − Fβ)/σ2
]
. (7)

Inserting β̂ and σ̂2 given by equations (4) and (6),
respectively, into the expression (7), we get the follow-
ing so-called concentrated likelihood function, which de-
pends only on the hyper-parameters θ:

log-ML(θ) = −1

2
[n ln σ̂2 + ln detR(θ)]

= −1

2

[
n ln

(
1

n
(y − F(FtR−1F)−1FtR−1y)t (8)

×R−1(y − F(FtR−1F)−1FtR−1y)

)
+ ln detR

]
.

To facilitate reading, R(θ) has been replaced by R in the
last line of equation (8).

Maximizing equation (8) is very computationally ex-
pensive for high dimensions and when using a large num-
ber of sample points because the (n × n) matrix R in



4

equation (8) must be inverted. This problem is often
solved by using genetic algorithms [see Forrester et al
(2008) for more details]. In this work, we use the derivative-
free optimization algorithm COBYLA that was devel-
oped by [Powell (1994)]. COBYLA is a sequential trust-
region algorithm that uses linear approximations for the
objective and constraint functions.

Figure 1 recalls the principal stages of building a krig-
ing model, and each step is briefly outlined below:

1. The user must provide the initial design of experi-
ments (X,y) and the type of the covariance function
k.

2. To derive the prediction formula, the kriging algo-
rithm assumes that all parameters of k are known.

3. Under the hypothesis of the kriging algorithm, we
estimate hyper-parameters θ from the concentrated
likelihood function given by equation (8) and by using
the COBYLA algorithm.

4. Finally, we calculate the prediction (3) and the asso-
ciated estimation error (5) after estimating all hyper-
parameters of the kriging model.

1- (X,y, k)

2- Assume that the parametric
covariance function k is known

5- Maximize the concentrated likelihood
given by equation (8) with respect to θ

6- Express the prediction equation (3)
and the associated estimation error (5)

Fig. 1: The main steps for building an ordinary kriging
model.

3 Kriging model combined with Partial Least
Squares

As explained above, estimating the kriging parameters
can be time consuming, especially with dimensions up to
100. Solving this problem can be accelerated by combing
the PLS method and the kriging model. The θ parame-
ters from the kriging model represent the range in any
spatial direction. Assuming, for instance, that certain

values are less significant for the response, then the cor-
responding θi (i = 1, . . . , d) will be very small compared
to the other θ parameters. The PLS method is a well-
known tool for high-dimensional problems and consists
of maximizing the variance by projecting onto smaller di-
mensions while monitoring the correlation between input
variables and the output variable. In this way, the PLS
method reveals the contribution of all variables—the idea
being to use this information to scale the θ parameters.

In this section we propose a new method that can be
used to build an efficient kriging model by using the in-
formation extracted from the PLS stage. The main steps
for this construction are as follows:

1. Use PLS to define weight parameters.
2. To reduce the number of hyper-parameters, define a

new covariance kernel by using the PLS weights.
3. Optimize the parameters.

The key mathematical details of this construction are
explained in the following.

3.1 Linear transformation of covariance kernels

Let x be a vector space over the hypercube B. We define
a linear map given by

F : B −→ B′,

x 7−→ [α1x1, . . . , αdxd]
t
,

(9)

where α1, . . . , αd ∈ R and B′ is a hypercube included in
Rd (B′ can be different from B). Let k be an isotropic co-
variance kernel with k : B′×B′ → R. Since k is isotropic,
the covariance kernel k(F (·), F (·)) depends on a single
parameter, which must be estimated. We take the view,
however, that if α1, . . . , αd are well chosen, then we can
use k(F (·), F (·)) and the linear transformation F al-
lows us to approach the isotropic case [Zimmerman and
Homer (1991)]. In the present work, we choose α1, . . . , αd

based on information extracted from the PLS technique.

3.2 Partial Least Squares

The PLS method is a statistical method that finds a
linear relationship between input variables and the out-
put variable by projecting input variables onto a new
space formed by newly chosen variables, called principal
components (or latent variables), which are linear combi-
nations of the input variables. This approach is particu-
larly useful when the original data are characterized by a
large number of highly collinear variables measured on a
small number of samples. Below, we briefly describe how
the method works. For now, suffice it to say that only
the weighting coefficients are central to understanding
the new KPLS approach. For more details on the PLS
method, please see [Helland (1988); Frank and Friedman
(1993); Alberto and González (2012)].



5

The PLS method is designed to search out the best
multidimensional direction in X space that explains the
characteristics of the output y. After centering and scal-
ing the (n×d)-sample matrix X and the response vector
y, the first principal component t(1) is computed by seek-
ing the best direction w(1) that maximizes the squared
covariance between t(1) = Xw(1) and y:

w(1) =

{
arg max

w
wtXtyytXw

such that wtw = 1.
(10)

The optimization problem (10) is maximized when
w(1) is the eigenvector of the matrix XtyytX corre-
sponding to the eigenvalue with the largest absolute value;
the vector w(1) contains the X weights of the first com-
ponent. The largest eigenvalue of problem (10) can be
estimated by the power iteration method introduced by
[Lanczos (1950)].

Next, the residual matrix from X = X(0) space and
from y = y(0) are calculated; these are denoted X(1) and
y(1), respectively:

X(1) = X(0) − t(1)p(1),
y(1) = y(0) − c1t(1),

(11)

where p(1) (a 1×d vector) contains the regression coeffi-
cients of the local regression of X onto the first principal
component t(1), and c1 is the regression coefficient of the
local regression of y onto the first principal component
t(1). The system (11) is the local regression of X and y
onto the first principal component.

Next, the second principal component, which is or-
thogonal to the first, can be sequentially computed by
replacing X by X(1) and y by y(1) to solve the system
(10). The same approach is used to iteratively compute
the other principal components. To illustrate this pro-
cess, a simple three-dimensional (3D) example with two
principal components is given in figure 2. In the follow-
ing, we use h to denote the number of principal compo-
nents retained.

The principal components represent the new coordi-
nate system obtained upon rotating the original system
with axes, x1, . . . ,xd [Alberto and González (2012)]. For
l = 1, . . . , h, t(l) can be written as

t(l) = X(l−1)w(l) = Xw
(l)
∗ . (12)

This important relationship is used for coding the method.

The following matrix W∗ = [w
(1)
∗ , . . . , .w

(h)
∗ ] is obtained

by [Manne (1987)]:

W∗ = W
(
PtW

)−1
,

where W = [w(1), . . . ,w(h)] and P = [p(1)t, . . . ,p(h)t].
The vector w(l) corresponds to the principal direction

in X space that maximizes the covariance of

X(l−1)ty(l−1)y(l−1)tX(l−1). If h = d, the matrix

W∗ = [w
(1)
∗ , . . . ,w

(d)
∗ ] rotates the coordinate space

Fig. 2: Upper left shows construction of two principal
components in X space. Upper right shows prediction
of y(0). Bottom left shows prediction of y(1). Bottom

right shows final prediction of y.

(x1, . . . ,xd) to the new coordinate space (t(1), . . . , t(d)),
which follow the principal directions w(1), . . . ,w(d).

As mentioned in the introduction, the PLS method
is chosen instead of the PCA method because the PLS
method shows how the output variable depends on the
input variables, whereas the PCA method focuses only
on how the input variables depend on each other. In fact,
the hyper-parameters θ for the kriging model depend on
how each input variable affects the output variable.

3.3 Construction of new kernels for KPLS models

Let B be a hypercube included in Rd. As seen in the pre-

vious section, the vector w
(1)
∗ is used to build the first

principal component t(1) = Xw
(1)
∗ , where covariance be-

tween t(1) and y is maximized. The scalars w
(1)
∗1 , . . . ,w

(1)
∗d

can then be interpreted as measuring the importance of
x1, . . . ,xd, respectively, for constructing the first princi-
pal component where its correlation with the output y is
maximized. However, we know that the hyper-parameters
θ1, . . . , θd (see table 12 in appendix B) can be interpreted
as measuring how strongly the variables x1, . . . ,xd, re-
spectively, affect the output y. Thus, we define a new
kernel kkpls1 : B ×B → R given by k1(F1(·), F1(·)) with
k1 : B×B → R being an isotropic stationary kernel and

F1 : B −→ B, (13)

x 7−→
[
w

(1)
∗1 x1, . . . ,w

(1)
∗d xd

]t
.

F1 goes from B to B because it only works for the new
coordinate system obtained by rotating the original co-



6

ordinate axes, x1, . . . ,xd. Through the first component

t(1), the elements of the vector w
(1)
∗ reflect how x de-

pends on y. However, such information is generally in-

sufficient, so the elements of the vector w
(1)
∗ are supple-

mented by the information given by the other principal
components t(2), . . . , t(h). Thus, we build a new kernel
kkpls1:h sequentially by using the tensor product of all
kernels kkplsl, which accounts for all this information in
only a single covariance kernel:

kkpls1:h(x,x′) =

h∏
l=1

kl(Fl (x) , Fl (x′)), (14)

with kl : B ×B → R and

Fl : B −→ B

x 7−→
[
w

(l)
∗1x1, . . . ,w

(l)
∗dxd

]t
.

(15)

If we consider the Gaussian kernel applied with this pro-
posed approach, we get

k(x,x′) = σ2
h∏

l=1

d∏
i=1

exp

[
−θl

(
w

(l)
∗i xi −w

(l)
∗i x
′
i

)2]
,

∀ θl ∈ [0,+∞[.

Table 13 in appendix B presents new KPLS kernels based
on examples from table 12 (also in appendix B) that con-
tain fewer hyper-parameters because h� d. The number
of principal components is fixed by the following leave-
one-out cross-validation method:

(i) We build KPLS models based on h = 1, then
h = 2, . . . principal components.

(ii) We choose the number of components that minimizes
the leave-one-out cross-validation error.

The flowchart given in figure 3 shows how the informa-
tion flows through the algorithm, from sample data, PLS
algorithm, kriging hyper-parameters, to final predictor.
With the same definitions and equations, almost all the
steps for constructing the KPLS model are similar to
the original steps for constructing the ordinary kriging
model. The exception is the third step, which is high-
lighted in the solid-red box in figure 3. This step uses
the PLS algorithm to define the new parametric kernel
kkpls1:h as follows:

a. initialize the PLS algorithm with l = 1;
b. if l 6= 1, compute the residual of X(l−1) and y(l−1) by

using system (11);
c. compute X weights for iteration l;
d. define a new kernel kkpls1:h by using equation (14);
e. if the number of iterations is reached, return to step

3, otherwise continue;
f. update data considering l = l + 1.

Note that, if kernels kl are separable at this point,
the new kernel given by equation (14) is also separable.
In particular, if all kernels kl are of the exponential type
(e.g., all Gaussian exponentials), the new kernel given by
equation (14) will be the same type as kl. The proof is
given in appendix C.

4 Numerical examples

We now present a few analytical and engineering exam-
ples to verify the proper functioning of the proposed
method. The ordinary kriging model with a Gaussian
kernel provides the benchmark against which the re-
sults of the proposed combined approach are compared.
The Python toolbox Scikit-learn v.014 [Pedregosa et al
(2011)] is used to implement these numerical tests. This
toolbox provides hyper-parameters for the ordinary krig-
ing. The computations were done on an Intel R© Celeron R©

CPU 900 2.20 GHz desktop PC. For the proposed method,
we combined an ordinary kriging model with a Gaussian
kernel with the PLS method with one to three principal
components.

4.1 Analytical examples

We use two academic functions and vary the characteris-
tics of these test problems to cover most of the difficulties
faced in the field of substitution models. The first func-
tion is g07 [Michalewicz and Schoenauer (1996)] with 10
dimensions, which is close to what is required by industry
in terms of dimensions,

yg07(x) = x21 + x22 + x1x2 − 14x1 − 16x2

+(x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x27 + 7(x8 − 11)2

+2(x9 − 10)2 + (x10 − 7)2 + 45,

−10 ≤ xi ≤ 10, for i = 1, . . . , 10.

For this function, we use experiments based on a latin
hypercube design with 100 data points to fit models.

The second function is the Griewank function [Regis
and Shoemaker (2013)], which is used because of its com-
plexity, as illustrated in figure 4 for the two-dimensional
(2D) case. The function is

yGriewank(x) =

d∑
i=1

x2i
4000

−
d∏

i=1

cos

(
xi√
i

)
+ 1,

−600 ≤ xi ≤ 600, for i = 1, . . . , d.

Two types of experiments are done with this function.
The first is defined over the interval [−600, 600] and has
varying dimensions (2, 5, 7, 10, 20, 60). This experi-
ment serves to verify the effectiveness of the proposed
approach in both low and high dimensions. It is based
on the latin hypercube design and uses n data points to
fit models, as mentioned in table 1.

The second type of experiment is defined over the in-
terval [−5, 5], where the Griewank function is more com-
plex than for the first type of experiment (cf. figures 4
and 5). Over this reduced interval, experiments are done
with 20 and 40 dimensions (20D and 40D) and with 50,
100, 200, and 300 sampling points. To analyse the ro-
bustness of the method, ten experiments, each with a
different latin hypercube design, are used for this case.



7

1- (X,y, k)

2- Assume that the parametric
covariance function k is known

3- Define kpls1:h

6- Maximize the concentrated likelihood
given by equation (8) with respect to θ

7- Express the prediction equation (3)
and the associated estimation error (5)

a- Start l = 1

b-
(
X(l−1),y(l−1), l

)

c- Compute 1 iteration of

PLS
(
w(l),p(l), cl,w

(l)
∗

)
using equations (10) and (11)

d- Define Fl and kkpls1:l
using equations (14)

and , (15) respectively

e- Number of prin-
cipal components
reached, l = h?

f- Update data
with l = l + 1

YesNo

Fig. 3: Main steps for constructing KPLS model.
The solid-red box (step 3 relative to PLS) is what differentiates this approach from the ordinary kriging approach.

Table 1: Number of data points used for latin hypercube design for the Griewank test function.

d = 2 d = 5 d = 7 d = 10 d = 20 d = 60

n = 70 n = 100 n = 200 n = 300 n = 400 n = 800

To compare the three approaches (i.e., the g07 func-
tion and the Griewank function of the intervals [−600, 600]
and [−5, 5]), 5000 random points are computed and the
results are stored in a database. The following relative
error is used to compare the performance of the ordinary
kriging model with the KPLS model:

Error =
||Ŷ −Y||2
||Y||2

100, (16)

where || · ||2 represents the usual two-norm, and Ŷ and
Y are the vectors containing the prediction and the real
values of random points, respectively. The CPU time re-
quired to fit models is also noted (“h” refers to hours,
“min” refers to minutes, and “s” refers to seconds).

4.1.1 Comparison with g07 function

The results listed in table 2 show that the proposed
KPLS surrogate model is more accurate than the or-
dinary kriging model when more than one component is
used. Using just one component gives almost the same
accuracy as the ordinary kriging model. In this case, only
a single θ hyper-parameter from the space correlation
needs be estimated compared to ten θ hyper-parameters
for the ordinary kriging model. Increasing the number
of components improves the accuracy of the KPLS sur-
rogate model. Whereas the PLS method treats only lin-
early related input and output variables, this example
shows that the KPLS model can treat nonlinear prob-
lems. This result is not contradictory because equation



8

Fig. 4: A two-dimensional Griewank function over the
interval [−600, 600].

Fig. 5: A two-dimensional Griewank function over the
interval [−5, 5].

Table 2: Results for g07 function in ten dimensions
with 100-point latin hypercube.

Surrogate Error (%) CPU time

Ordinary kriging 0.013 5.14 s

KPLS (1 component) 0.014 0.11 s

KPLS (2 components) 0.0015 0.43 s

KPLS (3 components) 0.0008 0.44 s

(23) shows that the KPLS model is equivalent to the
kriging model with specific hyper-parameters.

4.1.2 Comparison with complex Griewank function over
interval [−600, 600]

Table 3 compares the ordinary kriging model and the
KPLS model in two dimensions.

Table 3: Griewank function in two dimensions with
70-point latin hypercube over the interval [−600, 600].

Surrogate Error (%) CPU time

Ordinary kriging 5.50 0.09 s

KPLS (1 component) 7.23 0.04 s

KPLS (2 components) 5.50 0.10 s

If two components are used for the KPLS, we expect
to obtain the same accuracy and time cost for the two
approaches because the difference between the two mod-
els consists only of a transformation of the search-space
coordinates when a Gaussian kernel is used (the space
in which the θ hyper-parameters exist). In this case, the
KPLS model with only one component degrades the ac-
curacy of the solution.

Tables 4, 5, and 6, show the results for 5, 7, and 10
dimensions, respectively.

Table 4: Griewank function in five dimensions with
100-point latin hypercube over the interval [−600, 600].

Surrogate Error (%) CPU time

Ordinary kriging 0.605 0.55 s

KPLS (1 component) 0.635 0.12 s

KPLS (2 components) 0.621 0.31 s

KPLS (3 components) 0.623 0.51 s

Table 5: Griewank function in seven dimensions with
200-point latin hypercube over the interval [−600, 600].

Surrogate Error (%) CPU time

Ordinary kriging 0.138 3.09 s

KPLS (1 component) 0.141 0.25 s

KPLS (2 components) 0.138 0.52 s

KPLS (3 components) 0.141 0.94 s

Varying the number of principal components does not
significantly affect the accuracy of the model. The gain in
computation time does not appear upon increasing the
number of principal components: the computation time
is reduced when we use the KPLS model. Upon increas-
ing the number of principal components, the CPU time



9

Table 6: Griewank function in ten dimensions with
300-point latin hypercube over the interval [−600, 600].

Surrogate Error (%) CPU time

Ordinary kriging 0.052 21 s

KPLS (1 component) 0.033 0.6 s

KPLS (2 components) 0.035 2.41 s

KPLS (3 components) 0.034 3.58 s

for constructing the KPLS model increases but still re-
mains lower than for ordinary kriging. For these three
examples, the combined approach with only one PLS
component offers sufficient accuracy with a CPU time
reduced 35-fold for 10 dimensions (i.e., 21 s for the ordi-
nary kriging model and 0.6 s for the combined model).

In the 20-dimension (20D) example (table 7), using
KPLS with only one principal component leads to a poor
relative error (10.15%) compared with other models. In
this case, two principal components are required to build
the combined model. The CPU time remains less than
that for the ordinary kriging model (11.7 s vs 107 s).

Table 7: Griewank function in 20 dimensions with
400-point latin hypercube over the interval [−600, 600].

Surrogate Error (%) CPU time

Ordinary kriging 0.35 107 s

KPLS (1 component) 10.15 1.16 s

KPLS (2 components) 0.003 11.7 s

KPLS (3 components) 0.002 16.23 s

The results in table 8 for the KPLS model with 60
dimensions (60D) show that this model is faster than
the ordinary kriging model. Compared with the krig-
ing model, the CPU time is reduced 42-fold when one
principal component is used and over 17-fold when three
principal components are used.

Table 8: Griewank function in 60 dimensions with
800-point latin hypercube over the interval [−600, 600].

Surrogate Error (%) CPU time

Ordinary kriging 11.47 293 s

KPLS (1 component) 7.4 6.88 s

KPLS (2 components) 6.04 12.57 s

KPLS (3 components) 5.23 16.82 s

Thus, for the Griewank function over the interval
[−600, 600] and at the highest dimensions, the major-
ity of the results obtained for the analytical examples
are better when using the KPLS model than when using

the ordinary kriging model. The proposed method thus
appears interesting, particularly in terms of saving CPU
time while maintaining good accuracy.

4.1.3 Comparison with complex Griewank function over
interval [−5, 5]

As shown in figure 4, the Griewank function looks like
a parabolic function. This is because, over the interval
[−600, 600], the cosine part of the Griewank function
does not contribute significantly compared with the sum
of x2i /4000. This is especially true given that the co-
sine part is a product of factors each of which is less
than unity. If we reduce the interval from [−600, 600] to
[−5, 5], we can see why the Griewank function is widely
used as a multimodal test function with a very rugged
landscape and a large number of local optima (see figure
5). Compared with the interval [−600, 600], the oppo-
site happens for the interval [−5, 5]: the “cosine part”
dominates; at least for moderate dimensions where the
product contains few factors. For this case, which seems
very difficult, we consider 20 and 60 input variables. For
each problem, ten experiments based on the latin hyper-
cube design are built with 50, 100, 200, and 300 sampling
points. To better visualize the results, boxplots are used
to show CPU time and the relative error RE. The mean
and the standard error are given in tables 14 and 15 in
appendix D.

For 20 input variables and 50 sampling points, the
KPLS model gives a more accurate solution than the
ordinary kriging model, as shown in figure 6a. The rate
of improvement with respect to the number of sampling
points is less for the KPLS model than for the kriging
model (cf. figures 6b–6d). Nevertheless, the results shown
in figure 7 indicate that the KPLS model leads to an
important reduction in CPU time for the various number
of sampling points.

Similar results occur for the 60D Griewank function
(figure 8). The mean RE obtained with the ordinary
kriging model improves from approximately 1.39% to
0.65% upon increasing the number of sampling points
from 50 to 300 (cf. figures 8a and 8d). However, a very
important reduction in CPU time is obtained, as shown
in figure 9. The CPU time required for the KPLS model
is hardly visible because it is much, much less than that
required by the ordinary kriging model. We thus show
in figure 10 the CPU time required by the KPLS model
alone to show the different CPU times required for the
various configurations (KPLS1, KPLS2, and KPLS3).
For Griewank function over the interval [−5, 5], the KPLS
method seems to perform well when the number of ob-
servations is small compared to the dimension d. In this
case, the standard separable covariance function for the
ordinary kriging model is almost impossible to use be-
cause the number of parameters to be estimated is too
large compared with the number of observations. Thus,
the KPLS method seems more efficient in this case.



10

(a) RE(%) for 20 input variables and 50
sampling points.

(b) RE(%) for 20 input variables and 100
sampling points.

(c) RE(%) for 20 input variables and 200
sampling points.

(d) RE(%) for 20 input variables and 300
sampling points.

Fig. 6: RE for Griewank function in 20D over interval [−5, 5]. Experiments are based on the 10 latin hypercube
design.



11

(a) CPU time for 20 input variables and
50 sampling points.

(b) CPU time for 20 input variables and
100 sampling points.

(c) CPU time for 20 input variables and
200 sampling points.

(d) CPU time for 20 input variables and
300 sampling points.

Fig. 7: CPU time for Griewank function in 20D over interval [−5, 5]. Experiments are based on the 10 latin
hypercube design.



12

(a) RE(%) for 60 input variables and 50
sampling points.

(b) RE(%) for 60 input variables and 100
sampling points.

(c) RE(%) for 60 input variables and 200
sampling points.

(d) RE(%) for 60 input variables and 300
sampling points.

Fig. 8: RE for Griewank function in 60D over interval [−5, 5]. Experiments are based on the 10 latin hypercube
design.



13

(a) CPU time for 60 input variables and
50 sampling points.

(b) CPU time for 60 input variables and
100 sampling points.

(c) CPU time for 60 input variables and
200 sampling points.

(d) CPU time for 60 input variables and
300 sampling points.

Fig. 9: CPU time for Griewank function in 60D over interval [−5, 5]. Experiments are based on the 10 latin
hypercube design.



14

(a) CPU time for 60 input variables and
50 sampling points.

(b) CPU time for 60 input variables and
100 sampling points.

(c) CPU time for 60 input variables and
200 sampling points.

(d) CPU time for 60 input variables and
300 sampling points.

Fig. 10: CPU time for Griewank function in 60D for only KPLS models over interval [−5, 5]. Experiments are
based on the 10 latin hypercube design.



15

4.2 Industrial examples

The following engineering examples are based on results
of numerical experiments done at SNECMA on multidis-
ciplinary optimization. The results are stored in tables.

Aerospace turbomachinery consists of numerous
blades that transfer energy between air and the rotor.
The disks with compressor blades are particularly impor-
tant because they must satisfy the dual criteria of aero-
dynamic performance and mechanical stress. Blades are
mechanically and aerodynamically optimized by search-
ing parameter space for an aerodynamic shape that en-
sures the best compromise that satisfies a set of con-
straints. The blade, which is a 3D entity, is first divided
into a number of radial 2D profiles whose thickness is
a given percentage of the distance from the hub to the
shroud (see figure 11).

Fig. 11: Example of 2D cut of blade (c is chord; CG is
gravity center; β1 is angle for BA; β2 is angle for BF;

Ep is maximum thickness).

A new 3D blade is constructed by starting with the
2D profiles and then exporting them to various meshing
tools before analyzing them in any specific way. The cal-
culation is integrated into the Optimus platform [Noe-
sis Solutions (2009)], which makes it possible to inte-
grate multiple engineering software tools (computational
structural mechanics, computational fluid dynamics, . . . )
into a single automated work flow. Optimus, which is an
industrial software package for screening variables, opti-
mizing design, and analyzing the sensitivity and robust-
ness, explores and analyzes the results of the work-flow to
optimize product design. Toward this end, it uses high-
fidelity codes or a reduced model of these codes. It also
exploits a wide range of approximation models, including
the ordinary kriging model.

Input variables designate geometric hyper-parameters
at different percent height and outputs are related to
aerodynamic efficiency, vibration criteria, mechanical
stress, geometric constraints, and aerodynamic stress.
Three numerical experiments are considered:

(i) The first experiment is denoted tab1 and contains
24 input variables and 4 output variables. It has 99

Table 10: Results for tab2 experiment data (10 input
variables, 1 output variable y1) obtained by using 1295
training points, 500 validation points, and error given

by equation (16). “Kriging” refers to the ordinary
kriging optimus solution and “KPLSh” refers to the

KPLS model with h principal components.

10D Surrogate Error (%) CPU time

ta
b 2

Kriging 5.37 1 h 30 min
KPLS1 5.07 11.69 s
KPLS2 5.02 1 min 22 s
KPLS3 5.34 7 min 34 s

Table 11: Results for tab3 experiment data (99 input
variables, 1 output variable y1) obtained by using 341

training points, 23 validation points, and error given by
equation (16). “Kriging” refers to the ordinary kriging

optimus solution and “KPLSh” refers to the KPLS
model with h principal components.

99D Surrogate Error (%) CPU time
ta
b 3

Kriging 0.021 20 min 02 s
KPLS1 0.19 46.6 s
KPLS2 0.03 2 min 15 s
KPLS3 0.02 4 min 56 s

training points and 52 validation points. The outputs
are denoted y1, y2, y3, and y4.

(ii) The second experiment is denoted tab2 and contains
10 input variables and only 1 output variable. It has
1295 training points and 500 validation points.

(iii) The third experiment is denoted tab3 and contains
99 input variables and 1 output variable. It has 341
training points and 23 validation points.

Points used in tab1, tab2, and tab3 come from previous
computationally expensive computer experiments done
at SNECMA, which means that this separation between
training points and verification points was imposed by
SNECMA. The goal is to compare the ordinary kriging
model that is implemented in the Optimus platform with
the proposed KPLS model. The relative error given by
equation (16) and the CPU time required to fit the model
are reported in tables 9–11.

The relative errors for the four models are very sim-
ilar: the KPLS model results in a slightly improved ac-
curacy for the solutions y1, y2, y4 from tab1, y1 from
tab2, and y1 from tab3 but degrades slightly the solu-
tion y3 from tab1. The main improvement offered by the
proposed model relates to the time required to fit the
model, particularly for a large number of training points.
Table 10 shows that, with only one principal component,
the CPU time is drastically reduced compared with the
Optimus model. More precisely, for tab2, the ordinary
kriging model requires 1 h 30 min whereas the KPLS1
model requires only 11 s and provides better accuracy.
In addition, the results for KPLS2 and KPLS3 models



16

Table 9: Results for tab1 experiment data (24 input variables, 4 output variables y1, y2, y3, y4) obtained by using
99 training points, 52 validation points, and the error given by equation (16). “Kriging” refers to the ordinary

kriging Optimus solution and “KPLSh” refers to the KPLS model with h principal components.

24D Surrogate y1 y2 y3 y4

Error (%) CPU Error (%) CPU Error (%) CPU Error (%) CPU
time time time time

ta
b 1

Kriging 0.082 8 s 4.45 8.4 s 8.97 8.17 s 6.27 8.12 s
KPLS1 0.079 0.12 s 4.04 0.11 s 10.35 0.18 s 5.67 0.11 s
KPLS2 0.079 0.43 s 4.06 0.69 s 10.33 0.42 s 5.67 0.19 s
KPLS3 0.079 0.82 s 4.05 0.5 s 10.41 1.14 s 5.67 0.43 s

applied to a 99D problem are very promising (see table
11).

One other point of major interest for the proposed
method is its natural compatibility with sequential en-
richment techniques such as the efficient global optimiza-
tion strategy [see Jones et al (1998)].

4.3 Dimensional limits

This project is financed by SNECMA and most of their
design problems do not exceed 100 input variables. In ad-
dition, the toolbox Scikit-learn (version 0.14) may have
memory problems when a very large number of input
variables is considered. Thus, problems with more than
100 input variables are not investigated in this work.
However, by optimizing memory access and storage, this
limit could easily be increased.

5 Conclusion and future work

Engineering problems that require integrating surrogate
models into an optimization process are receiving in-
creasing interest within the multidisciplinary optimiza-
tion community. Computationally expensive design prob-
lems can be solved efficiently by using, for example, a
kriging model, which is an interesting method for approx-
imating and replacing high-fidelity codes, largely because
these models give estimation errors, which is an inter-
esting way to solve optimization problems. The major
drawback involves the construction of the kriging model
and in particular the large number of hyper-parameters
that must be estimated in high dimensions. In this work,
we develop a new covariance kernel for handling this type
of higher-dimensional problem (up to 100 dimensions).
Although the PLS method requires a very short com-
putation time to estimate θ, the estimate is often dif-
ficult to execute and computationally expensive when
the number of input variables is greater than 10. The
proposed KPLS model was tested by applying it to two
analytic functions and by comparing its results to those
tabulated in three industrial databases. The compari-
son highlights the efficiency of this model for up to 99
dimensions. The advantage of the KPLS models is not

only the reduced CPU time, but also in that it reverts
to the kriging model when the number of observations is
small relative to the dimensions of the problem. Before
using the KPLS model, however, the number of principal
components should be tested to ensure a good balance
between accuracy and CPU time.

An interesting direction for future work is to study
how the design of the experiment (e.g., factorial) af-
fects the KPLS model. Furthermore, other verification
functions and other types of kernels can be used. In all
cases studied herein, the first results with this proposed
method reveal significant gains in terms of computation
time while still ensuring good accuracy for design prob-
lems with up to 100 dimensions. The implementation of
the proposed KPLS method requires minimal modifica-
tions of the classic kriging algorithm and offers further
interesting advantages that can be exploited by methods
of optimization by enrichment.

Acknowledgments

The authors thank the anonymous reviewers for their
insightful and constructive comments. We also extend
our grateful thanks to A. Chiplunkar from ISAE SU-
PAERO, Toulouse and R. G. Regis from Saint Joseph’s
University, Philadelphia for their careful correction of the
manuscript and to SNECMA for providing the tables of
experiment results. Finally, B. Kraabel is gratefully ac-
knowledged for carefully reviewing the paper prior to
publication.

Appendix

A: Equations for ordinary kriging model

The expression (3) for the ordinary kriging model is
transformed into [see Forrester et al (2008)]

y(x) = β̂ + rtxXR−1
(
y − 1β̂

)
, (17)

where 1 denotes an n-vector of ones and

β̂ =
(
1tR−11

)−1
1tR−1y. (18)



17

In addition, equation (6) is written as

σ̂2 =
1

n

(
y − 1β̂

)t
R−1

(
y − 1β̂

)
. (19)

B: Examples of kernels

Table 12 presents the most popular examples of station-
ary kernels. Table 13 presents the new KPLS kernels
based on the examples given in table 12.

C: Proof of equivalence kernel

For l = 1, . . . , h, kl are separable kernels (or a
d-dimensional tensor product) of the same type, so
∃ φl1, . . . , φld such that

kl (x,x′) =

d∏
i=1

φli(Fl (x)i , Fl (x′)i), (20)

where Fl(x)i is the ith coordinate of Fl(x). If we insert
equation (20) in equation (14) we get

kkpls1:h(x,x′) =

h∏
l=1

kl(Fl (x) , Fl (x′))

=

h∏
l=1

d∏
i=1

φli(Fl (x)i , Fl (x′)i)

=

d∏
i=1

h∏
l=1

φli(Fl (x)i , Fl (x′)i) (21)

=

d∏
i=1

ψi (xi,x
′
i) ,

with

ψi (xi,x
′
i) =

h∏
l=1

φli(Fl (x)i , Fl (x′)i),

corresponding to an one-dimensional kernel. Hence,
kkpls1:h is a separable kernel. In particular, if we consider
a generalized exponential kernel with
p1 = · · · = ph = p ∈ [0, 2], we obtain

ψi (xi,x
′
i) = σ

2
d exp

(
−

h∑
l=1

θl

∣∣∣w(l)
∗i

∣∣∣p |xi − x′i|
p

)
= σ

2
d exp

(
−ηi |xi − x′i|

p)
, (22)

with

ηi =

h∑
l=1

θl

∣∣∣w(l)
∗i

∣∣∣p .
We thus obtain

kl (x,x′) = σ2
d∏

i=1

exp
(
−ηi |xi − x′i|

p)
. (23)

D: Results of Griewank function in 20D and 60D over
interval [−5, 5]

In tables 14 and 15, the mean and standard deviation
(std) of the numerical experiments with the Griewank
function are given for 20 and 60 dimensions, respectively.



18

Table 12: Examples of commonly used stationary covariance functions. The covariance functions are written as
functions of the ith component mi = |xi − x′i| with θi ≥ 0 and pi ∈ [0, 2] for i = 1, . . . , d.

Covariance functions Expression Hyper-parameters θ Number of hyper-parameters
to estimate

Generalized exponential σ2
d∏

i=1

exp(−θimpi
i ) (θ1, . . . , θd, p1, . . . , pd) 2d

Gaussian exponential σ2
d∏

i=1

exp(−θim2
i ) (θ1, . . . , θd) d

Matern 5
2

σ2
d∏

i=1

(
1 +
√

5θimi + 5
3
θ2im

2
i

)
exp(−

√
5θimi) (θ1, . . . , θd) d

Matern 3
2

σ2
d∏

i=1

(
1 +
√

3θimi

)
exp(−

√
3θimi) (θ1, . . . , θd) d

Table 13: Examples of KPLS covariance functions. The covariance functions are written as functions of the ith

component m
(l)
i = |w(l)

∗i (xi − x′i)| with θl ≥ 0 and pl ∈ [0, 2] for l = 1, . . . , h.

Covariance functions Expression Hyper-parameters θ Number of
hyper-parameters
to estimate

Generalized exponential σ2
h∏

l=1

d∏
i=1

exp
[
−θl

(
m

(l)
i

)pl]
(θ1, . . . , θh, p1, . . . , ph) 2h� 2d

Gaussian exponential σ2
h∏

l=1

d∏
i=1

exp

[
−θl

(
m

(l)
i

)2]
(θ1, . . . , θh) h� d

Matern 5
2

σ2
h∏

l=1

d∏
i=1

[
1 +
√

5θlm
(l)
i +

5

3
θ2l

(
m

(l)
i

)2]
exp

(
−
√

5θlm
(l)
i

)
(θ1, . . . , θh) h� d

Matern 3
2

σ2
h∏

l=1

d∏
i=1

(
1 +
√

3θlm
(l)
i

)
exp

(
−
√

3θlm
(l)
i

)
(θ1, . . . , θh) h� d

Table 14: Results for Griewank function in 20D over interval [−5, 5]. Ten trials are done for each test (50, 100,
200, and 300 training points).

Surrogate Statistic 50 points 100 points 200 points 300 points

error (%) CPU time error (%) CPU time error (%) CPU time error (%) CPU time

Kriging mean 0.62 30.43 s 0.43 40.09 s 0.15 120.74 s 0.16 94.31 s
std 0.03 9.03 s 0.04 11.96 s 0.02 27.49 s 0.06 21.92 s

KPLS1 mean 0.54 0.05 s 0.53 0.12 s 0.48 0.43 s 0.45 0.89 s
std 0.03 0.007 s 0.03 0.02 s 0.03 0.08 s 0.03 0.02 s

KPLS2 mean 0.52 0.11 s 0.48 1.04 s 0.42 1.14 s 0.38 2.45 s
std 0.03 0.05 s 0.04 0.97 s 0.04 0.92 s 0.04 1 s

KPLS3 mean 0.51 1.27 s 0.46 3.09 s 0.37 3.56 s 0.35 3.52 s
std 0.03 1.29 s 0.06 3.93 s 0.03 2.75 s 0.06 1.38 s

Table 15: Results for Griewank function in 60D over interval [−5, 5]. Ten trials are done for each test (50, 100,
200, and 300 training points).

Surrogate Statistic 50 points 100 points 200 points 300 points

error (%) CPU time error (%) CPU time error (%) CPU time error (%) CPU time

Kriging mean 1.39 560.19 s 1.04 920.41 s 0.83 2015.39 s 0.65 2894.56 s
std 0.15 200.27 s 0.05 231.34 s 0.04 239.11 s 0.03 728.48 s

KPLS1 mean 0.92 0.07 s 0.87 0.10 s 0.82 0.37 s 0.79 0.86 s
std 0.02 0.02 s 0.02 0.007 s 0.02 0.02 s 0.03 0.04 s

KPLS2 mean 0.91 0.43 s 0.87 0.66 s 0.78 2.92 s 0.74 1.85 s
std 0.03 0.54s 0.02 1.06 s 0.02 2.57 s 0.03 0.51 s

KPLS3 mean 0.92 1.57 s 0.86 3.87 s 0.78 6.73 s 0.70 20.01 s
std 0.04 1.98 s 0.02 5.34 s 0.02 10.94 s 0.03 26.59 s



19

References

Alberto P, González F (2012) Partial Least Squares regression
on symmetric positive-definite matrices. Revista Colom-
biana de Estad́ıstica 36(1):177–192

Bachoc F (2013) Cross Validation and Maximum Likeli-
hood estimation of hyper-parameters of Gaussian pro-
cesses with model misspecification. Computational Statis-
tics and Data Analysis 66:55–69

Bishop CM (2007) Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Springer

Braham H, Ben Jemaa S, Sayrac B, Fort G, Moulines E
(2014) Low complexity spatial interpolation for cellular
coverage analysis. In: Modeling and Optimization in Mo-
bile, Ad Hoc, and Wireless Networks (WiOpt), 2014 12th
International Symposium on, IEEE, pp 188–195

Buhmann MD (2003) Radial basis functions: theory and im-
plementations, vol 12. Cambridge university press

Cressie N (1988) Spatial prediction and ordinary kriging.
Mathematical Geology 20(4):405–421

Damianou A, Lawrence ND (2013) Deep gaussian processes.
In: Proceedings of the Sixteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2013,
Scottsdale, AZ, USA, April 29 - May 1, 2013, pp 207–215

Durrande N (2011) Covariance kernels for simplified and in-
terpretable modeling. a functional and probabilistic ap-
proach. theses, Ecole Nationale Supérieure des Mines de
saint-Etienne

Durrande N, Ginsbourger D, Roustant O (2012) Additive
covariance kernels for high-dimensional gaussian process
modeling. Annales de la faculté des sciences de Toulouse
Mathématiques 21(3):481–499

Forrester A, Sobester A, Keane A (2008) Engineering Design
via Surrogate Modelling: A Practical Guide. Wiley

Frank IE, Friedman JH (1993) A statistical view of some
chemometrics regression tools. Technometrics 35:109–148

Goovaerts P (1997) Geostatistics for Natural Resources Eval-
uation (Applied Geostatistics). Oxford University Press,
New York

Haykin S (1998) Neural Networks: A Comprehensive Foun-
dation, 2nd edn. Prentice Hall PTR, Upper Saddle River,
NJ, USA

Helland I (1988) On structure of Partial Least Squares re-
gression. Communication in Statistics - Simulation and
Computation 17:581–607

Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes
for big data. In: Proceedings of the Twenty-Ninth Con-
ference on Uncertainty in Artificial Intelligence, Bellevue,
WA, USA, August 11-15, 2013

Jones DR, Schonlau M, Welch WJ (1998) Efficient global
optimization of expensive black-box functions. Journal of
Global Optimization 13(4):455–492

Lanczos C (1950) An iteration method for the solution of
the eigenvalue problem of linear differential and integral
operators. Journal of Research of the National Bureau of
Standards 45(4):255–282

Liem RP, Martins JRRA (2014) Surrogate models and mix-
tures of experts in aerodynamic performance prediction
for mission analysis. In: 15th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Atlanta,
GA, AIAA-2014-2301.

Manne R (1987) Analysis of two Partial-Least-Squares al-
gorithms for multivariate calibration. Chemometrics and
Intelligent Laboratory Systems 2(1-3):187–197

Mera NS (2007) Efficient optimization processes using krig-
ing approximation models in electrical impedance tomog-
raphy. International Journal for Numerical Methods in
Engineering 69(1):202–220

Michalewicz Z, Schoenauer M (1996) Evolutionary algo-
rithms for constrained parameter optimization problems.

Evolutionary Computation 4:1–32
Noesis Solutions (2009) OPTIMUS. URL

http://www.noesissolutions.com/Noesis/optimus-
details/optimus-design-optimization

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V, et al (2011) Scikit-learn: Machine learning
in python. The Journal of Machine Learning Research
12:2825–2830

Picheny V, Ginsbourger D, Roustant O, Haftka RT, Kim NH
(2010) Adaptive designs of experiments for accurate ap-
proximation of a target region. Journal of Mechanical De-
sign 132(7):071,008

Powell MJ (1994) A direct search optimization method that
models the objective and constraint functions by linear
interpolation. In: Advances in optimization and numerical
analysis, Springer, pp 51–67

Rasmussen C, Williams C (2006) Gaussian Processes for
Machine Learning. Adaptive Computation and Machine
Learning, MIT Press, Cambridge, MA, USA

Regis RG, Shoemaker CA (2013) Combining radial basis
function surrogates and dynamic coordinate search in
high-dimensional expensive black-box optimization. En-
gineering Optimization 45(5):529–555

Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging,
DiceOptim: Two R packages for the analysis of com-
puter experiments by kriging-based metamodeling and
optimization. Journal of Statistical Software 51(1):1–55

Sakata S, Ashida F, Zako M (2004) An efficient algorithm for
Kriging approximation and optimization with large-scale
sampling data. Computer methods in applied mechanics
and engineering 193(3):385–404

Sasena M (2002) Flexibility and efficiency enhancements for
constrained global design optimization with Kriging ap-
proximations. PhD thesis, University of Michigan

Schonlau M (1998) Computer experiments and global opti-
mization. PhD thesis, University of Waterloo

Wahba G (1990) Spline models for observational data,
CBMS-NSF Regional Conference Series in Applied Math-
ematics, vol 59. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA

Wahba G, Craven P (1978) Smoothing noisy data with spline
functions. estimating the correct degree of smoothing by
the method of generalized cross-validation. Numerische
Mathematik 31:377–404

Zimmerman DL, Homer KE (1991) A network design cri-
terion for estimating selected attributes of the semivari-
ogram. Environmetrics 2(4):425–441


