
HAL Id: hal-01232886
https://hal.science/hal-01232886v1

Preprint submitted on 24 Nov 2015 (v1), last revised 21 Mar 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Installing Embedded Linux on ZedBoard
Clément Foucher

To cite this version:

Clément Foucher. Installing Embedded Linux on ZedBoard. 2015. �hal-01232886v1�

https://hal.science/hal-01232886v1
https://hal.archives-ouvertes.fr

Installing Embedded Linux on ZedBoard

Clément Foucher (homepage)
Clement.Foucher@laas.fr

LAAS–CNRS
Laboratoire d’analyse et d’architecture des systèmes

Version 1.0.2

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/4.0/.

October 6, 2015

https://homepages.laas.fr/cfoucher
mailto:Clement.Foucher@laas.fr
https://www.laas.fr/public/en
http://creativecommons.org/licenses/by-sa/4.0/

Contents

1 Before starting 5
1.1 Document purpose . 5

1.1.1 Default configuration using script . 5
1.1.2 Custom configuration using script . 5
1.1.3 Manual procedure . 6

1.2 Disclaimer . 6
1.3 Tools revisions and OS . 6
1.4 Administrator privileges . 6
1.5 Conventions and directories . 6
1.6 Projects . 7
1.7 Scripts and logs . 7
1.8 Environment packages and libraries . 7

2 Additional technical information 9
2.1 Downloading required sources . 9
2.2 ZedBoard boot process . 9
2.3 Reinitializing the SD card to factory state . 10

2.3.1 Restore partition scheme . 10
2.3.2 Restore files . 10

3 Preparing the environment 11
3.1 Configuring the scripts . 11
3.2 Creating the project . 11

4 Hardware layout and low-level software 12
4.1 Creating a base hardware design . 12

4.1.1 Default configuration using script . 12
4.1.2 Manual procedure . 12

4.2 Generating the device tree . 13
4.2.1 Downloading the device tree generator . 13
4.2.2 Generating the device tree . 13

4.3 Generating the first stage boot loader . 14
4.4 Generating the bootloader . 14

4.4.1 Default configuration using script . 14
4.4.2 Manual procedure . 14

4.5 Generating the Binary file . 15

5 Generating Linux 16
5.1 Generating the kernel . 16

5.1.1 Default configuration using script . 16
5.1.2 Custom configuration using script . 16
5.1.3 Manual procedure . 17

2

CONTENTS 3

5.2 Generating the device tree blob . 17
5.2.1 Default configuration using script . 18
5.2.2 Manual procedure . 18

5.3 Generating the file system . 18
5.3.1 Default configuration using script . 18
5.3.2 Custom configuration using script . 18
5.3.3 Manual procedure . 19

6 Preparing the board 20
6.1 Partitioning the SD card . 20
6.2 Copying the file system on the card . 20

6.2.1 Using the script . 20
6.2.2 Manually . 21

6.3 Copying the system files . 21

7 Working on the board 22
7.1 Hardware configuration . 22
7.2 On the first boot . 22

7.2.1 SSH configuration . 22

Document revisions

Revision number Date Changes
1.0 2015/09/21 Initial release.

1.0.1 2015/10/02 Minor spelling corrections;
Fixed missing sudo in mount commands.

1.0.2 2015/10/06 Corrected BuildRoot options;
Updated provided BuildRoot config file.

4

Chapter 1

Before starting

Please read this chapter carefully before starting, as it contains valuable information that you’ll
require all along this document.

1.1 Document purpose

This document is a tutorial describing how to build an Embedded Linux system for use on a
ZedBoard development board. Following this procedure, you’ll obtain an Embedded Linux running
on a persistent file system, which you can use as a base for your further developments. This tutorial
describes every needed step, from scratch to a running system, and provides scripts to automate
most of the steps.

The configuration depicted here will be the very minimum. It is only intended to show you
the global approach, letting you build you own personal system matching your needs once you’ve
understood how to do. The only addition we do to the bare minimum system is to enable an
Ethernet connection, in order to allow remote control of the board using SSH.

All needed tools are open-source and can be downloaded using the scripts provided with this
tutorial, except for Xilinx Vivado which requires a license.

You should have obtained this document inside an archive containing the scripts and other
files used in the procedure. If you don’t have this archive, you can download it at this address:
https://homepages.laas.fr/cfoucher/drupal/zedboard-development.

Each section in this tutorial presents how to build one specific file. Most file generation
procedures will be presented using three different ways. For each step, choose the way that
correspond the most to you.

These sections use the following names:

1.1.1 Default configuration using script

This first way uses a dedicated script to run the default configuration without any user interaction.
This is the fastest way to build the target, but you’ll be dependent on parameters we chose for
you.

1.1.2 Custom configuration using script

If any customization is available for a file generation, we provide this second way of generating
it. It is still scripted, but opens a customization window which lets you select your preferred
configuration. This is the fastest way to choose your personal configuration, while still hiding the
details on how things are done.

5

https://homepages.laas.fr/cfoucher/drupal/zedboard-development

6 CHAPTER 1. BEFORE STARTING

1.1.3 Manual procedure

Finally, this third way will present all required details to perform the full procedure manually.
This is how you should proceed to learn the generation steps and re-use it outside this tutorial.

1.2 Disclaimer

The procedure depicted in this document is intended to help you build an Embedded Linux system
whatever your knowledge of the Linux system is.

It should be relatively safe, but some steps require advanced manipulations on your host system,
ZedBoard platform and related peripherals, including the SD card provided with ZedBoard.

The author or its institution cannot be held responsible for any harm caused to your host
system, ZedBoard platform or any element manipulated by the following tutorial.

Moreover, the author can’t be held responsible for English misspelling that is probably present
in this document ;-). Please inform me of any error using my e-mail on the front page.

1.3 Tools revisions and OS

The procedure described in this document has been conducted using Xilinx Vivado 2015.2 on
Fedora 22 Workstation 64 bits. Some steps of the procedure are closely related to tools version, so
we cannot guarantee this tutorial will work using a different version of Vivado, a different Linux
distribution, a different Fedora version, or any other version of a tool used in this tutorial.

If your system does not run a native Linux OS, you can install for free a Linux virtual machine
matching the above specifications.

1.4 Administrator privileges

Some of the manipulations described in this document require root privileges. To obtain them,
we use the sudo command in order to get administrator privileges for the current command.

These commands require you entering your password to work, and the current user must be
registered in the sudo privileges list. If you’re not familiar with the sudo command, you’ll find all
needed information about it online.

1.5 Conventions and directories

The host system is the system used to generate the files, while the target system is the Embedded
Linux system that will be generated.

Texts beginning by $ are shell commands to be typed in the console, without the initial $.
Other texts written using monospaced characters are to be typed as it.

Paths are displayed in monospaced blue. Paths ending with a / are directories (E.g., ${BASEDIR}/
scripts/), while the others are files (E.g., ${BASEDIR}/scripts/initialize_project.sh).

In the current tutorial, we use the syntax ${DIRECTORY} to refer to specific paths. Notably,
${BASEDIR}/ is the base working directory provided in the archive coming with this tutorial. If
you obtained this file from the complete archive, the current file is located in ${BASEDIR}/doc/.
Please make sure the ${BASEDIR}/ path does not contain any space.

These kinds of paths are to be replaced by the user when doing the manipulation using matching
directory. E.g., if the base directory is /home/user/ZedBoard/, user has to understand occurrences
of ${BASEDIR}/scripts/ as /home/user/ZedBoard/scripts/. This can be achieved by manually
replacing the variable in the command line, or by defining the variable content before typing the
command. Using the previous example, defining the ${BASEDIR} variable value would be
achieved by typing the following command:

1.6. PROJECTS 7

$ export BASEDIR="/home/user/ZedBoard/"

If you choose to use manual procedures, you’re not required to work in the ${BASEDIR}/
tree. Thus, these sections rather refer another directory called ${CUSTOMDIR}/ which can be any
directory you want.

1.6 Projects
A project is a set of both hardware design and software environment generation. Projects
are located in ${BASEDIR}/projects/. The base folder of project ${project_name} will be
${BASEDIR}/projects/${project_name}/, and will be referred to as ${PROJECT_ROOT}/.

Variables ${project_name} and ${PROJECT_ROOT} can be set the same way as vari-
able ${BASEDIR} (see Section 1.5).

1.7 Scripts and logs
Most of the manipulations depicted in this document provide scripts to automate the procedure.
These scripts should work whatever the directory they are called from, but if anything fails, you
should try cd to ${BASEDIR}/scripts/ directory and use the ./<script_name>.sh syntax.

These scripts usually create a log file in ${PROJECT_ROOT}/logs/<script_name>.log. You
can check for this file after a script run for more information about errors that might have occurred.

1.8 Environment packages and libraries
First, Vivado is required, and the installation must provide SDK, which is facultative in the
installation process, so make sure it is installed. We use the 2015.2 version in this tutorial. As
Vivado only supports 64-bit OS versions, the procedure depicted here assumes you run in such an
environment.

Moreover, some packages are required on the host system to execute this procedure. Here are
the main ones required for a bare Fedora 22 Workstation installation, but some other may be
required depending on your configuration. Moreover, if you use a different Linux distribution, the
packages names will probably be different from these ones.

• gcc

• gcc-c++

• git

• qt4-devel

• flex

• bison

• patch

• ncurses-devel

• openssl-devel

• gparted

• glibc.i686

(Fedora only) Before starting, you can use the following command in order to ensure all
needed libraries are available on your system:

8 CHAPTER 1. BEFORE STARTING

$ sudo dnf install gcc gcc-c++ git qt4-devel flex bison patch ncurses-devel \
$ openssl-devel gparted glibc.i686

Chapter 2

Additional technical information

The information depicted in this chapter is optional. You may refer to this section for specific
needs.

2.1 Downloading required sources

Apart from the libraries required by the host, some sources are used in this procedure which are
not provided in the archive (E.g. Linux kernel, boot loader generator, etc.). The first time a script
is run which requires one of these, it will ask the user for download.

If you just want to download some or all sources in order to use them manually or for any
other reason, a dedicated script is available which can be used as follows:

$ ${BASEDIR}/scripts/download_sources.sh

And follow the instructions from there.
Note that this script will not download already existing sources. If for any reason you want to

force source re-download, please delete or move existing source before launching this script.

2.2 ZedBoard boot process

To boot the ZedBoard on Linux using the SD card, you need the following elements:

• A first stage boot loader, in charge of early loading,

• A bitstream representing the FPGA fabric configuration,

• A boot loader, in charge of loading the Linux kernel,

• A Linux kernel,

• A device tree blob,

• A file system.

When you use the SD card to boot the ZedBoard, the boot process is as follows:
It begins with the First Stage Boot Loader (FSBL) which is in charge of the early boot process.

The FSBL first reconfigures the FPGA fabric of the Zynq, and then launches the boot loader. Then
the boot loader boots the Linux kernel.

9

10 CHAPTER 2. ADDITIONAL TECHNICAL INFORMATION

From there, the Linux kernel searches for a file system. Usually, the file system is placed in a
RAMdisk. But as the RAMdisk is loaded in RAM, its content disappears when board is turned
off. We will use here a persistent file system which we will store on the SD card.

Moreover, the Linux kernel needs the device tree blob to be aware of the hardware configuration
surrounding the processor core.

As the FSBL, the bitstream and the boot loader are packaged together within a binary file,
the following files are needed on the SD card:

A first partition containing:

• The binary file,

• The Linux kernel,

• The device tree blob.

And a second partition, containing the Linux file system.

2.3 Reinitializing the SD card to factory state
This section is only to be followed if you need to restore the SD card filesystem to its original
state. It is not needed as part of this procedure, but it can be used to revert your SD card to its
original state, as we modify its partition scheme during this procedure.

2.3.1 Restore partition scheme
Launch GParted. In the jumplist, select the entry matching your SD card (E.g., /dev/sdc/).
On each existing partitions, right-click, and select Unmount . When all partitions are unmounted,
select menu Device Create Partition Table... , make sure MS-DOS type is selected and click on Apply .

Right-click on the empty space, select New , choose a fat32 file system and select Add . Select
Apply All Operations and validate using Apply . When finished, exit GParted.

2.3.2 Restore files
The card partition scheme is now ready; all you need now is to put back the original files on
it. These files are contained in the archive provided at this address: http://www.digilentinc.
com/Data/Products/ZEDBOARD/ZedBoard_OOB_Design.zip. Download it, expand it, and copy
the content of folder sd_image/ back to the card.

Your card is now ready as new.

http://www.digilentinc.com/Data/Products/ZEDBOARD/ZedBoard_OOB_Design.zip
http://www.digilentinc.com/Data/Products/ZEDBOARD/ZedBoard_OOB_Design.zip

Chapter 3

Preparing the environment

3.1 Configuring the scripts
First, file ${BASEDIR}/scripts/user-config/environment.sh must be edited. This file contains
configuration variables that are used by other scripts. Each variable purpose is described in the
file, and must be set according to your host system configuration. Some may require a little bit
of Linux knowledge, such as mount directories, so be careful when you set them.

Please take some time to ensure variables in this files have a correct value, or some scripts used
in this document may not work.

3.2 Creating the project
First, choose a name for the project. This name must not contain any space character. Choosing
a name ensures you may have various projects at the same time, with different configurations.

This name will have to be used in replacement of all ${project_name} occurrences in this
document.

To begin, we must create a placeholder for the project. To do so, open a shell and type:

$ ${BASEDIR}/scripts/initialize_project.sh ${project_name}

This will create the root folder of your project, as well as some sub-folders and files that will
be used in the following steps.

11

Chapter 4

Hardware layout and low-level
software

In this chapter, we will generate the lower part of the system: the hardware design and the
low-level software running before Linux takes on.

4.1 Creating a base hardware design

The hardware layout depends on what you want to do with your design. Only you can know what
you want or don’t want to instantiate on the reconfigurable fabric of your Zynq device.

Thus, we provide here a guide to build a simple design for the sole purpose of this tutorial,
containing the very minimum.

For further information about creating a design using Vivado, please refer to Xilinx user guides.

4.1.1 Default configuration using script

Open a shell and type:

$ ${BASEDIR}/scripts/generate_bitstream.sh ${project_name}

When done, the bitstream should be located in ${PROJECT_ROOT}/output/hardware_design/
bitstream.bit.

4.1.2 Manual procedure

First, open Vivado and select Create New Project .
Enter project name hardware_design and browse to ${CUSTOMDIR}/. Make sure Create project subdirectory

is checked, and click Next .
Select RTL Project , check Do not specify sources at this time , and click Next . Select Boards , highlight

the ZedBoard in the boards list, and click Next then Finish .
Once the project is loaded, click Create Block Design under the IP Integrator section of the left

menu bar, and click OK in the pop-up window.
You now have a blank design. Hit the Add IP button, and select ZYNQ7 Processing System from

the list. Double-click on the processing system block, and click on Presets and select ZedBoard .
Close the window using the OK button.

At this point, a green banner should be displayed, click on Run Block Automation . Select OK on
the pop-up window.

12

4.2. GENERATING THE DEVICE TREE 13

Finally, we need to connect the system clock. Click on the wire going out the FCLK_CLK0
out pin, and drag a connection to the M_AXI_GP0_ACLK input pin.

Save the design, and close the block design.
Right-click the design_1 item under Design sources of the Project Manager tab, and select

Create HDL Wrapper... . In the pop-up window, select Let Vivado manage wrapper and auto-update and hit
OK .

Expand Design Sources, design_1_wrapper, and right-click on design_1_i - design_1, then
select Generate Output Products... and hit Generate .

Finally, generate the bitstream by clicking on Generate Bitstream under the Program and Debug
section of the left menu bar. If a dialog warns you for missing synthesis and implementation, select
Yes .

This procedure will probably last for a couple minutes. You can follow the completion state in
the Design Runs tab of the bottom section.

When generation is over, write_bitstream Complete! should be displayed, and maybe a pop-up
window will appear depending on your settings. If so, just hit Cancel .

Hardware generation is over, and the bitstream file is located at ${CUSTOMDIR}/hardware_
design/hardware_design.runs/impl_1/design_1_wrapper.bit. We now need to generate the
device tree, so you many not want to close Vivado immediately.

4.2 Generating the device tree

4.2.1 Downloading the device tree generator

The first time you reach this step, you need to download some sources. Other projects can use
the same files, so if you already did it, there is no need to repeat this step.

We will use the generic script ${BASEDIR}/scripts/download_sources.sh to download the
device tree generator. Launch the script using the following command:

$ ${BASEDIR}/scripts/download_sources.sh

From there, make sure you answer yes (“y”) when asked for device tree generator download. If
you’re in a hurry, you may want to skip the other downloads (“n”), as they will be automatically
performed when required.

4.2.2 Generating the device tree

At this time, we do not provide a script for this part, so here is the manual way of doing things.
First, you need to open the previously created Vivado project. If you used the script to generate

the hardware design, the project is located in ${PROJECT_ROOT}/hardware_design/.
In Vivado GUI, select File Export Export Hardware and validate using OK . Finally, select File

Launch SDK , and validate again.
You’re now in the Xilinx Software Development Kit (XSDK) environment. We need to tell it

where to find the device tree generator. Select Xilinx Tools Repositories .
Then, select the New... button, either in the “local” area for this project only or in “global” if you

want to re-use it later. Browse to ${BASEDIR}/resources/device_tree/device_tree-generator/,
and then select Open .

Now that the tool is known by the environment, select File New Board Support Package . In the
Board Support Package OS section, select device_tree and validate using Finish .

In the settings window, we need to provide the bootargs variable, which represent the Linux
kernel boot arguments. Set the following value:
console=ttyPS0,115200 root=/dev/mmcblk0p2 rw rootfstype=ext4 earlyprintk rootwait

14 CHAPTER 4. HARDWARE LAYOUT AND LOW-LEVEL SOFTWARE

Moreover, if you plan on using an Ethernet connection, you may add the ip argument to auto-
matically connect at startup. If your board will be plugged on a DHCP-managed network, add
the following to the bootargs list:
ip=:::::eth0:dhcp
You can also setup a static IP address using the ip boot argument, but it will be very dependent
on your network configuration, so it is recommended to get some insight online about how this
argument is to be used.

Once done, validate using OK and wait for generation.
The output file is then ${PROJECT_ROOT}/hardware_design/hardware_design.sdk/device_

tree_bsp_0/system.dts. Copy this file to the ${PROJECT_ROOT}/output/device_tree/ folder.
Copy as well files zynq-7000.dtsi and skeleton.dtsi, which are needed as they are referenced
in the device tree file.

You’re done with the device tree, but you may not want to exit XSDK as the FSBL generation
will continue with it.

4.3 Generating the first stage boot loader
At this time, we do not provide a script for this part, so here is the manual way of doing things.

In XSDK, select File New Application Project . Set project name FSBL, make sure OS Platform
is standalone and Language is C , and then click Next . Select template Zynq FSBL and then Finish .

Right-click on the FSBL project in the Project explorer section, and select Build Configuration
Set Active Release . Right-click again and select Clean Project .
You can follow the generation process in the Console tab at the bottom of the screen. Once

generation is over, the output file is ${PROJECT_ROOT}/hardware_design/hardware_design.
sdk/FSBL/Release/FSBL.elf. Copy this file to the ${PROJECT_ROOT}/output/first_stage_
boot_loader/ folder.

You may not want to exit XSDK, as the step after the next (which is quite fast) will require
it.

4.4 Generating the bootloader

4.4.1 Default configuration using script
If the board has to be used on an Ethernet network, you’ll need to define a MAC address for
the board. This address will be asked as part of the following script. If you have no use of the
network, just answer “n” when asked for MAC address.

Open a shell and type:

$ ${BASEDIR}/scripts/generate_boot_loader.sh ${project_name}

When done, the boot loader should be located in ${PROJECT_ROOT}/output/boot_loader/
u-boot.elf.

4.4.2 Manual procedure
The procedure consists in downloading U-Boot, configuring it, and generating the boot loader.

First, download U-Boot using the following commands:

$ git clone https://github.com/Xilinx/u-boot-xlnx.git ${CUSTOMDIR}/boot_loader
$ git -C ${CUSTOMDIR}/boot_loader checkout xilinx-v2015.2

4.5. GENERATING THE BINARY FILE 15

We then need to edit the default configuration to match our needs. Open file ${CUSTOMDIR}/
boot_loader/include/configs/zynq-common.h.

First, we don’t use a ramdisk image. We must remove line 314, which is about loading the
ramdisk, and edit the next line to remove the ${ramdisk_load_address} part, replacing it by a ‘-’
character. The line should now look like this:
"bootm ${kernel_load_address} - ${devicetree_load_address}; " \
We also need to edit line 271 to change fdt_high value, from x20000000 to x19000000.

Then, if the board has to be used on an Ethernet network, you’ll need to define a MAC address
for the board. To do so, edit line 256 to introduce the MAC address desired for the board, and
save the file. If you have no use of the network, just ignore this step.

The following steps require your cross-compilation environment to be set. If you have a stan-
dard Xilinx configuration, you can type the following in the console:

$ export PATH=/opt/Xilinx/SDK/2015.2/gnu/arm/lin/bin:$PATH
$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Then configure U-boot using the following commands:

$ make -C ${CUSTOMDIR}/boot_loader distclean
$ make -C ${CUSTOMDIR}/boot_loader zynq_zed_config

Finally, generate the boot loader image:

$ make -C ${CUSTOMDIR}/boot_loader

If everything went well, the output file containing the boot loader is ${CUSTOMDIR}/boot_
loader/u-boot. It is recommended copying this file in some other place, using name u-boot.elf.
Indeed, the missing extension is needed in the following step.

4.5 Generating the Binary file
At this time, we do not provide a script for this part, so here is the manual way of doing things.

In XSDK, select Xilinx Tools Create Zynq Boot Image . In Bif file, select Create a new bif file... .
In field Output BIF file path:, click on Browse and navigate to ${PROJECT_ROOT}/binary_

generation/boot.bif. This .bif file can be re-used to generate the binary file if you update any
of the files used for the binary generation.

In Boot image partition, click on Add , add file ${PROJECT_ROOT}/output/first_stage_boot_
loader/FSBL.elf and make sure bootloader is the partition type.

Click on Add , and select the bitstream. If you followed this tutorial for hardware generation,
it should be available at ${PROJECT_ROOT}/output/hardware_design/bitstream.bit. If not,
the bitstream should be in your Vivado folder, under the <project>.runs/impl_1/ folder. Make
sure the partition type is datafile, and validate.

Select Add again, and then choose ${PROJECT_ROOT}/output/bootloader/u-boot.elf, with
a datafile partition type.

In Output path field, type ${PROJECT_ROOT}/output/bin/boot.bin. The name matters for
the board to recognize it. Finally, select Create Image .

The file ${PROJECT_ROOT}/output/bin/boot.bin has been created.
You may now exit XSDK and Vivado.

Chapter 5

Generating Linux

This chapter concerns the Linux kernel and file system generation. This is the software part that
can be customized and tailored to your needs.

5.1 Generating the kernel
The kernel generation requires the boot loader. Please make sure you already generated the boot
loader before running into this step (see Section 4.4).

5.1.1 Default configuration using script
Open a shell and type:

$ ${BASEDIR}/scripts/generate_linux_kernel_default.sh ${project_name}

When done, the kernel image is located in ${PROJECT_ROOT}/output/linux_kernel/uImage.

5.1.2 Custom configuration using script
Open a shell and type:

$ ${BASEDIR}/scripts/generate_linux_kernel_custom.sh ${project_name}

After source download (if needed) and copy, a configuration window opens.
From there, set the configuration as you want. I personally set the following configuration to

make sure system is very light by removing elements I don’t need, but adapt depending on your
needs:

General setup → Initial RAM filesystem and RAM disk (initramfs/initrd) support → NO
Device drivers → Block devices → RAM block device support → NO
— → Network device support → Wireless lan → NO
— → Sound card support → NO
Networking support → CAN bus subsystem support → NO
— → Wireless → NO
File systems → Network file system → NO

16

5.2. GENERATING THE DEVICE TREE BLOB 17

Save, exit, and wait for process completion. When done, the kernel image is located in
${PROJECT_ROOT}/output/linux_kernel/uImage.

5.1.3 Manual procedure

The procedure first consists in getting the latest kernel version, and regressing to the correct
branch, as follows:

$ git clone https://github.com/Xilinx/linux-xlnx.git ${CUSTOMDIR}/linux_kernel
$ git -C ${CUSTOMDIR}/linux_kernel checkout xilinx-v2015.2.03

The following steps require your cross-compilation environment to be set. If you have a stan-
dard Xilinx configuration, you can type the following in the console:

$ export PATH=/opt/Xilinx/SDK/2015.2/gnu/arm/lin/bin:$PATH
$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Finally, configure the kernel with ZedBoard defaults and launch the configuration GUI:

$ make -C ${CUSTOMDIR}/linux_kernel distclean
$ make -C ${CUSTOMDIR}/linux_kernel ARCH=arm xilinx_zynq_defconfig
$ make -C ${CUSTOMDIR}/linux_kernel ARCH=arm xconfig

From there, set the configuration as you want (for a configuration example, see Section 5.1.2),
save then exit the GUI.

The final make requires using some tools generated by the boot loader make procedure. Use
the following to make the system know where these tools are:

$ export PATH=${CUSTOMDIR}/boot_loader/tools:$PATH

Finally, build the image using the following command:

$ make -C ${CUSTOMDIR}/linux_kernel ARCH=arm UIMAGE_LOADADDR=0x8000 uImage

If everything went well, the output file containing the kernel is ${CUSTOMDIR}/linux_kernel/
arch/arm/boot/uImage.

5.2 Generating the device tree blob

You must now generate the device tree blob, which will be used by the kernel to know the system
map. This part of the procedure requires that you already generated the device tree (see Section
4.2.2) and the Linux kernel (Section 5.1).

18 CHAPTER 5. GENERATING LINUX

5.2.1 Default configuration using script
Type the following in a shell:

$ ${BASEDIR}/scripts/generate_device_tree_blob.sh ${project_name}

The output file is then ${PROJECT_ROOT}/output/dtb/devicetree.dtb.

5.2.2 Manual procedure
We assume here the device tree is located at ${CUSTOMDIR}/system.dts along with other required
files (see Section 4.2.2). Open a shell, and type

$ ${CUSTOMDIR}/linux_kernel/scripts/dtc/dtc -O dtb -I dts \
$ -o ${CUSTOMDIR}/devicetree.dtb ${CUSTOMDIR}/system.dts

Output file is then ${CUSTOMDIR}/devicetree.dtb.

5.3 Generating the file system

5.3.1 Default configuration using script
Open a shell and type:

$ ${BASEDIR}/scripts/generate_file_system_default.sh ${project_name}

When done, the generated file system is located in ${PROJECT_ROOT}/output/file_system/
rootfs.ext4.

5.3.2 Custom configuration using script
Open a shell and type:

$ ${BASEDIR}/scripts/generate_file_system_custom.sh ${project_name}

After source download (if needed) and copy, a configuration window opens.
From there, set the following base configuration:

Target options → Target Architecture → ARM (little endian)
— → Target Architecture Variant → cortex-A9
— → Enable NEON SIMD extension support → YES
— → Floating point strategy → VFPv3
Toolchain → Kernel Headers → Manually specified Linux version → YES
— → linux version: → 3.19
— → Custom kernel headers series → 3.19.x
— → C library → glibc
— → GCC compiler Version → gcc 5.x

5.3. GENERATING THE FILE SYSTEM 19

System configuration → System hostname: → (set the name you want)
— → Enable root login with password → Root password→ (choose a password)
— → Run a getty (login prompt) after boot → getty options

↪→ TTY port → ttyPS0
Filesystem images → ext2/3/4 root filesystem → YES
— — → ext2/3/4 variant→ ext4
— → tar the root filesystem → NO

I personally add the following configuration for my needs, but you should adapt it depending
on your needs. Notably, if you require communicating with the board using network, you may
want to enable OpenSSH:

Toolchain → Enable C++ support → YES
Target packages → Networking applications → openssh → YES

Save and close the window, and wait for process completion. When done, the generated file
system is located in ${PROJECT_ROOT}/output/file_system/rootfs.ext4.

5.3.3 Manual procedure
The procedure consists in downloading Buildroot, configuring it, and generating the file system.

First, download Buildroot using the following commands:

$ git clone git://git.buildroot.net/buildroot ${CUSTOMDIR}/file_system
$ git -C ${CUSTOMDIR}/file_system checkout 2015.08

The following steps require your cross-compilation environment to be set. If you have a stan-
dard Xilinx configuration, you can type the following in the console:

$ export PATH=/opt/Xilinx/SDK/2015.2/gnu/arm/lin/bin:$PATH
$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Then, launch the configuration tool using the following command:

$ make -C ${CUSTOMDIR}/file_system xconfig

Set the default configuration as indicated in 5.3.2, and add/remove what you need. Save, close,
and type:

$ make -C ${CUSTOMDIR}/file_system

If everything went well, the output file containing the file system is ${CUSTOMDIR}/file_
system/output/images/rootfs.ext4.

Chapter 6

Preparing the board

SAVE ALL DATA CONTAINED ON THE SD CARD BEFORE PROCEEDING.
THE OPERATION DEPICTED HERE WILL CAUSE ALL DATA ON THE SD

CARD TO BE LOST.

For the following, you must first know what is the driver file representing your SD card. This
is highly configuration-dependent so we cannot provide a default value. If you don’t know the
value for your computer, you can plug the card in and use a disk utility to check your local disks
and identify your reader.

6.1 Partitioning the SD card

If your SD card never was partitioned, you’ll need to prepare it first. If you already partitioned
the card as part of this tutorial, you can skip this section.

As a scripted way of partitioning the card could damage your computer if wrong values are
provided for drive driver, we rather provide here a manual way of doing it.

Anyway, beware that you select the right drive in the following procedure!
Launch GParted, and select the entry matching your SD card from the jumplist. First

unmount all partitions on your card (right click then Unmount). Then, select menu Device
Create Partition Table... , make sure MS-DOS type is selected and select Apply.
Right-click on the empty space, select New , choose a fat32 file system, a size of 1024 MiB and

select Add . Right-click again on the empty space, select New , choose an ext4 file system, enter
linux_fs as the label and select Add .

Select Apply All Operations and validate using Apply . When done, exit GParted, remove the SD
card from reader, and then plug it in again before next step.

6.2 Copying the file system on the card

6.2.1 Using the script

To use the script, first make sure the $SDMOUNTDIR variable in the ${BASEDIR}/scripts/
user-config/environment.sh is correctly set, representing your SD card mount point.

Open a shell and type:

$ sudo ${BASEDIR}/scripts/copy_file_system_to_memory_card.sh ${project_name}

20

6.3. COPYING THE SYSTEM FILES 21

6.2.2 Manually
In the following, we assume the mounting point of the Linux partition of your SD card is
${SDLINUXMOUNT}/, and that directory /mnt/ is empty and can be used for temporary mount.
Moreover, we assume the generated file system is ${CUSTOMDIR}/rootfs.ext4.

We first need to temporarily mount the generated file system as follows:

$ sudo mount -t ext4 -o loop ${CUSTOMDIR}/rootfs.ext4 /mnt

Then we do the copy:

$ sudo cp -rf /mnt/* ${SDLINUXMOUNT}

Finally, we unmount the temporary mount point as follows:

$ sudo umount -l /mnt

6.3 Copying the system files
Finally, open the 1 GiB fat32 partition of the SD card, and copy the following files onto it:
${PROJECT_ROOT}/output/bin/boot.bin, ${PROJECT_ROOT}/output/dtb/devicetree.dtb and
${PROJECT_ROOT}/output/linux_kernel/uImage.

You can now eject the SD card.

Chapter 7

Working on the board

7.1 Hardware configuration

Before booting, the board jumpers must be in the following position:

• JP7: SIG ⇔ GND

• JP8: SIG ⇔ GND

• JP9: 3V3 ⇔ SIG

• JP10: 3V3 ⇔ SIG

• JP11: SIG ⇔ GND

7.2 On the first boot

Plug the SD card onto the ZedBoard. Connect the MiniUSB cable to the USB UART port, and
plug it to your computer. Open a terminal on your computer (115200 bauds, 8 bits, no parity),
then start the board.

If you obtain a prompt indicating zynq-uboot>, type in boot and validate. If the prompt asks
you for a login, you’re already booted.

Login using account root, then enter the password you choose. If you used the default config-
uration script to generate the file system, the default password is root.

7.2.1 SSH configuration

If you defined no root password, the first thing to di is to set one ass OpenSSH requires one. Type:

$ passwd

Then enter a password twice.
We then require a few tricks to allow SSH connection.
First thing is to allow connection as root using SSH. To do so, type:

$ vi /etc/ssh/sshd_config

22

7.2. ON THE FIRST BOOT 23

Navigate down using the arrows until you find the following line:
#PermitRootLogin prohibit-password

This should be line 44.
Press inser to switch to edition mode, and change the line for:

PermitRootLogin yes
Then press escape and type :wq then return to save file.
If you defined no password when generating the file system, but added it manually using the

passwd command, this is not over! When connecting using OpenSSH, you’ll always be told your
password to be expired. To solve that, do the following:

$ vi /etc/shadow

The first line should look like that: root:[...]:0:0:[...] We need to change the first “0”
to anything else, e.g. to a “10”, to look like that: root:[...]:10:0:[...] Press inser, move to
the “0”, and press “1” to change “0” to “10”. Press escape then type :wq then return.

Your Linux is now OK for a SSH connection.
To make sure modifications are written to the SD card, and depending on your needs, type:

$ reboot

Or:

$ poweroff

Remember to always use the poweroff command before turning off the board, as Linux uses
a buffer which must be flushed before powering off.

You’re now ready to use an Embedded Linux environment on your ZedBoard.

	Before starting
	Document purpose
	Default configuration using script
	Custom configuration using script
	Manual procedure

	Disclaimer
	Tools revisions and OS
	Administrator privileges
	Conventions and directories
	Projects
	Scripts and logs
	Environment packages and libraries

	Additional technical information
	Downloading required sources
	ZedBoard boot process
	Reinitializing the SD card to factory state
	Restore partition scheme
	Restore files

	Preparing the environment
	Configuring the scripts
	Creating the project

	Hardware layout and low-level software
	Creating a base hardware design
	Default configuration using script
	Manual procedure

	Generating the device tree
	Downloading the device tree generator
	Generating the device tree

	Generating the first stage boot loader
	Generating the bootloader
	Default configuration using script
	Manual procedure

	Generating the Binary file

	Generating Linux
	Generating the kernel
	Default configuration using script
	Custom configuration using script
	Manual procedure

	Generating the device tree blob
	Default configuration using script
	Manual procedure

	Generating the file system
	Default configuration using script
	Custom configuration using script
	Manual procedure

	Preparing the board
	Partitioning the SD card
	Copying the file system on the card
	Using the script
	Manually

	Copying the system files

	Working on the board
	Hardware configuration
	On the first boot
	SSH configuration

