
HAL Id: hal-01232886
https://hal.science/hal-01232886v2

Preprint submitted on 21 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Installing Embedded Linux on ZedBoard
Clément Foucher

To cite this version:

Clément Foucher. Installing Embedded Linux on ZedBoard. 2015. �hal-01232886v2�

https://hal.science/hal-01232886v2
https://hal.archives-ouvertes.fr

Installing Embedded Linux on ZedBoard

Clément Foucher (homepage)
Clement.Foucher@laas.fr

LAAS�CNRS
Laboratoire d'analyse et d'architecture des systèmes

Version 1.1

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/4.0/.

February 23, 2017

https://homepages.laas.fr/cfoucher
mailto:Clement.Foucher@laas.fr
https://www.laas.fr/public/en
http://creativecommons.org/licenses/by-sa/4.0/

Contents

1 Before starting 5
1.1 Document purpose . 5
1.2 Disclaimer . 6
1.3 Tools revisions and OS . 6
1.4 Administrator privileges . 6
1.5 Conventions and directories . 6
1.6 Projects . 7
1.7 Scripts and logs . 7
1.8 Environment packages and libraries . 7

1.8.1 Fedora 22 Workstation . 7
1.8.2 Ubuntu 16.04 LTS . 8

2 Additional technical information 9
2.1 Downloading required sources . 9
2.2 ZedBoard boot process . 9
2.3 Reinitializing the SD card to factory state . 10

2.3.1 Restore partition scheme . 10
2.3.2 Restore �les . 10

3 Preparing the environment 11
3.1 Con�guring the scripts . 11
3.2 Creating the project . 11

4 Hardware layout and low-level software 12
4.1 Creating a base hardware design . 12

4.1.1 Default con�guration using script . 12
4.1.2 Manual procedure . 12

4.2 Generating the device tree . 13
4.2.1 Downloading the device tree generator . 13
4.2.2 Generating the device tree . 13

4.3 Generating the �rst stage boot loader . 14
4.4 Generating the bootloader . 14

4.4.1 Default con�guration using script . 14
4.4.2 Manual procedure . 14

4.5 Generating the Binary �le . 15

5 Generating Linux 17
5.1 Generating the kernel . 17

5.1.1 Default con�guration using script . 17
5.1.2 Custom con�guration using script . 17
5.1.3 Manual procedure . 18

5.2 Generating the device tree blob . 18

2

CONTENTS 3

5.2.1 Default con�guration using script . 19
5.2.2 Manual procedure . 19

5.3 Generating the �le system . 19
5.3.1 Default con�guration using script . 19
5.3.2 Custom con�guration using script . 19
5.3.3 Manual procedure . 20

6 Preparing the board 21
6.1 Partitioning the SD card . 21
6.2 Copying the �le system on the card . 21

6.2.1 Using the script . 21
6.2.2 Manually . 22

6.3 Copying the system �les . 22

7 Working on the board 23
7.1 Hardware con�guration . 23
7.2 On the �rst boot . 23

7.2.1 SSH con�guration . 23
7.3 Using Xilinx SDK to create an application . 24

Document revisions

Revision number Date Changes

1.0 2015/09/21 Initial release.
1.0.1 2015/10/02 Minor spelling corrections;

Fixed missing sudo in mount commands.
1.0.2 2015/10/06 Corrected BuildRoot options;

Updated provided BuildRoot con�g �le.
1.0.3 2015/11/26 Corrected emptiness check on SD card in copy script;

Added libraries required for Ubuntu.
1.1 2017/02/23 Updated tools version to Ubuntu 16.04 and Vivado 2016.4;

Reorganized scripts to mutualize common content;
Added section for how to create a Linux application using XSDK;
Updated zedboard_oob_design.zip download address;
Minor spelling corrections.

4

Chapter 1

Before starting

Please read this chapter carefully before starting, as it contains valuable information that you'll
require all along this document.

1.1 Document purpose

This document is a tutorial describing how to build an Embedded Linux system for use on a
ZedBoard development board. Following this procedure, you'll obtain an Embedded Linux running
on a persistent �le system, which you can use as a base for your further developments. This tutorial
describes every needed step, from scratch to a running system, and provides scripts to automate
most of the steps.

The con�guration depicted here will be the very minimum. It is only intended to show you
the global approach, letting you build you own personal system matching your needs once you've
understood how to do. The only addition we do to the bare minimum system is to enable an
Ethernet connection, in order to allow remote control of the board using SSH.

All needed tools are open-source and can be downloaded using the scripts provided with this
tutorial, except for Xilinx Vivado which requires a license.

You should have obtained this document inside an archive containing the scripts and other
�les used in the procedure. If you don't have this archive, you can download it at this address:
https://homepages.laas.fr/cfoucher/drupal/zedboard-development.

Each section in this tutorial presents how to build one speci�c �le. Most �le generation
procedures will be presented using three di�erent ways. For each step, choose the way that
correspond the most to you.

These sections use the following names:

Default con�guration using script

This �rst way uses dedicated scripts to run the default con�guration without any user interaction.
This is the fastest way to build the target, but you'll be dependent on parameters I chose for you.

Custom con�guration using script

If any customization is available for a �le generation, I provide this second way of generating
it. It is still scripted, but opens a customization window which let you select your preferred
con�guration. This is the fastest way to choose your personal con�guration, while still hiding the
details on how things are done.

5

https://homepages.laas.fr/cfoucher/drupal/zedboard-development

6 CHAPTER 1. BEFORE STARTING

Manual procedure

Finally, this third way will present all required details to perform the full procedure manually.
This is how you should proceed to learn the generation steps and re-use them outside this tutorial.

1.2 Disclaimer

The procedure depicted in this document is intended to help you build an Embedded Linux system
whatever your knowledge of the Linux system is.

It should be relatively safe, but some steps require advanced manipulations on your host system,
ZedBoard platform and related peripherals, including the SD card provided with ZedBoard.

The author or its institution cannot be held responsible for any harm caused to your host
system, ZedBoard platform or any element manipulated by the following tutorial.

Moreover, the author can't be held responsible for English misspelling that is probably present
in this document ;-). Please inform me of any error using my e-mail on the front page.

1.3 Tools revisions and OS

The procedure described in this document has been conducted using Xilinx Vivado 2016.4 on
Fedora 22 Workstation 64 bits and Ubuntu 16.04 LTS 64 bits. Some steps of the procedure are
closely related to tools version, so I cannot guarantee this tutorial will work using a di�erent
version of Vivado, a di�erent Linux distribution, a di�erent Fedora or Ubuntu version, or any
other version of a tool used in this tutorial.

If your system does not run a native Linux OS, you can install for free a Linux virtual machine
matching the above speci�cations.

1.4 Administrator privileges

Some of the manipulations described in this document require root privileges. To obtain them,
use the sudo command in order to get administrator privileges for the current command.

These commands require you entering your password to work, and the current user must be
registered in the sudo privileges list. If you're not familiar with the sudo command, you'll �nd all
needed information about it online or by typing man sudo in a console.

1.5 Conventions and directories

The host system is the system used to generate the �les, while the target system is the Embedded
Linux system that will be generated.

Texts beginning by $ are shell commands to be typed in the console, without the initial $.
Other texts written using monospaced characters are to be typed as it.

Paths are displayed in monospaced blue. Paths ending with a / are directories (e.g., ${BASEDIR}/
scripts/), while the others are �les (e.g., ${BASEDIR}/scripts/initialize_project.sh).

In the current tutorial, we use the syntax ${DIRECTORY} to refer to speci�c paths. Notably,
${BASEDIR}/ is the base working directory provided in the archive coming with this tutorial. If
you obtained this �le from the complete archive, the current �le is located in ${BASEDIR}/doc/.
Please make sure the ${BASEDIR}/ path does not contain any space.

These kinds of paths are to be replaced by the user when doing the manipulation using matching
directory. E.g., if the base directory is /home/user/ZedBoard/, user has to understand occurrences
of ${BASEDIR}/scripts/ as /home/user/ZedBoard/scripts/. This can be achieved by manually
replacing the variable in the command line, or by de�ning the variable content before typing the
command. Using the previous example, de�ning the ${BASEDIR} variable value would be
achieved by typing the following command:

1.6. PROJECTS 7

$ export BASEDIR="/home/user/ZedBoard/"

If you choose to use manual procedures, you're not required to work in the ${BASEDIR}/ tree.
Thus, these sections rather refer to another directory called ${CUSTOMDIR}/ which can be any
directory you want.

1.6 Projects

A project is a set of both hardware design and software environment generation. Projects
are located in ${BASEDIR}/projects/. The base folder of project ${project_name} will be
${BASEDIR}/projects/${project_name}/, and will be referred to as ${PROJECT_ROOT}/.

Variables ${project_name} and ${PROJECT_ROOT} can be set the same way as vari-
able ${BASEDIR} (see Section 1.5).

1.7 Scripts and logs

Most of the manipulations depicted in this document provide scripts to automate the procedure.
These scripts should work whatever the directory they are called from, but if anything fails, you
should try cd to ${BASEDIR}/scripts/ directory and use the ./<script_name>.sh syntax.

These scripts usually create a log �le in ${PROJECT_ROOT}/logs/<script_name>.log. You
can check for this �le after a script run for more information about errors that might have occurred.

1.8 Environment packages and libraries

First, Vivado is required, and the installation must provide SDK, which is facultative in the
installation process, so make sure it is installed. 2016.4 version in used in this tutorial. As
Vivado only supports 64-bit OS versions, the procedure depicted here assumes you run in such an
environment.

Moreover, some libraries and tools are required on the host system to execute this procedure.
The following sections list the required packages.

1.8.1 Fedora 22 Workstation

Here are the main packages required for a bare Fedora 22 Workstation installation, but some other
may be required depending on your con�guration.

• gcc

• gcc-c++

• git

• qt4-devel

• �ex

• bison

• patch

• ncurses-devel

• openssl-devel

• gparted

• glibc.i686

8 CHAPTER 1. BEFORE STARTING

Before starting, you can use the following command in order to ensure all needed libraries are
available on your system:

$ sudo dnf install gcc gcc-c++ git qt4-devel flex bison patch ncurses-devel \
$ openssl-devel gparted glibc.i686

1.8.2 Ubuntu 16.04 LTS

Here are the main packages required for a bare Ubuntu 14.04 LTS installation, but some other
may be required depending on your con�guration.

• gcc

• g++

• git

• qt4-dev-tools

• �ex

• bison

• patch

• libncurses5-dev

• libssl-dev

• gparted

• device-tree-compiler

• glibc:i386

Before starting, you can use the following command in order to ensure all needed libraries are
available on your system:

$ sudo apt-get install gcc g++ git qt4-dev-tools flex bison patch libncurses5-dev \
$ libssl-dev gparted device-tree-compiler

$ sudo dpkg -i �force-architecture i386 glibc

Chapter 2

Additional technical information

The information depicted in this chapter is optional. You may refer to this section for speci�c
needs.

2.1 Downloading required sources

Apart from the libraries required by the host, some sources are used in this procedure which are
not provided in the archive (E.g. Linux kernel, boot loader generator, etc.). When a script requires
one of these, it will ask the user for download on the �rst run.

If you just want to download some or all sources in order to use them manually or for any
other reason, a dedicated script is available which can be used as follows:

$ ${BASEDIR}/scripts/download_sources.sh

And follow the instructions from there.
Note that this script will not download already existing sources. If for any reason you want to

force source re-download, please delete or move existing source before launching this script.

2.2 ZedBoard boot process

To boot the ZedBoard on Linux using the SD card, you need the following elements:

• A �rst stage boot loader, in charge of early loading,

• A bitstream representing the FPGA fabric con�guration,

• A boot loader, in charge of loading the Linux kernel,

• A Linux kernel,

• A device tree blob,

• A �le system.

When you use the SD card to boot the ZedBoard, the boot process is as follows:
It begins with the First Stage Boot Loader (FSBL) which is in charge of the early boot process.

The FSBL �rst recon�gures the FPGA fabric of the Zynq, and then launches the boot loader. Then
the boot loader boots the Linux kernel.

9

10 CHAPTER 2. ADDITIONAL TECHNICAL INFORMATION

From there, the Linux kernel searches for a �le system. Usually, the �le system is placed in a
RAMdisk. But as the RAMdisk is loaded in RAM, its content disappears when board is turned
o�. This tutoral uses a persistent �le system which is stored on the SD card.

Moreover, the Linux kernel needs the device tree blob to be aware of the hardware con�guration
surrounding the processor core.

As the FSBL, the bitstream and the boot loader are packaged together within a binary �le,
the following �les are needed on the SD card:

A �rst partition containing:

• The binary �le,

• The Linux kernel,

• The device tree blob.

And a second partition, containing the Linux �le system.

2.3 Reinitializing the SD card to factory state

This section is only to be followed if you need to restore the SD card �lesystem to its original
state. It is not needed as part of this procedure, but it can be used to revert your SD card to its
original state, as we modify its partition scheme during this procedure.

2.3.1 Restore partition scheme

Launch GParted. In the jumplist, select the entry matching your SD card (E.g., /dev/sdc/).
On each existing partitions, right-click, and select Unmount . When all partitions are unmounted,
select menu Device Create Partition Table... , make sure MS-DOS type is selected and click on Apply .

Right-click on the empty space, select New , choose a fat32 �le system and select Add . Select
Apply All Operations and validate using Apply . When �nished, exit GParted.

2.3.2 Restore �les

The card partition scheme is now ready; all you need now is to put back the original �les
on it. These �les are contained in the archive provided at this address: https://reference.

digilentinc.com/_media/zedboard/zedboard_oob_design.zip. Download it, expand it, and
copy the content of folder sd_image/ back to the card.

Your card is now ready as new.

https://reference.digilentinc.com/_media/zedboard/zedboard_oob_design.zip
https://reference.digilentinc.com/_media/zedboard/zedboard_oob_design.zip

Chapter 3

Preparing the environment

3.1 Con�guring the scripts

First, �le ${BASEDIR}/scripts/user-config/environment.sh must be edited. This �le contains
con�guration variables that are used by other scripts. Each variable purpose is described in the
�le, and must be set according to your host system con�guration. Some may require a little bit
of Linux knowledge, such as mount directories, so be careful when you set them.

Please take some time to ensure variables in this �les have a correct value, or some scripts used
in this document may not work.

3.2 Creating the project

First, choose a name for the project. This name must not contain any space character. Choosing
a name ensures you may have various projects at the same time, with di�erent con�gurations.

This name will have to be used in replacement of all ${project_name} occurrences in this
document.

To begin, we must create a placeholder for the project. To do so, open a shell and type:

$ ${BASEDIR}/scripts/initialize_project.sh ${project_name}

This will create the root folder of your project, as well as some sub-folders and �les that will
be used in the following steps.

11

Chapter 4

Hardware layout and low-level

software

In this chapter, we will generate the lower part of the system: the hardware design and the
low-level software running before Linux takes on.

4.1 Creating a base hardware design

The hardware layout depends on what you want to do with your design. Only you can know what
you want or don't want to instantiate on the recon�gurable fabric of your Zynq device.

Thus, we provide here a guide to build a simple design for the sole purpose of this tutorial,
containing the very minimum.

For further information about creating a design using Vivado, please refer to Xilinx user guides.

4.1.1 Default con�guration using script

Open a shell and type:

$ ${BASEDIR}/scripts/generate_bitstream.sh ${project_name}

When done, the bitstream should be located in ${PROJECT_ROOT}/output/hardware_design/

bitstream.bit.

4.1.2 Manual procedure

First, open Vivado and select Create New Project .
Enter project name hardware_design and browse to ${CUSTOMDIR}/. Make sure Create project subdirectory

is checked, and click Next .
Select RTL Project , check Do not specify sources at this time , and click Next . Select Boards , highlight

the ZedBoard in the boards list, and click Next then Finish .
Once the project is loaded, click Create Block Design under the IP Integrator section of the left

menu bar, and click OK in the pop-up window.
You now have a blank design. Hit the Add IP button, and select ZYNQ7 Processing System from

the list. Double-click on the processing system block, and click on Presets and select ZedBoard .
Close the window using the OK button.

At this point, a green banner should be displayed, click on Run Block Automation . Select OK on
the pop-up window.

12

4.2. GENERATING THE DEVICE TREE 13

Finally, we need to connect the system clock. Click on the wire going out the FCLK_CLK0
out pin, and drag a connection to the M_AXI_GP0_ACLK input pin.

Save the design, and close the block design.
Right-click the design_1 item under Design sources of the Project Manager tab, and select

Generate Output Products... and hit Generate . Wait until generation is over.
Right-click again on design_1_i - design_1, then select Create HDL Wrapper... . In the pop-up

window, select Let Vivado manage wrapper and auto-update and hit OK .
Finally, generate the bitstream by clicking on Generate Bitstream under the Program and Debug

section of the left menu bar. If a dialog warns you about missing synthesis and implementation,
select Yes .

This procedure will probably last for a couple minutes. You can follow the completion state in
the Design Runs tab of the bottom section.

When generation is over, write_bitstream Complete! should be displayed, and a pop-up window
may appear depending on your settings. If so, just hit Cancel .

Hardware generation is over, and the bitstream �le is located at ${CUSTOMDIR}/hardware_

design/hardware_design.runs/impl_1/design_1_wrapper.bit. In order to prepare the next
steps, select File Export Export Hardware and validate using OK .

We now need to generate the device tree, so you may not want to close Vivado immediately.

4.2 Generating the device tree

4.2.1 Downloading the device tree generator

The �rst time you reach this step, you need to download some sources. Other projects can use
the same �les, so if you already did it, there is no need to repeat this step.

We will use the generic script ${BASEDIR}/scripts/download_sources.sh to download the
device tree generator. Launch the script using the following command:

$ ${BASEDIR}/scripts/download_sources.sh

From there, make sure you answer yes (�y�) when asked for device tree generator download. If
you're in a hurry, you may want to skip the other downloads (�n�), as they will be automatically
performed when required.

4.2.2 Generating the device tree

Due to scripting issues with SDK, I do not provide a script for this part, so here is the manual
way of doing things.

First, you need to open the previously created Vivado project. If you used the script to generate
the hardware design, the project is located in ${PROJECT_ROOT}/hardware_design/.

In Vivado GUI, launch XSDK by selecting File Launch SDK , and validating.
You're now in the Xilinx Software Development Kit (XSDK) environment. We need to tell it

where to �nd the device tree generator. Select Xilinx Tools Repositories .
Then, select the New... button, either in the �local� area for this project only or in �global� if you

want to re-use it later. Browse to ${BASEDIR}/resources/device_tree/device_tree-generator/,
and then select Open .

Now that the tool is known by the environment, select File New Board Support Package . In the
Board Support Package OS section, select device_tree and validate using Finish .

In the settings window which opens automatically select Overview device_tree . We need to pro-
vide the bootargs variable, which represent the Linux kernel boot arguments. Set the following
value:
console=ttyPS0,115200 root=/dev/mmcblk0p2 rw rootfstype=ext4 earlyprintk rootwait

14 CHAPTER 4. HARDWARE LAYOUT AND LOW-LEVEL SOFTWARE

Moreover, if you plan on using an Ethernet connection, you may add the ip argument to auto-
matically connect at startup. If your board will be plugged on a DHCP-managed network, add
the following to the bootargs list:
ip=:::::eth0:dhcp

You can also setup a static IP address using the ip boot argument, but it will be very dependent
on your network con�guration, so it is recommended to get some insight online about how this
argument is to be used.

Once done, validate using OK and wait for generation.

The output �le is then ${PROJECT_ROOT}/hardware_design/hardware_design.sdk/device_

tree_bsp_0/system.dts. Copy this �le to the ${PROJECT_ROOT}/output/device_tree/ folder.
Copy as well �les zynq-7000.dtsi and skeleton.dtsi, which are needed as they are referenced
in the device tree �le.

You're done with the device tree, but you may not want to exit XSDK as the FSBL generation
will continue with it.

4.3 Generating the �rst stage boot loader

Due to scripting issues with SDK, I do not provide a script for this part, so here is the manual
way of doing things.

In XSDK, select File New Application Project . Set project name FSBL, make sure OS Platform
is standalone and Language is C , and then click Next . Select template Zynq FSBL and then Finish .

Right-click on the FSBL project in theProject explorer section, and select Build Con�gurations

Set Active Release . Right-click again and select Clean Project . If auto-build is disabled, you want
to continue by clicking on Build Project .

You can follow the generation process in the Console tab at the bottom of the screen. Once
generation is over, the output �le is ${PROJECT_ROOT}/hardware_design/hardware_design.

sdk/FSBL/Release/FSBL.elf. Copy this �le to the ${PROJECT_ROOT}/output/first_stage_

boot_loader/ folder.

You may not want to exit XSDK, as the step after the next (which is quite fast) will require
it.

4.4 Generating the bootloader

4.4.1 Default con�guration using script

If the board has to be used on an Ethernet network, you'll need to de�ne a MAC address for
the board. This address will be asked as part of the following script. If you have no use of the
network, just answer �n� when asked for MAC address.

Open a shell and type:

$ ${BASEDIR}/scripts/generate_boot_loader.sh ${project_name}

When done, the boot loader should be located in ${PROJECT_ROOT}/output/boot_loader/

u-boot.elf.

4.4.2 Manual procedure

The procedure consists in downloading U-Boot, con�guring it, and generating the boot loader.

First, download U-Boot using the following commands:

4.5. GENERATING THE BINARY FILE 15

$ git clone https://github.com/Xilinx/u-boot-xlnx.git ${CUSTOMDIR}/boot_loader

$ git -C ${CUSTOMDIR}/boot_loader checkout xilinx-v2016.4

We then need to edit the default con�guration to match our needs. Open �le ${CUSTOMDIR}/
boot_loader/include/configs/zynq-common.h. All lines numbers in the following are given for
the speci�c Vivado version supported in this guide, and may di�er if using a di�erent version.

First, we don't use a ramdisk image. Search for section beginning with sdboot= (line 259).
We must remove the line "load mmc 0 ${ramdisk_load_address} ${ramdisk_image} && " \

(line 264). Then, edit the next line to remove the ${ramdisk_load_address} part, replacing it
by a `-' character. The line should now look like this:
"bootm ${kernel_load_address} - ${devicetree_load_address}; " \

We also need to edit fdt_high value, from x20000000 to x19000000 (line 221).
Then, if the board has to be used on an Ethernet network, you'll need to de�ne a MAC address

for the board. To do so, edit the line ethaddr=00:0a:35:00:01:22 (line 206) to introduce the MAC
address desired for the board, and save the �le. If you have no use of the network, just ignore this
step.

The following steps require your cross-compilation environment to be set. If you have a stan-
dard Xilinx con�guration, you can type the following in the console:

$ export PATH=/opt/Xilinx/SDK/2016.4/gnu/arm/lin/bin:$PATH

$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Then con�gure U-boot using the following commands:

$ make -C ${CUSTOMDIR}/boot_loader distclean

$ make -C ${CUSTOMDIR}/boot_loader zynq_zed_config

Finally, generate the boot loader image:

$ make -C ${CUSTOMDIR}/boot_loader

If everything went well, the output �le containing the boot loader is ${CUSTOMDIR}/boot_

loader/u-boot. It is recommended copying this �le in some other place, using name u-boot.elf.
Indeed, the missing extension is needed in the following step.

4.5 Generating the Binary �le

Due to scripting issues with SDK, I do not provide a script for this part, so here is the manual
way of doing things.

In XSDK, select Xilinx Tools Create Boot Image . Make sure target architecture is Zynq, and
check Create a new bif �le... .

In �eld Output BIF �le path:, click on Browse and navigate to ${PROJECT_ROOT}/binary_

generation/boot.bif. This .bif �le can be re-used to generate the binary �le if you update any
of the �les used for the binary generation.

In Output path �eld, type ${PROJECT_ROOT}/output/bin/boot.bin.
If the Boot image partitions list already contains elements, clean it by selecting them one by

one and clicking Delete . In Boot image partition, click on Add , add �le ${PROJECT_ROOT}/output/

16 CHAPTER 4. HARDWARE LAYOUT AND LOW-LEVEL SOFTWARE

first_stage_boot_loader/FSBL.elf and make sure bootloader is the partition type. Validate
using OK .

Click on Add again, and select the bitstream. If you followed this tutorial for hardware
generation, it should be available at ${PROJECT_ROOT}/output/hardware_design/bitstream.

bit. If not, the bitstream should be in your Vivado folder, under the <project>.runs/impl_1/
folder. Make sure the partition type is data�le, and validate.

Select Add a third time, and then choose ${PROJECT_ROOT}/output/bootloader/u-boot.elf,
with a data�le partition type.

Finally, select Create Image .
The �le ${PROJECT_ROOT}/output/bin/boot.bin has been created.
You may now exit XSDK and Vivado.

Chapter 5

Generating Linux

This chapter concerns the Linux kernel and �le system generation. This is the software part that
can be customized and tailored to your needs.

5.1 Generating the kernel

The kernel generation requires the boot loader. Please make sure you already generated the boot
loader before running into this step (see Section 4.4).

5.1.1 Default con�guration using script

Open a shell and type:

$ ${BASEDIR}/scripts/generate_linux_kernel_default.sh ${project_name}

When done, the kernel image is located in ${PROJECT_ROOT}/output/linux_kernel/uImage.

5.1.2 Custom con�guration using script

Open a shell and type:

$ ${BASEDIR}/scripts/generate_linux_kernel_custom.sh ${project_name}

After source download (if needed) and copy, a con�guration window opens.
From there, set the con�guration as you want. I personally set the following con�guration to

make sure system is very light by removing elements I don't need, but adapt depending on your
needs:

General setup → Initial RAM �lesystem and RAM disk (initramfs/initrd) support → NO
Device drivers → Block devices → RAM block device support → NO
� → Network device support → Wireless lan → NO
� → Sound card support → NO
Networking support → CAN bus subsystem support → NO
� → Wireless → NO
File systems → Network �le system → NO

17

18 CHAPTER 5. GENERATING LINUX

Save, exit, and wait for process completion. When done, the kernel image is located in
${PROJECT_ROOT}/output/linux_kernel/uImage.

5.1.3 Manual procedure

The procedure �rst consists in getting the latest kernel version, and regressing to the correct
branch, as follows:

$ git clone https://github.com/Xilinx/linux-xlnx.git ${CUSTOMDIR}/linux_kernel

$ git -C ${CUSTOMDIR}/linux_kernel checkout xilinx-v2016.4

The following steps require your cross-compilation environment to be set. If you have a stan-
dard Xilinx con�guration, you can type the following in the console:

$ export PATH=/opt/Xilinx/SDK/2016.4/gnu/arm/lin/bin:$PATH

$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Finally, con�gure the kernel with ZedBoard defaults and launch the con�guration GUI:

$ make -C ${CUSTOMDIR}/linux_kernel distclean

$ make -C ${CUSTOMDIR}/linux_kernel ARCH=arm xilinx_zynq_defconfig

$ make -C ${CUSTOMDIR}/linux_kernel ARCH=arm xconfig

From there, set the con�guration as you want (for a con�guration example, see Section 5.1.2),
save then exit the GUI.

The �nal make requires using some tools generated by the boot loader make procedure. Use
the following to make the system know where these tools are:

$ export PATH=${CUSTOMDIR}/boot_loader/tools:$PATH

Finally, build the image using the following command:

$ make -C ${CUSTOMDIR}/linux_kernel ARCH=arm UIMAGE_LOADADDR=0x8000 uImage

If everything went well, the output �le containing the kernel is ${CUSTOMDIR}/linux_kernel/
arch/arm/boot/uImage.

5.2 Generating the device tree blob

You must now generate the device tree blob, which will be used by the kernel to know the system
map. This part of the procedure requires that you already generated the device tree (see Section
4.2.2) and the Linux kernel (Section 5.1).

5.3. GENERATING THE FILE SYSTEM 19

5.2.1 Default con�guration using script

Type the following in a shell:

$ ${BASEDIR}/scripts/generate_device_tree_blob.sh ${project_name}

The output �le is then ${PROJECT_ROOT}/output/dtb/devicetree.dtb.

5.2.2 Manual procedure

We assume here the device tree is located at ${CUSTOMDIR}/system.dts along with other required
�les (see Section 4.2.2). Open a shell, and type

$ ${CUSTOMDIR}/linux_kernel/scripts/dtc/dtc -O dtb -I dts \
$ -o ${CUSTOMDIR}/devicetree.dtb ${CUSTOMDIR}/system.dts

Output �le is then ${CUSTOMDIR}/devicetree.dtb.

5.3 Generating the �le system

5.3.1 Default con�guration using script

Open a shell and type:

$ ${BASEDIR}/scripts/generate_file_system_default.sh ${project_name}

When done, the generated �le system is located in ${PROJECT_ROOT}/output/file_system/

rootfs.ext4.

5.3.2 Custom con�guration using script

Open a shell and type:

$ ${BASEDIR}/scripts/generate_file_system_custom.sh ${project_name}

After source download (if needed) and copy, a con�guration window opens.
From there, set the following base con�guration:

Target options → Target Architecture → ARM (little endian)
� → Target Architecture Variant → cortex-A9
� → Enable NEON SIMD extension support → YES
� → Floating point strategy → NEON
Toolchain → C library → glibc
� → Kernel Headers → 4.6
System con�guration → System hostname: → (set the name you want)
� → Enable root login with password → Root password→ (choose a password)
� → Run a getty (login prompt) after boot → TTY port → ttyPS0

20 CHAPTER 5. GENERATING LINUX

Filesystem images → ext2/3/4 root �lesystem → YES
� � → ext2/3/4 variant→ ext4
� → tar the root �lesystem → NO

I personally add the following con�guration for my needs, but you should adapt it depending
on your needs. Notably, if you require communicating with the board using network, you may
want to enable OpenSSH:

Toolchain → Enable C++ support → YES
Target packages → Networking applications → openssh → YES

Save and close the window, and wait for process completion. When done, the generated �le
system is located in ${PROJECT_ROOT}/output/file_system/rootfs.ext4.

5.3.3 Manual procedure

The procedure consists in downloading Buildroot, con�guring it, and generating the �le system.
First, download Buildroot using the following commands:

$ git clone git://git.buildroot.net/buildroot ${CUSTOMDIR}/file_system

$ git -C ${CUSTOMDIR}/file_system checkout 2016.11.2

The following steps require your cross-compilation environment to be set. If you have a stan-
dard Xilinx con�guration, you can type the following in the console:

$ export PATH=/opt/Xilinx/SDK/2016.4/gnu/arm/lin/bin:$PATH

$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Then, launch the con�guration tool using the following command:

$ make -C ${CUSTOMDIR}/file_system xconfig

Set the default con�guration as indicated in 5.3.2, and add/remove what you need. Save, close,
and type:

$ make -C ${CUSTOMDIR}/file_system

If everything went well, the output �le containing the �le system is ${CUSTOMDIR}/file_

system/output/images/rootfs.ext4.

Chapter 6

Preparing the board

SAVE ALL DATA CONTAINED ON THE SD CARD BEFORE PROCEEDING.
THE OPERATION DEPICTED HERE WILL CAUSE ALL DATA ON THE SD

CARD TO BE LOST.

For the following, you must �rst know what is the driver �le representing your SD card. This
is highly con�guration-dependent so we cannot provide a default value. If you don't know the
value for your computer, you can plug the card in and use a disk utility to check your local disks
and identify your reader.

6.1 Partitioning the SD card

If your SD card never has never been partitioned, you'll need to prepare it �rst. If you already
partitioned the card as part of this tutorial, you can skip this section.

As a scripted way of partitioning the card could damage your computer if wrong values are
provided for drive driver, we rather provide here a manual way of doing it.

Anyway, beware that you select the right drive in the following procedure!
Launch GParted, and select the entry matching your SD card from the jumplist. First

unmount all partitions on your card (right click then Unmount). Then, select menu Device

Create Partition Table... , make sure MS-DOS type is selected and select Apply.

Right-click on the empty space, select New , choose a fat32 �le system, a size of 1024 MiB and
select Add . Right-click again on the empty space, select New , choose an ext4 �le system, enter
linux_fs as the label and select Add .

Select Apply All Operations and validate using Apply . When done, exit GParted, remove the SD
card from reader, and then plug it in again before next step.

6.2 Copying the �le system on the card

6.2.1 Using the script

To use the script, �rst make sure the $SDMOUNTDIR variable in the ${BASEDIR}/scripts/

user-config/environment.sh is correctly set, representing your SD card mount point.

Open a shell and type:

$ sudo ${BASEDIR}/scripts/copy_file_system_to_memory_card.sh ${project_name}

21

22 CHAPTER 6. PREPARING THE BOARD

6.2.2 Manually

In the following, we assume the mounting point of the Linux partition of your SD card is
${SDLINUXMOUNT}/, and that directory /mnt/ is empty and can be used for temporary mount.
Moreover, we assume the generated �le system is ${CUSTOMDIR}/rootfs.ext4.

We �rst need to temporarily mount the generated �le system as follows:

$ sudo mount -t ext4 -o loop ${CUSTOMDIR}/rootfs.ext4 /mnt

Then we do the copy:

$ sudo cp -rf /mnt/* ${SDLINUXMOUNT}

Finally, we unmount the temporary mount point as follows:

$ sudo umount -l /mnt

6.3 Copying the system �les

Finally, open the 1 GiB fat32 partition of the SD card, and copy the following �les onto it:
${PROJECT_ROOT}/output/bin/boot.bin, ${PROJECT_ROOT}/output/dtb/devicetree.dtb and
${PROJECT_ROOT}/output/linux_kernel/uImage.

You can now eject the SD card.

Chapter 7

Working on the board

7.1 Hardware con�guration

Before booting, the board jumpers must be in the following position:

• JP7: SIG ⇔ GND

• JP8: SIG ⇔ GND

• JP9: 3V3 ⇔ SIG

• JP10: 3V3 ⇔ SIG

• JP11: SIG ⇔ GND

7.2 On the �rst boot

Plug the SD card onto the ZedBoard. Connect the MiniUSB cable to the USB UART port, and
plug it to your computer. Open a terminal on your computer (115200 bauds, 8 bits, no parity),
then start the board.

If you obtain a prompt indicating zynq-uboot>, type in boot and validate. If the prompt asks
you for a login, you're already booted.

Login using account root, then enter the password you choose. If you used the default con�g-
uration script to generate the �le system, the default password is root.

7.2.1 SSH con�guration

If you de�ned no root password, the �rst thing to do is to set one as OpenSSH requires one. Type:

$ passwd

Then enter a password twice.
We then require a few tricks to allow SSH connection as root. If you only require to connect

as a standard user, the following is not required.
To allow root connection using SSH, type:

$ vi /etc/ssh/sshd_config

23

24 CHAPTER 7. WORKING ON THE BOARD

Navigate down using the arrows until you �nd the following line:
#PermitRootLogin prohibit-password

Press inser to switch to edition mode, and change the line for:
PermitRootLogin yes

Then press escape and type :wq then return to save �le.
If you de�ned no password when generating the �le system, but added it manually using the

passwd command, this is not over! When connecting using OpenSSH, you'll always be told your
password to be expired. To solve that, do the following:

$ vi /etc/shadow

The �rst line should look like that: root:[...]:0:0:[...] We need to change the �rst �0�
to anything else, e.g. to a �10�, to look like that: root:[...]:10:0:[...] Press inser, move to
the �0�, and press �1� to change �0� to �10�. Press escape then type :wq then return.

Your Linux is now OK for a SSH connection.
To make sure modi�cations are written to the SD card, and depending on your needs, type:

$ reboot

Or:

$ poweroff

Remember to always use the poweroff command before turning o� the board, as Linux uses
a bu�er which must be �ushed before powering o�.

You're now ready to use an Embedded Linux environment on your ZedBoard.

7.3 Using Xilinx SDK to create an application

If required, you can use Xilinx SDK to create an application for your platform using cross-
compilation. To do so, re-open th SDK project you used to generate the software �les (see
Section 4.2.2 for how to open it).

Select File New Application Project , enter a name, set OS Platform to linux, and click Next .
Choose either an empty application or a Hello World project.

It seems there can be an incorrect con�guration of the tool used to generate the executable.
To check it, right-click on the application project you created, and select C/C++ Build Settings .
Then, select ARM v7 Linux gcc assembler, and check that the gcc utility name is arm-xilinx-linux-
gnueabi-gcc. If not, change it to match that name, and do the same for items ARM v7 Linux
gcc compiler and ARM v7 Linux gcc linker. Also change ARM v7 Linux Print Size command to
arm-xilinx-linux-gnueabi-size.

When done, try a very simple application such as the Hello World sample by downloading it
to the target, e.g. using sftp if you con�gured a SSH connection, or by manually copying it to the
�le system by plugging the SD card to the host computer.

That's all, folks!

	Before starting
	Document purpose
	Disclaimer
	Tools revisions and OS
	Administrator privileges
	Conventions and directories
	Projects
	Scripts and logs
	Environment packages and libraries
	Fedora 22 Workstation
	Ubuntu 16.04 LTS

	Additional technical information
	Downloading required sources
	ZedBoard boot process
	Reinitializing the SD card to factory state
	Restore partition scheme
	Restore files

	Preparing the environment
	Configuring the scripts
	Creating the project

	Hardware layout and low-level software
	Creating a base hardware design
	Default configuration using script
	Manual procedure

	Generating the device tree
	Downloading the device tree generator
	Generating the device tree

	Generating the first stage boot loader
	Generating the bootloader
	Default configuration using script
	Manual procedure

	Generating the Binary file

	Generating Linux
	Generating the kernel
	Default configuration using script
	Custom configuration using script
	Manual procedure

	Generating the device tree blob
	Default configuration using script
	Manual procedure

	Generating the file system
	Default configuration using script
	Custom configuration using script
	Manual procedure

	Preparing the board
	Partitioning the SD card
	Copying the file system on the card
	Using the script
	Manually

	Copying the system files

	Working on the board
	Hardware configuration
	On the first boot
	SSH configuration

	Using Xilinx SDK to create an application

