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a b s t r a c t

We extend to the thermoelastic case the study [1] devoted to the dynamic response of 
a structure made of two linearly elastic bodies linked by a thin soft adhesive linearly 
elastic layer. Once again, a formulation in terms of an evolution equation in a Hilbert 
space of possible states with finite energy makes it possible to identify the asymptotic 
behavior, when some geometrical and thermomechanical parameters tend to their natural 
limits, as the response of two bodies linked by a thermomechanical constraint. The genuine 
thermomechanical coupling remains in the constraint law only for a specific relative 
behavior of the parameters.

r é s u m é

On étend au cas thermoélastique l’étude [1] consacrée à la réponse dynamique d’un
assemblage de deux corps linéairement élastiques liés par une couche adhésive linéaire-
ment élastique mince et molle. À nouveau, une formulation en terme d’équations
d’évolution dans un espace de Hilbert d’états possibles d’énergie finie permet d’identifier le
comportement asymptotique, lorsque des paramètres géométriques et thermomécaniques
tendent vers leurs limites naturelles, comme la réponse de l’assemblage des deux corps
par une liaison thermomécanique. Le couplage thermomécanique initial perdure dans la loi
de la liaison uniquement pour un comportement relatif particulier des paramètres.
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1. Introduction

Adhesively bonded joints are an attractive way to put together the components of a structure. As in several situations
thermal effects are not negligible, we extend a previous study [1] devoted to a linearly elastic material to the linearly ther-
moelastic case. Taking advantage of the coupling between mechanical and thermal effects, it is still possible to formulate the 
problem of determining the transient response of a structure made of two linearly thermoelastic bodies perfectly connected 
by a thin soft thermoelastic layer with high thermal resistivity in terms of an evolution equation in a Hilbert space of possi-
ble states (displacement, temperature, velocity) with finite energy. Hence it is possible to adopt the strategy of [1,2] in order 
to, first, obtain existence and uniqueness results and, then, to study the asymptotic behavior when some geometrical and 
thermomechanical data, now regarded as parameters, tend to their natural limits. The limit behavior which supports our 
proposal of a simplified but accurate enough model for the initial physical situation, corresponds to the dynamic response 
to the initial load of two linearly thermoelastic bodies connected by a thermomechanical constraint along the surface the 
adhesive layer shrinks to. The structure of the constitutive equations of the constraint is similar to the one of the layer with 
coefficients depending on the relative behaviors of the parameters but the thermomechanical coupling is maintained only 
for a particular relative behavior.

2. Setting the problem

We consider a structure consisting of two thermoelastic bodies (adherents) bonded by a thin thermoelastic layer (ad-
hesive). The entire system occupies the domain Ω ⊂ R

3 with a Lipschitz-continuous boundary ∂Ω . Let (Γ M
0 , Γ M

1 ) and 
(Γ T

0 , Γ T
1 ) be two partitions of ∂Ω with H2(Γ

T
0 ) > 0 and H2(Γ

M
0 ) > 0, where H2 is the two dimensional Hausdorff 

measure. We denote the orthonormal canonical basis of R3, assimilated to the physical Euclidean space, by {e1, e2, e3}
and for all (x1, x2, x3) in R3, x̂ stands for (x1, x2). The intersection S of Ω with {x3 = 0} is supposed to have a pos-
itive Hausdorff measure and it is also assumed that there exists ε0 > 0 such that Bε0 = {(x̂, x3) ∈ Ω; |x3| < ε0} is 
equal to S × (−ε0, ε0). Let ε < ε0, then the adhesive occupies the layer Bε , while each of the two adherents occupies 
Ω±

ε := {x ∈ Ω; ±x3 > ε} and let Ωε = Ω+
ε ∪ Ω−

ε . Adherents and adhesive are assumed to be perfectly stuck together along 
Sε = S+

ε ∪ S−
ε , S±

ε := {x ∈ Ω; x3 = ±ε}. The structure is clamped on Γ M
0 , maintained at a uniform temperature T0 on Γ T

0 , 
subjected to body forces of density f , to surface forces of density gM on Γ M

1 and to thermal flux gT on Γ T
1 .

The whole structure is modeled as linearly thermoelastic in the following way. Let (ρ, β, α, κ, a) ∈ L∞(Ω; R ×R × S3 ×
S3 × Lin(S3)) satisfying⎧⎪⎨⎪⎩

∃(ρm, βm, κm,am) ∈ (0,+∞)4

ρ(x) ≥ ρm, β(x) ≥ βm, α(x) ≥ 0, κ(x)ξ · ξ ≥ κm|ξ |2, ∀ξ ∈R
3,

a(x)e · e ≥ am|e|2, ∀e ∈ S3, a.e. x ∈ Ω

(1)

where S3 is the space of 3 × 3 symmetric matrices with the usual inner product and norm denoted by · and | · |, as in R
3, 

and Lin(S3) is the space of linear mapping from S3 to S3. The mass density, the specific heat coefficient, the thermal 
dilatation, the heat conductivity and the elasticity coefficients in the adherents are ρ , β , α, κ and a, respectively, while the 
positive numbers ρ̃ , β̃ , α̃, κ̃ , λ and μ denote the mass density, the specific heat coefficient, the thermal dilatation, the heat 
conductivity and the Lamé coefficients in the adhesive assumed to be isotropic and homogeneous. Thus problem (Ph) of 
determining the evolution of the assembly involves the quintuplet h = (ε, λ, μ, κ, γ ) of data where γ = (3λ + 2μ)α̃ and 
thereafter all the fields will be indexed by h. In the following, the upper dot denotes the differentiation with respect to 
time t , e(u) is the linearized strain tensor associated with the displacement field u. Hence problem (Ph) reads as:

(Ph)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρüh = divσh + f , T0βθ̇h = div qh − T0aα · e(u̇h) in Ωε

σh = a
(
e(uh) − θhα

)
, qh = κ∇θh in Ωε

ρ̃üh = divσh + f , T0β̃θ̇h = div qh − T0γ tr e(u̇h) in Bε

σh = λ tr e(uh)Id + 2μe(uh) − γ θh Id, qh = κ̃∇θh in Bε

σhν = gM on Γ M
1 , qh · ν = gT on Γ T

1 , uh = 0 on Γ M
0 , θh = 0 on Γ T

0

uh(x,0) = u0
h(x), u̇h(x,0) = v0

h(x), θh(x,0) = θ0
h (x), a.e. x ∈ Ω

(2)

where uh , θh , σh and qh are the fields of displacement, temperature increment with respect to T0, the stress tensor and the 
heat flux vector, respectively, while u0

h , v0
h(x), θ0

h are the initial conditions. The symbols Id and ν refer to the 3 × 3 identity 
matrix and the outward unitary normal to ∂Ω .

3. Existence and uniqueness result for (Ph)

Assuming that

(H1) : (
f , gM , gT ) ∈ C0,1([0, T ]; L2(Ω;R3)) × C2,1([0, T ]; L2(Γ M;R3)) × C2,1([0, T ]; L2(Γ T ))
1 1



we seek zh := (uh, θh) in the form

zh = ze
h + zr

h (3)

where ze
h is the unique solution to

ze
h(t) ∈ Zh; Φh

(
ze

h(t), z
) = L(t)(z), ∀z ∈ Zh, ∀t ∈ [0, T ] (4)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zh = H1

Γ M
0

(
Ω;R3) × H1

Γ T
0
(Ω)

H1
Γ M

0

(
Ω;R3) := {

v ∈ H1(Ω;R3); v = 0 in the sense of traces on Γ M
0

}
H1

Γ T
0
(Ω) := {

v ∈ H1(Ω); v = 0 in the sense of traces on Γ T
0

} (5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φh
(
z, z′) = (

u, u′)
h,1 + (

θ, θ ′)
h,3 − (

u′, θ
)

h,5 + (
u, θ ′)

h,5, ∀z = (u, θ), ∀z′ = (
u′, θ ′) ∈ Zh(

u, u′)
h,1 :=

∫
Ωε

ae(u) · e
(
u′) dx +

∫
Bε

(
λ tr e(u) tr e

(
u′) + 2μe(u) · e

(
u′))dx, ∀u, u′ ∈ H1

Γ M
0

(
Ω;R3)

(
θ, θ ′)

h,3 :=
∫
Ωε

κ

T0
∇θ · ∇θ ′ dx +

∫
Bε

κ̃

T0
∇θ · ∇θ ′ dx, ∀θ, θ ′ ∈ H1

Γ T
0
(Ω)

(u, θ)h,5 :=
∫
Ωε

aα · e(u)θ dx +
∫
Bε

γ tr e(u)θ dx, ∀(u, θ) ∈ H1
Γ M

0
(Ω;R3) × H1

Γ T
0
(Ω)

(6)

and

L(t)(z) :=
∫

Γ M
1

gM(x, t) · u(x)dH2 +
∫

Γ T
1

gT (x, t)θ(x)dH2, ∀z = (u, θ) ∈ Zh (7)

As (gM , gT ) → ze
h is linear continuous from L2(Γ M

1 ; R3) × L2(Γ T
1 ; R) into Zh , we have

ze
h ∈ C2,1([0, T ]; Zh

)
(8)

The remaining part zr
h will be involved in an evolution equation governed by a m-dissipative operator Ah in a Hilbert space 

of possible states “with finite energy” defined by

Hh := H1
Γ M

0

(
Ω;R3) × L2(Ω) × L2(Ω;R3) (9)

and endowed with the inner product and its norm defined respectively by:(
U 1, U 2)

h := (
u1, u2)

h,1 + Kh
(
(v1, θ1), (v2, θ2)

)
,

∣∣U i
∣∣2
h := (

U i, U i)
h, ∀U i = (

ui, θ i, vi) ∈ Hh, i = 1,2 (10)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kh
(
(v, θ),

(
v ′, θ ′)) = (

v, v ′)
h,2 + (

θ, θ ′)
h,4(

v, v ′)
h,2 :=

∫
Ωε

ρv · v ′ dx +
∫
Bε

ρ̃v · v ′ dx, ∀v, v ′ ∈ L2(Ω;R3)
(
θ, θ ′)

h,4 :=
∫
Ωε

βθθ ′ dx +
∫
Bε

β̃θθ ′ dx, ∀θ, θ ′ ∈ L2(Ω)

(11)

Operator Ah is defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D(Ah) =
{

U = (u, θ, v) ∈ Hh;
{

(i) (v, θ) ∈ Zh and

(ii) ∃!(w, τ ) ∈ L2(Ω;R3) × L2(Ω) such that(
w, v ′)

h,2 + (
u, v ′)

h,1 − (
v ′, θ

)
h,5 = 0, ∀v ′ ∈ H1

Γ M
0

(Ω;R3)(
τ , θ ′)

h,4 + (
θ, θ ′)

h,3 + (
v, θ ′)

h,5 = 0, ∀θ ′ ∈ H1
Γ T

0
(Ω)

}
AhU = (v, τ , w)

(12)

It is straightforward to check the following.



Proposition 3.1. Operator Ah is m-dissipative and for all φh = (φ1
h , φ2

h , φ3
h ) in Hh

{
Ūh = (ūh, θ̄h, v̄h) s.t.

Ūh − AhŪh = φh
⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ūh = v̄h + φ1
h

z̄h = (v̄h, θ̄h) ∈ Zh; Ψh(z̄h, z) = Lh(z), ∀z = (v, θ) ∈ Zh

with

Ψh = Φh + Kh

Lh(z) = (
φ1

h , u
)

h,1 + (
φ2

h , u
)

h,2 + (
φ3

h , θ
)

h,3, ∀z = (v, θ) ∈ Zh

(13)

Then taking (H1), (3), (4), (8) and (12) into account, it is clear that (Ph) is formally equivalent to⎧⎪⎨⎪⎩
dU r

h

dt
− AhU r

h = Fh :=
(

ue − due

dt
,−dθe

dt
,−due

dt
+ fh

)
U r(0) = U 0

h − (
ze

h(0),0
)
, U 0

h := (
u0

h, θ0
h , v0

h

) (14)

with

fh = (
1/ρ1Ωε + 1/ρ̃(1 − 1Ωε )

)
f (15)

where 1Ωε denotes the characteristic function of Ωε . Consequently [3] the following holds:

Theorem 3.1. If ( f , gM , gT ) satisfies (H1) and if U 0
h belongs to (ze

h(0), 0) + D(Ah), then (14) has a unique solution in C1([0, T ]; Hh). 
Hence there exists a unique (uh, θh) in(

C1([0, T ]; H1
Γ M

0

(
Ω;R3)) ∩ C2([0, T ]; L2(Ω;R3))) × (

C1([0, T ]; L2(Ω)
) ∩ C0([0, T ]; H1

Γ T
0
(Ω)

))
which satisfies:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
d2uh

dt2
, u

)
h,2

+ (uh, u)h,1 − (u, θh)h,5 =
∫
Ω

f · u dx +
∫

Γ M
1

gM · u dH2, ∀u ∈ H1
Γ M

0

(
Ω;R3)

(
dθh

dt
, θ

)
h,4

+ (θh, θ)h,3 +
(

duh

dt
, θ

)
h,5

=
∫

Γ T
1

gT θ dH2, ∀θ ∈ H1
Γ T

0
(Ω)

(16)

We set:

U e
h = (

ze
h, ue

h

)
(17)

4. Asymptotic behavior

Regarding the quintuplet h of geometrical and thermomechanical data as a quintuplet of parameters taking values in a 
countable subset of (0, ε0) × (0, +∞)4 with a single cluster point h∗ = (0, λ∗, μ∗, κ∗, γ ∗), we now study the asymptotic 
behavior of zh in order to suggest a simplified but accurate enough model for the initial transient thermoelastic problem. 
We make the following assumptions on the relative magnitudes of the parameters:

(H2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) h∗ ∈ {0} × [0,+∞)4

ii) ∃(λ̄, μ̄, κ̄) ∈ [0,+∞]3 s.t. (λ/2ε,μ/2ε, κ̃/2ε) → (λ̄, μ̄, κ̄)

iii) μ̄ ∈ (0,+∞] if min
{
H2

(
Γ M

0
+)

,H2
(
Γ M

0
−)} = 0

κ̄ ∈ (0,+∞] if min
{
H2

(
Γ T

0
+)

,H2
(
Γ T

0
−)}

> 0

iv) lim sup
s→s∗

ε2/μ = lim sup
s→s∗

ε2/κ̃ = 0

4.1. A candidate for describing the limit problem

Depending on the finiteness of (λ̄, μ̄, κ̄), we will have six distinct cases indexed by I = (I1, I2) ∈ {1, 2, 3} × {1, 2}. The 
case I1 = 1 corresponds to (λ̄, μ̄) ∈ [0, +∞)2, I1 = 2 to (λ̄, μ̄) ∈ {+∞} × [0, +∞), I1 = 3 to μ̄ = +∞, I2 = 1 to κ̄ ∈ [0, +∞)

and I2 = 2 to case κ̄ = +∞. We introduce the following spaces:



I Z := I1 V × I2 W

1 V := H1
Γ M

0

(
Ω \ S;R3), 2 V := {

v ∈ H1
Γ M

0

(
Ω \ S;R3); [v]3 = 0 on S

}
, 3 V := H1

Γ M
0

(
Ω;R3)

1W := H1
Γ T

0
(Ω \ S), 2W := H1

Γ T
0
(Ω) (18)

As any element z = (u, θ) of H1
Γ M

0
(Ω \ S; R3) × H1

Γ T
0
(Ω \ S) (spaces defined as H1

Γ M
0

(Ω; R3) and H1
Γ T

0
(Ω)) has restrictions 

z± = (u±, θ±) to Ω± in H1(Ω±; R3) × H1(Ω±), the difference between the traces on S of z+ and z− , denoted by [z] =
([u], [θ]), belongs to L2(S; R3 ×R) and represents the relative displacement and the jump of temperature across S .

Let the continuous bilinear forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(u, u′)
1 :=

∫
Ω\S

ae(u) · e
(
u′) dx +

∫
S

(
λ̄[u]3

[
u′]

3 + 2μ̄
([u] ⊗s e3

) · ([u′] ⊗s e3
))

dx̂, ∀u, u′ ∈ 1 V

2(u, u′)
1 :=

∫
Ω\S

ae(u) · e
(
u′) dx +

∫
S

2μ̄
([u] ⊗s e3

) · ([u′] ⊗s e3
)

dx̂, ∀u, u′ ∈ 1 V

3(u, u′)
1 :=

∫
Ω

ae(u) · e
(
u′)dx, ∀u, u′ ∈ 3 V

1(θ, θ ′)
3 :=

∫
�\S

κ

T0
∇θ · ∇θ ′ dx +

∫
S

κ

T0
[θ][θ ′]dx̂, ∀θ, θ ′ ∈ 1W

2(θ, θ ′)
3 :=

∫
Ω

κ

T0
∇θ · ∇θ ′ dx, ∀θ, θ ′ ∈ 2W

(
u, u′)

2 :=
∫
Ω

ρu · u′ dx, ∀u, u′ ∈ L2(Ω;R3)

(
θ, θ ′)

4 :=
∫
Ω

βθθ ′ dx, ∀θ, θ ′ ∈ L2(Ω)

I (v, θ)5 :=
∫

�\S

aα · e(v)θ dx +
∫
S

γ ∗[v]3
(θ+ + θ−)

2
dx, ∀(v, θ) ∈ I Z

(19)

Hence

I H := {
U = (u, θ, v) ∈ I V × L2(Ω) × L2(Ω;R3)} (20)

is a Hilbert space if equipped with

I |U |2 := I1(u, u)1 + (v, v)2 + (θ, θ)4 (21)

As for Ah , it is straightforward to check that operator I A defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(I A

) =
{

U = (u, θ, v) ∈ I H;
{

(i) (v, θ) ∈ I Z and

(ii) ∃!(w, τ ) ∈ L2(Ω;R3) × L2(Ω) such that(
w, v ′)

2 + I1
(
u, v ′)

1 − I(v ′, θ
)

5 = 0, ∀v ′ ∈ I1 V(
τ , θ ′)

4 + I2
(
θ, θ ′)

3 + I(v, θ ′)
5 = 0, ∀θ ′ ∈ I2 W

}
I AU = (v, τ , w)

(22)

is m-dissipative and to note that for all φ = (φ1, φ2, φ3) in I H{
I Ū = (I ū, I θ̄ , I v̄

)
s.t.

I Ū − I A I Ū = φ
⇔

{
I ū = I v̄ + φ1

I z̄ = (I v̄, I θ̄
) ∈ I Z; IΨ

(I z̄, z
) = IL(z), ∀z ∈ I Z

(23)

with, for any z = (v, θ) and z′ = (v ′, θ ′) in I Z



⎧⎪⎪⎨⎪⎪⎩
IΨ

(
z, z′) := IΦ

(
z, z′) + (

θ, θ ′)
2 + (

v, v ′)
4

IΦ
(
z, z′) := I1

(
v, v ′)

1 + I2
(
θ, θ ′)

3 − I(v ′, θ
)

5 + I(v, θ ′)
5

IL
(
z′) := I(φ1, v ′)

1 + (
φ2, v ′)

2 + (
φ3, θ ′)

4

(24)

Thus a similar statement as that of Theorem 3.1 is valid for the following equation, which will be shown to describe the 
asymptotic behavior of zh:⎧⎪⎨⎪⎩

dI U r

dt
− I A I U r = I F :=

(
I ue − dI ue

dt
,−dIθe

dt
,−dI ue

dt
+ f

ρ

)
I U r(0) = I U r,0

(25)

with

I ze = (I ue, Iθe) ∈ C2,1([0, T ], I Z
); IΨ

(I ze(t), z
) = L(t)(z), ∀z ∈ I Z , ∀t ∈ [0, T ] (26)

We set

I U e = (I ze, I ue), I U = I U e + I U r (27)

4.2. Convergence

To prove the convergence of zh toward I z = I ze + I zr , with I zr = (I ur, I θ r), we use Trotter’s theory of convergence of 
semi-groups of linear operators acting on variable spaces [4] because zr

h and I zr do not inhabit the same space.
First, to define a linear operator I Ph from I H to Hh suitable for comparing the elements of I H and Hh we classically 

[1,2,5] use the smoothing linear continuous operator Rε from H1(� \ S) to H1(Ω) defined by

Rεϕ(x) =
{

ϕ S(x) + Min
{|x3|/ε,1

}
ϕ A(x), ∀x in Bε

ϕ(x), ∀x in Ωε

(28)

where 2ϕ S(x) = ϕ(x̂, x3) + ϕ(x̂, −x3) and 2ϕ A(x) = ϕ(x̂, x3) − ϕ(x̂, −x3). Hence the operator I Ph defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I H � U = (u, θ, v) �→ I PhU = (I1 Phu, I2 Phθ, v
) ∈ Hh

I1 = 1 : (1 Phu
)

i = Rεui, i = 1,2,3

I1 = 2 : (2 Phu
)
α

= Rεuα, α = 1,2,
(2 Phu

)
3 = u3

I1 = 3 : 3 Phu = u

I2 = 1 : 1 Phθ = Rεθ

I2 = 2 : 2 Phθ = θ

(29)

satisfies.

Proposition 4.1.

i) There exists a strictly positive constant c independent of h such that∣∣I PhU
∣∣
h ≤ c I |U |, ∀U ∈ I H, (30)

ii) when h goes to h∗ , |I PhU |h converges toward I |U | for all U in I H ,

iii) ∣∣∣∣e(1 Phu
) − [u]

2ε
⊗s e3

∣∣∣∣2

L2(Bε;S2)

≤ cε2
∣∣e(u)

∣∣2
L2(�\S;S3)

, ∀u ∈ H1
Γ M

0

(
Ω \ S;R3)

∣∣∣∣∇(1 Phθ
) − [θ]

2ε
⊗s e3

∣∣∣∣2

L2(Bε)

≤ cε2|∇θ |2L2(�\S;R3)
, ∀θ ∈ H1

Γ T
0
(Ω \ S)

∣∣∣∣Rεθ − γ0(θ
+) + γ0(θ

−)

2

∣∣∣∣2

L2(Bε)

≤ cε2|∇θ |2L2(Bε;R3)
, ∀θ ∈ H1

Γ T
0
(Ω \ S) (31)

where γ0(θ
±) denotes the trace on S of θ± .



Next we state that Uh in Hh converges in the sense of Trotter toward U in I H if

lim
h→h∗

∣∣I PhU − Uh
∣∣ = 0 (32)

As in [5], such a suitable notion of convergence implies the following proposition.

Proposition 4.2. For all U = (u, θ, v) in I H , if Uh = (uh, θh, vh) in Hh converges toward U in the sense of Trotter, then:

i) 1Ωε (e(uh), ∇θh) converges strongly in L2(� \ S; S3 ×R
3) toward (e(u), ∇θ) and, for all positive η < ε0 , the sequence (uh, θh)

converges strongly in H1(Ωη; R3 ×R) toward (u, θ),
ii) the traces on S±

ε of (uh, θh) identified with elements of L2(S; R3 ×R), converge strongly in L2(S; R3 ×R) toward the traces on 
S of (u±, θ±),

iii)
∫ ε
−ε(e(uh), ∇θh) dx3 converges strongly in L2(S; S3 ×R

3) toward ([u] ⊗s e3, [θ]e3) if (μ̄, κ̄) ∈ (0, +∞]2 ,

iv) (uh, θh) converges strongly in L2(Ω; R3 ×R) toward (u, θ),
v) vh converges strongly in L2(Ω; R3) toward v.

Lastly we conclude by using the classical Trotter’s theory of convergence of linear semi-groups [4], where it suffices to 
make hypothesis (H4) on the initial state and loading and to establish the following convergence result involving stationary 
problems:

Proposition 4.3. Under the additional assumption

(H3) : supp
(

gM) ∩ B̄ε0 = supp
(

gT ) ∩ B̄ε0 = ∅, ∀t ∈ [0, T ] (33)

and if

min
{
H2(Γ M

0
+)

,H2(Γ M
0

−)} = 0, say H2(Γ M
0

−) = 0, then supp
(

gM) ∩ (
∂Ω−

ε0

) = ∅
min

{
H2(Γ T

0
+)

,H2(Γ T
0

−)} = 0, say H2(Γ T
0

−) = 0, then supp
(

gT ) ∩ (
∂Ω−

ε0

) = ∅
we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) lim
h→h∗

∣∣I Ph
(

I − I A
)−1

φ − (I − Ah)
−1 Phφ

∣∣
h = 0, ∀φ ∈ I H

ii) lim
h→h∗

∣∣I Ph
I U e(t) − U e

h(t)
∣∣
h = 0 uniformly on [0, T ]

iii) lim
h→h∗

T∫
0

∣∣I Ph
I F (t) − Fh(t)

∣∣
h dt = 0

(34)

Proof. Points ii) and iii) are obtained by an obvious variant, taking into account the increments of temperature θe
h , I θ , of the 

proof given in [2]. By taking advantage of Proposition 3.1 and (23) it remains to establish the convergence of z̄h = (v̄h, θ̄h)

solution to (13) with φh = I Phφ toward I z̄ = (I v̄, I θ̄ ) solution to (23). By choosing (v, θ) = (v̄h, θ̄h) in (13) we deduce that ∑2
i=1(v̄h, ̄vh)h,i + (θ̄h, θ̄h)h,i+2 remains bounded and consequently that there exists z∗ = (v∗, θ∗) in I Z and a non relabeled 

subsequence such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) z̄h converges strongly in L2(Ω;R3 ×R
)

toward z∗

ii) 1Ωε

(
e(v̄h),∇ θ̄h

)
weakly converges in L2(� \ S; S3 ×R

3) toward (e(v∗),∇θ∗)

iii)

ε∫
−ε

(
e(v̄h),∇ θ̄h

)
dx3 converges strongly in L2(S; S3 ×R

3) toward
([

v∗] ⊗s e3,
[
θ∗]e3

)
iv) the traces on S±

ε of z̄h, identified with elements of L2(S;R3 ×R
)
, converge strongly in

L2(S; S3 ×R
3) to the traces of z∗±

(35)

Thus it is easy, taking into account Proposition 4.1-iii) to go to the limit on the various terms of Ψh(z̄h, (I1 Ph v, I2 Phθ))

for all (v, θ) in I Z . The novelty, induced by the thermoelastic coupling, lies in terms like γ
∫

Bε
tr e(v̄h)I2 Phθ dx and 

γ
∫

θ̄h tr e(I1 Ph v) dx. The convergence of the first term toward γ ∗ ∫ [v∗]3
(θ++θ−) dx̂ stems from Proposition 4.1-iii) and 
Bε S 2



(35)-iii) while the convergence of the second one toward γ ∗ ∫
S

(θ∗++θ∗−)
2 [v]3 dx̂ stems from an integration by part, Proposi-

tion 4.1-iii) and (35)-iii), iv). Hence one deduces that z∗ = I z̄, so that the whole sequence z̄h converges toward I z̄. Then it is 
straightforward to complete the proof by using the definition of I Ph , Proposition 4.1 and (35). �

Thus we deduce the convergence, uniformly on [0, T ], in the sense of Trotter of the solution to (14) toward that to 
(25) with I U r,0 = I U 0 − I U e(0) and the additional condition of convergence and compatibility between the initial state and
loading:

(H4) : I U 0 ∈ I U e(0) + D(I A); U 0
h ∈ U e

h + D(Ah) and lim
h→h∗

∣∣I Ph
I U 0 − U 0

h

∣∣
h = 0

This can be rephrased in a more explicit way with respect to (Ph) as

Theorem 4.1. The solution to
dUh

dt
+ Ah

(
Uh − U e

h

) = (
ue

h,0, fh
)
, Uh(0) = U 0

h (36)

converges toward

dI U

dt
+ I A

(I U − I U e) =
(

I ue,0,
f

ρ

)
, I U (0) = I U 0 (37)

in the sense

lim
h→h∗

∣∣I PhU (t) − I U (t)
∣∣
h = 0, lim

h→h∗
∣∣Uh(t)

∣∣
h = I

∣∣I U (t)
∣∣, uniformly on [0, T ] (38)

5. Concluding remarks

Theorem 4.1 implies that I z = (I u, I θ) satisfies(
d2 I u

dt2
, u

)
2
+ I(I u, u

)
1 − I(u, Iθ

)
5 =

∫
Ω

f · u dx +
∫

Γ M
1

gM · u dH2, ∀u ∈ I V

(
dIθ

dt
, θ

)
4
+ I(Iθ, θ

)
3 +

(
dI u

dt
, θ

)
5
=

∫
Γ T

1

gT · θ dH2, ∀θ ∈ I W (39)

Thus the limit behavior deals with the transient response to the initial loading ( f , gM , gT ) of the assembly of two linearly 
thermoelastic bodies occupying Ω± as reference configuration and linked along S by a thermomechanical constraint that 
strongly depends on the relative magnitude of the parameters (ε, λ, μ, κ, γ ). If we denote by I σ and I q the stress vector 
on S and the heat flux across S and by w T and w N the tangential and normal components of any vector w (w N = w · e3,

w T = w − w N e3), the constitutive equations of the constraint read as:

I = (1,1) : IσT = μ̄[I u]T , IσN = (λ̄ + 2μ̄)[I u]N − γ ∗ (Iθ+ + Iθ−)

2
, IqN = κ̄[Iθ] + γ ∗

2

[
dI u

dt

]
N

I = (2,1) : [I u]N = 0, IσT = μ̄[I u]T , IqN = κ̄[Iθ]
I = (3,1) : [I u] = 0, I qN = κ̄[Iθ]
I = (1,2) : IσT = μ̄[I u]T , IσN = (λ̄ + 2μ̄)[I u]N − γ ∗ Iθ, [Iθ] = 0, IqN = γ ∗

2

[
dI u

dt

]
N

I = (2,2) : [I u]N = 0, IσT = μ̄[I u]T , [Iθ] = 0, IqN = 0

I = (3,2) : [I u] = 0, [Iθ] = 0, IqN = 0

When I = (1, 1), a term of thermal nature involving the average temperature has to be added to the classical expres-
sion of the normal stress in pure elasticity, while it appears a thermal surface source term proportional to the jumps of 
temperature and also of normal velocity. When I = (1, 2), there are no jump of temperature, the additional term in the 
normal stress is then proportional to the surface temperature and it appears a thermal surface source proportional to the 
jump of normal velocity. Note that in these sole cases where thermoelastic coupling is still present in the constraint, Lamé 
coefficients λ and μ should be of order ε and thus α̃ of order 1/ε in a way that γ ∗ = lim(3λ + 2μ)α̃ is finite and positive.

Lastly, as usual, our proposal of a simplified but accurate enough model for the behavior of the real structure is the one 
obtained in the case I = (1, 1) by replacing λ̄, μ̄, κ̄ and γ ∗ by the real values λ/2ε, μ/2ε, κ̃/2ε and (3λ + 2μ)α̃.
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