

Thin linearly piezoelectric junctions

Christian Licht, Somsak Orankitjaroen, Patcharakorn Viriyasrisuwattana, Thibaut Weller

▶ To cite this version:

Christian Licht, Somsak Orankitjaroen, Patcharakorn Viriyas
risuwattana, Thibaut Weller. Thin linearly piezoelectric junctions. Comptes Rendus Mécanique, 2015, 343 (4), pp.282-288. 10.1016/j.crme.2015.01.001 . hal-01232788

HAL Id: hal-01232788 https://hal.science/hal-01232788v1

Submitted on 24 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thin linearly piezoelectric junctions

Jonctions minces linéairement piézoélectriques

Christian Licht^{a,b}, Somsak Orankitjaroen^b, Patcharakorn Viriyasrisuwattana^{b,c}, Thibaut Weller^a

^a LMGC, UMR-CNRS 5508, Université Montpellier-2, case courier 048, place Eugène-Bataillon, 34095 Montpellier cedex 5, France

^b Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

^c Department of Mathematics, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand

ABSTRACT

Through a rigorous mathematical analysis, we present various asymptotic models for a thin piezoelectric junction between two linearly piezoelectric or elastic bodies. Depending on the relative behavior of a stiffness parameter with respect to its thickness, the joint is replaced by either a(n) (electro)mechanical constraint or a piezoelectric material surface.

RÉSUMÉ

Par une analyse mathématique rigoureuse, nous présentons divers modèles asymptotiques pour une jonction mince piézoélectrique entre deux corps linéairement élastiques ou piézoélectriques. Selon l'ordre de grandeur relatif entre un paramètre de rigidité et l'épaisseur, le joint est remplacé par une liaison (électro)mécanique ou par une surface matérielle piézoélectrique.

1. Introduction

We present various asymptotic models, indexed by $p = (p_1, p_2) \in \{1, 2, 3, 4\}^2$, for a thin piezoelectric junction between two linearly piezoelectric $(p_2 = 1)$ or elastic $(p_2 > 1)$ bodies. Index p_1 is relative to the magnitude of the piezoelectric coefficients of the adhesive, characterized by a single parameter μ , with respect to that of the constant thickness 2ε of a layer containing the adhesive. More precisely, we assume that $h := (\varepsilon, \mu)$ takes values in a countable set with a sole cluster point $\tilde{h} \in \{0\} \times [0, +\infty]$ so that:

$$\begin{array}{l} (p_{1} = 1: \bar{\mu}_{1} := \lim_{h \to \bar{h}} (\varepsilon \mu) \in (0, +\infty) \\ p_{1} = 2: \bar{\mu}_{1} := \lim_{h \to \bar{h}} (\varepsilon \mu) = 0, \quad \bar{\mu}_{2} := \lim_{h \to \bar{h}} (\mu/2\varepsilon) = +\infty \\ p_{1} = 3: \bar{\mu}_{2} := \lim_{h \to \bar{h}} (\mu/2\varepsilon) \in (0, +\infty) \\ p_{1} = 4: \bar{\mu}_{2} := \lim_{h \to \bar{h}} (\mu/2\varepsilon) = 0. \end{array}$$

$$(1)$$

E-mail addresses: clicht@univ-montp2.fr (C. Licht), somsak.ora@mahidol.ac.th (S. Orankitjaroen), vdplek@hotmail.com (P. Viriyasrisuwattana), Patcharakorn.vi@ssru.ac.th (P. Viriyasrisuwattana), thibaut.weller@univ-montp2.fr (T. Weller).

As previously said, index p_2 characterizes the status of the adherents but also that of the interfaces between adherents and adhesive:

(2)

- $p_2 = 1$: the two interfaces are electromechanically perfectly permeable,
- $p_2 = 2$: the two interfaces are electrically impermeable, $p_2 = 3$: one interface is electrically impermeable while the other is electroded, $p_2 = 4$: the two interfaces are electroded.

The space \mathbb{R}^3 is assimilated with the physical Euclidean space with basis $\{e_1, e_2, e_3\}$. Let Ω be a domain, with Lipschitzcontinuous boundary, whose intersection S with $\{x_3 = 0\}$ is a domain of \mathbb{R}^2 of positive two-dimensional Hausdorff measure $\mathcal{H}_2(S)$. Let $\Omega_{\pm} := \Omega \cap \{\pm x_3 > 0\}$ and ε be a small positive number, then adhesive and adherents occupy $B^{\varepsilon} := S \times (-\varepsilon, \varepsilon)$, $\Omega_{\pm}^{\varepsilon} := \Omega_{\pm} \pm \varepsilon e_3, \text{ respectively; let } \Omega^{\varepsilon} = \Omega_{\pm}^{\varepsilon} \cup \Omega_{-}^{\varepsilon}, S_{\pm}^{\varepsilon} := S \pm \varepsilon e_3, \mathcal{O}^{\varepsilon} := \Omega^{\varepsilon} \cup B^{\varepsilon} \cup \pm S_{\pm}^{\varepsilon}. \text{ Let } (\Gamma_{\text{mD}}, \Gamma_{\text{mN}}), (\Gamma_{\text{eD}}, \Gamma_{\text{eN}}) \text{ be two partitions of } \partial\Omega \text{ with } \mathcal{H}_2(\Gamma_{\text{mD}}), \mathcal{H}_2(\Gamma_{\text{eD}}) > 0 \text{ and } 0 < \delta := \text{dist}(\Gamma_{\text{eD}}, S). \text{ For all } \Gamma \text{ in } \{\Gamma_{\text{mD}}, \Gamma_{\text{mN}}, \Gamma_{\text{eD}}, \Gamma_{\text{eN}}\}, \Gamma_{\pm}, \Gamma_{\pm}^{\varepsilon}, \Gamma^{\varepsilon} \text{ denote } \Gamma \cap \{\pm x_3 > 0\}, \Gamma_{\pm} \pm \varepsilon e_3, \cup_{\pm} \Gamma_{\pm}^{\varepsilon}, \text{ respectively; if } (\gamma_D, \gamma_N) \text{ is a partition of } \gamma := \partial S, \text{ we denote } \{\gamma_D, \gamma_N, \gamma\} \times (-\varepsilon, \varepsilon) \text{ by } \{\gamma_D, \gamma_N, \gamma\}$ $\{\Gamma_{Dl}^{\varepsilon}, \Gamma_{Nl}^{\varepsilon}, \Gamma_{lat}^{\varepsilon}\}\)$. The structure made of the adhesive and the two adherents, perfectly stuck together along S_{\pm}^{ε} , is clamped on $\Gamma_{mD}^{\varepsilon}$, subjected to body forces of density f^{ε} and to surface forces of density F^{ε} on $\Gamma_{mN}^{\varepsilon}$ and vanishing on $\Gamma_{lat}^{\varepsilon}$. Moreover, a given electric potential $\varphi_{p_0}^h$ is applied on $\Gamma_{Dl}^{\varepsilon}$ and, when $p_2 = 1$, on $\Gamma_{eD}^{\varepsilon}$, while electric charges of density d^{ε} appear on $\Gamma_{\text{NI}}^{\varepsilon}$ and, when $p_2 = 1$, on $\Gamma_{\text{eN}}^{\varepsilon}$.

If σ_n^h , u_n^h , $e(u_n^h)$, D_n^h , φ_n^h stand for the fields of stress, displacement, strain, electric displacement and electric potential, respectively, the constitutive equations of the structure, for all p_1 in $\{1, 2, 3, 4\}$, read as:

$$\begin{cases} (\sigma_p^h, D_p^h) = \mu M_1(e(u_p^h), \nabla \varphi_p^h) & \text{in } B^{\varepsilon} \ \forall p_2 \in \{1, 2, 3, 4\}, \\ \left\{ (\sigma_p^h, D_p^h) = M_{\mathsf{E}}^{\varepsilon}(e(u_p^h), \nabla \varphi_p^h) & \text{in } \Omega^{\varepsilon} \ \text{if } p_2 = 1, \\ \sigma_p^h = a_{\mathsf{E}}^{\varepsilon}e(u_p^h) & \text{in } \Omega^{\varepsilon} \ \text{if } p_2 > 1 \end{cases}$$
(3)

where

$$(M_{\rm E}^{\varepsilon}, a_{\rm E}^{\varepsilon})(x) = (M_{\rm E}, a_{\rm E})(x \mp \varepsilon e_3) \quad \forall x \in \Omega_{\pm}^{\varepsilon}$$

$$\tag{4}$$

$$\begin{cases} (M_{\rm I}, M_{\rm E}) \in L^{\infty} (S \times \Omega; \operatorname{Lin}(\mathbb{K})) \text{ such that} \\ M_{\rm P} = \begin{bmatrix} a_{\rm P} & -b_{\rm P} \\ b_{\rm P}^T & c_{\rm P} \end{bmatrix}; \ \exists \kappa > 0, \quad \kappa |k|^2 \le M_{\rm P}(x)k \cdot k, \quad \forall k \in \mathbb{K} := \mathbb{S} \times \mathbb{R}^3, \text{ a.e. } x \in \Omega, \ \forall {\rm P} \in \{{\rm I}, {\rm E}\} \end{cases}$$

$$\tag{5}$$

and $Lin(\mathbb{S}^3)$ is the space of linear operators on the space \mathbb{S}^N of $N \times N$ symmetric matrices whose inner product and norm are noted \cdot and $|\cdot|$ as in \mathbb{R}^3 (the same notations for the norm and inner product stand also for \mathbb{K}).

Lastly we have to add the following conditions on S_{\pm}^{ε} :

$$\begin{cases} p_2 = 2 \quad D_p^h \cdot e_3 = 0 \quad \text{on } S_{\pm}^{\varepsilon}, \\ p_2 = 3 \quad D_p^h \cdot e_3 = 0 \quad \text{on } S_{\pm}^{\varepsilon}, \quad \varphi_p^h = \varphi_{p_0}^h \text{ on } S_{\pm}^{\varepsilon}, \\ p_2 = 4 \quad \varphi_p^h = \varphi_{p_0}^h \quad \text{on } S_{\pm}^{\varepsilon}, \end{cases}$$
(6)

the electric potential $\varphi^h_{p_0}$ being given on S^ε_+ or S^ε_\pm .

It will be convenient to use the following notations:

$$\begin{split} \hat{k} &:= (\hat{e}, \hat{g}) \quad \hat{e} := e_{\alpha\beta}, \ 1 \le \alpha, \beta \le 2, \quad \hat{g} := (g_1, g_2), \quad \forall k = (e, g) \in \mathbb{K} \\ \tilde{e} \in \mathbb{S}^3; \quad \tilde{e}_{\alpha\beta} = e_{\alpha\beta}, \ 1 \le \alpha, \beta \le 2, \quad \tilde{e}_{i3} = 0, \ 1 \le i \le 3, \quad \forall e \in \mathbb{S}^3 \\ k(r) &= k(v, \psi) := (e(v), \nabla \psi) \quad \forall r \in H^1(\mathcal{O}; \mathbb{R}^3 \times \mathbb{R}) \\ e(v) \in \mathcal{D}'(S; \mathbb{S}^2); \quad (e(v))_{\alpha\beta} = \frac{1}{2} (\partial_\alpha v_\beta + \partial_\beta v_\alpha), \ 1 \le \alpha, \beta \le 2, \quad \forall v \in \mathcal{D}'(S; \mathbb{R}^3) \end{split}$$
(7)

and the same symbol $e(\cdot)$ shall also stand for the symmetrized gradient in the sense of distributions of $\mathcal{D}'(\mathcal{O}; \mathbb{R}^3), \mathcal{O} \in \mathcal{D}$ $\{\mathcal{O}^{\varepsilon}, \Omega, \Omega \setminus S, B^{\varepsilon}, \Omega^{\varepsilon}\}$ or $\mathcal{D}'(S; \mathbb{R}^2)$. An electromechanical state with vanishing electric potential on $\Gamma_{\text{DI}}^{\varepsilon}$ and on $\Gamma_{\text{eD}}^{\varepsilon}$ when $p_2 = 1$ will belong to $V_p^{\varepsilon} := H^1_{\Gamma_{\text{mD}}^{\varepsilon}}(\mathcal{O}^{\varepsilon}; \mathbb{R}^3) \times \Phi_{p_2}^{\varepsilon}$, with

$$\begin{cases} \Phi_{1}^{\varepsilon} = H_{\Gamma_{Dl}^{\varepsilon} \cup \Gamma_{eD}^{\varepsilon}}^{\varepsilon}(\mathcal{O}^{\varepsilon}) \\ \Phi_{2}^{\varepsilon} = H_{\Gamma_{Dl}^{\varepsilon}}^{\varepsilon}(B^{\varepsilon}) \text{ if } \mathcal{H}_{2}(\Gamma_{Dl}^{\varepsilon}) > 0, \ H_{m}^{1}(B^{\varepsilon}) \text{ if } \mathcal{H}_{2}(\Gamma_{Dl}^{\varepsilon}) = 0 \\ \Phi_{3}^{\varepsilon} = H_{\Gamma_{Dl}^{\varepsilon} \cup S_{-}^{\varepsilon}}^{\varepsilon}(B^{\varepsilon}) \\ \Phi_{4}^{\varepsilon} = H_{\Gamma_{Dl}^{\varepsilon} \cup \pm}^{1}S_{\pm}^{\varepsilon}(B^{\varepsilon}) \end{cases}$$

$$(8)$$

where, for any domain \mathcal{O} of \mathbb{R}^N , N = 2, 3, $H^1_{\Sigma}(\mathcal{O}; \mathbb{R}^M)$ denotes the subspace of $H^1(\mathcal{O}; \mathbb{R}^M)$, M = 1 or 3, of all elements with vanishing traces on a part Σ of the boundary of \mathcal{O} , while $H^1_m(\mathcal{O};\mathbb{R}^M)$ denotes the subspace of all elements with vanishing average.

We make the following assumptions on the data:

$$\begin{cases} \text{Given} (f, F, d_{\text{E}}, d_{\text{I}}) \text{ in } L^{2}(\Omega; \mathbb{R}^{3}) \times L^{2}(\Gamma_{\text{mN}}; \mathbb{R}^{3}) \times L^{2}(\Gamma_{\text{eN}}) \times L^{2}(\gamma_{\text{N}} \times (-1, 1)) \\ \text{with } \int_{\Gamma_{\text{lat}}} d_{\text{I}} = 0 \text{ when } p_{2} = 2 \text{ and } \mathcal{H}_{2}(\gamma_{\text{D}} \times (-1, 1)) = 0, \\ \varphi_{\text{ol}} \text{ in } H^{3/2}(\mathbb{R}) \text{ vanishing in } \{|x_{3}| > 1 + \delta/2\}, \text{ and } \varphi_{\text{oE}} \text{ in } H^{1}(\Omega) \text{ vanishing on } S, \text{ then:} \\ f^{\varepsilon}(x) = f(x \mp \varepsilon e_{3}) \text{ a.e. } x \in \Omega_{\pm}^{\varepsilon}, \quad f^{\varepsilon}(x) = 0 \text{ a.e. } x \in B^{\varepsilon}, \\ F^{\varepsilon}(x) = F(x \mp \varepsilon e_{3}) \text{ a.e. } x \in \Gamma_{\text{mN}\pm}^{\varepsilon}, \\ d^{\varepsilon}(x) = (\mu/\varepsilon)^{1/2} d_{\text{I}}(\hat{x}, x_{3}/\varepsilon) \text{ a.e. } x \in B^{\varepsilon}, \\ d^{\varepsilon}(x) = d_{\text{E}}(x \mp \varepsilon e_{3}) \text{ a.e. } x \in B^{\varepsilon}, \\ d^{\varepsilon}(x) = d_{\text{E}}(x \mp \varepsilon e_{3}) \text{ a.e. } x \in \Gamma_{\text{eN}\pm}^{\varepsilon} \text{ if } p_{2} = 1, \\ \varphi_{p_{0}}^{h}(x) = \begin{cases} \varphi_{0\text{E}}(x \mp \varepsilon e_{3}) + \varepsilon^{p_{\text{DI}}}\varphi_{0\text{I}}(x \pm (1 - \varepsilon)e_{3}) \text{ a.e. } x \in \Omega_{\pm}^{\varepsilon} \\ \varepsilon^{p_{\text{DI}}}\varphi_{0\text{I}}(\hat{x}, x_{3}/\varepsilon) \text{ a.e. } x \in B^{\varepsilon} \end{cases} \end{cases}$$

where p_{DI} is such that $p_{DI} = 0$ if $\partial_3 \varphi_{oI} = 0$ in $S \times (-1, 1)$, $p_{DI} = 1$ if $\partial_3 \varphi_{oI} \neq 0$ in $S \times (-1, 1)$. We also introduce the element φ_0 of $H^{1,1}(\Omega, S) := \{\psi \in H^1(\Omega) \text{ whose trace } \gamma_0(\psi) \text{ on } S \text{ belongs to } H^1(S)\}$ defined by $\varphi_0(x) = \varphi_{oE}(x) + (1 - p_{DI})\varphi_{oI}(x \pm e_3)$ a.e. $x \in \Omega_{\pm}$. We note $\overline{\varphi}_0$ the trace on γ_D of φ_0 and set $\Delta \varphi_{oI} = \frac{1}{2} (\varphi_{oI}(\cdot, 1) - \varphi_{oI}(\cdot, -1))$. Then, if \mathcal{M}_p and \mathcal{L}_p are defined by:

$$\begin{cases} \mathcal{M}_{p}(s,r) := \begin{cases} \int_{\Omega^{\varepsilon}} M_{E}^{\varepsilon} k(s) \cdot k(r) \, dx + \mu \int_{B^{\varepsilon}} M_{I} k(s) \cdot k(r) \, dx, & \text{if } p_{2} = 1 \\ \int_{\Omega^{\varepsilon}} a_{E}^{\varepsilon} e(u) \cdot e(v) \, dx + \mu \int_{B^{\varepsilon}} M_{I} k(s) \cdot k(r) \, dx, & \text{if } p_{2} > 1 \end{cases} \\ \mathcal{L}_{p}(r) := \int_{\Omega} f^{\varepsilon} \cdot v \, dx + \int_{\Gamma_{\text{mN}}^{\varepsilon}} F^{\varepsilon} \cdot v \, d\mathcal{H}_{2} + \int_{\Gamma_{\text{DI}}^{\varepsilon} \cup \Gamma^{\varepsilon}} d^{\varepsilon} \psi \, d\mathcal{H}_{2} \quad \Gamma^{\varepsilon} = \Gamma_{\text{eN}}^{\varepsilon} \text{ if } p_{2} = 1, \Gamma^{\varepsilon} = \emptyset \text{ if } p_{2} > 1. \end{cases}$$

$$(10)$$

Seeking an equilibrium state leads to the problem

 (\mathcal{P}_p^h) : Find s_p^h in $(0, \varphi_{p_0}^h) + V_p^{\varepsilon}$ such that $\mathcal{M}_p(s_p^h, r) = \mathcal{L}_p(r), \quad \forall r \in V_p^{\varepsilon}$

which, by Stampacchia theorem, has a unique solution.

2. The asymptotic models

In the following C, C' will denote various constants independent of h that may vary from line to line. It will be convenient in the cases $p_2 > 1$ to use the same symbol s_p^h for $(u_p^h, \tilde{\varphi}_p^h)$ where $\tilde{\varphi}_p^h$ denotes the extension into Ω^{ε} of φ_p^h by 0. Without loss of generality, we suppose $\mathcal{H}_2(\Gamma_{\text{mD}+}) > 0$; moreover, when $p_1 = 4$, we assume $\mathcal{H}_2(\Gamma_{\text{mD}+}) > 0$, $\mathcal{H}_2(\Gamma_{\text{eD}+}) > 0$. We recall that if the same symbol u_p^h denotes a continuous extension from $H^1(\Omega_+^{\varepsilon}; \mathbb{R}^3)$ into $H^1(\{x_3 > \varepsilon\}; \mathbb{R}^3)$ and η is a $\Omega^{\infty}(\Omega)$ such as the function of the same symbol u_p^h denotes a continuous extension from $H^1(\Omega_+^{\varepsilon}; \mathbb{R}^3)$ into $H^1(\{x_3 > \varepsilon\}; \mathbb{R}^3)$ and η is a $C_{o}^{\infty}(\mathbb{R})$ cut-off function such that

$$\eta = 1 \text{ on } \left[-\frac{\delta}{3}, \frac{\delta}{3}\right], \quad 0 \le \eta \le 1 \text{ and } 0 < \left|\frac{\mathrm{d}\eta}{\mathrm{d}x_3}\right| \le \frac{4}{\delta} \text{ on } \frac{\delta}{3} \le |x_3| \le \frac{2\delta}{3}, \quad \eta = 0 \text{ on } \left\{|x_3| \ge \frac{2\delta}{3}\right\}$$
(11)

then Korn inequality imply

$$\int_{B^{\varepsilon}} |\nabla u_p^h|^2 dx \leq \int_{S \times (-\varepsilon, \delta - \varepsilon)} |\nabla \eta u_p^h|^2 dx \leq C \int_{S \times (-\varepsilon, \delta - \varepsilon)} |e(\eta u_p^h)|^2 dx \\
\leq C' \Big(|e(u_p^h)|^2_{L^2(B^{\varepsilon}; \mathbb{S}^3)} + |e(u_p^h)|_{L^2(\Omega^{\varepsilon}_+; \mathbb{S}^3)} \Big)$$
(12)

We will propose our models by studying the asymptotic behavior of s_p^h when h goes to \bar{h} in three steps.

As announced in [1], we may proceed, when $p_1 = 1$, similarly but by taking due account of the realistic nonvanishing electric loading on $\Gamma_{lat}^{\varepsilon}$ easily handled though the standard inequalities:

$$\begin{cases} \int_{\Gamma_{NI}^{\varepsilon}} \psi^2 \, d\mathcal{H}_2 \le C \int_{B^{\varepsilon}} |\nabla \psi|^2 \, dx \quad \forall \psi \in H^1_{\Gamma_{NI}^{\varepsilon}}(B^{\varepsilon}) \text{ if } \mathcal{H}_2(\Gamma_{DI}^{\varepsilon}) > 0\\ \int_{\Gamma_{lat}^{\varepsilon}} \psi^2 \, d\mathcal{H}_2 \le C \int_{B^{\varepsilon}} |\nabla \psi|^2 \, dx \quad \forall \psi \in H^1_m(B^{\varepsilon}) \text{ if } \mathcal{H}_2(\Gamma_{DI}^{\varepsilon}) > 0 \end{cases}$$
(13)

When $p_1 > 1$, we proceed in the spirit of [2-4].

Step 1 (a priori estimates): By taking $r = s_p^h - (0, \varphi_{p_0}^h)$ in the variational formulation of $(\mathcal{P}_p^{\varepsilon})$, (12), (13) and

$$\int_{S} |s_p^h(\cdot,\varepsilon) - s_p^h(\cdot,-\varepsilon)|^2 \, \mathrm{d}\hat{x} \le 2\varepsilon \int_{B^\varepsilon} |\nabla s_p^h|^2 \, \mathrm{d}x \tag{14}$$

imply:

ļ

$$u|k(s_p^h)|^2_{L^2(B^{\varepsilon};\mathbb{K})} + |k(s_p^h)|^2_{L^2(\Omega^{\varepsilon};\mathbb{K})} \le C.$$
(15)

Step 2 (convergence of (s_n^h)): The following two tools are well suitable to describe the asymptotic behavior of the electromechanical state in the adherents and adhesive, respectively. First, let T^{ε} be the mapping from $H^1(\Omega^{\varepsilon}; \mathbb{R}^3 \times \mathbb{R})$ into $H^1(\Omega \setminus S; \mathbb{R}^3 \times \mathbb{R})$ defined by:

$$(T^{\varepsilon}r)(x) = (T^{\varepsilon}(v,\psi))(x) = (T_1^{\varepsilon}v, T_2^{\varepsilon}\psi)(x) := (v,\psi)(x \pm \varepsilon e_3) \quad \forall x \in \Omega_{\pm}.$$
(16)

Note that $T^{\varepsilon}s_p^h = (T_1u_p^h, 0)$ if $p_2 > 1!$ For any w in $H^1(\Omega \setminus S; \mathbb{R}^N)$, $N \in \{1, 3\}$, if $\gamma_o^{\pm}(w^{\pm})$ denotes the trace on S of its restriction w^{\pm} to Ω_{\pm} , [[w]] stands for $\gamma_o^+(w^+) - \gamma_o^-(w^-)$.

Next, as for all *r* of $H^1(B^{\varepsilon}; \mathbb{R}^3 \times \mathbb{R})$, one has

$$\int_{B^{\varepsilon}} \left| r(x) - \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} r(\hat{x}, x_3) \, \mathrm{d}x_3 \right|^2 \mathrm{d}x \le C\varepsilon^2 \int_{B^{\varepsilon}} |\nabla r|^2 \, \mathrm{d}x \tag{17}$$

we introduce the following element of $L^2(S; \mathbb{K})$:

$$k_{p}(\varepsilon, r) := \frac{1}{(2\varepsilon)^{q}} \int_{-\varepsilon}^{\varepsilon} k(r)(\cdot, x_{3}) \, \mathrm{d}x_{3}, \quad q = \max(2 - p_{1}, 0)$$
(18)

and, obviously, there holds

$$\widehat{k_p(\varepsilon,r)} = (e(\widehat{U_p}), \nabla \Phi_p), \quad S_p^h := (U_p^h, \Phi_p^h) := \frac{1}{(2\varepsilon)^q} \int_{-\varepsilon}^{\varepsilon} s_p^h(\cdot, x_3) \, \mathrm{d}x_3.$$
(19)

So (12), (14) and (15) imply:

$$\begin{cases} |k(T^{\varepsilon}s_{p}^{h})|_{L^{2}(\Omega\setminus S;\mathbb{K})} \leq C, \quad |||T^{\varepsilon}s_{p}^{h}|||_{L^{2}(S;\mathbb{R}^{3}\times\mathbb{R})}^{2} \leq C\left(\varepsilon + \frac{\varepsilon}{\mu}\right) \\ |k_{p}(\varepsilon, s_{p}^{h})|_{L^{2}(S;\mathbb{K})}^{2} \leq C\varepsilon^{-2q} \cdot \frac{\varepsilon}{\mu} \\ |U_{p}^{h}|_{L^{2}(S;\mathbb{R}^{3})}^{2} \leq C\varepsilon^{2(1-q)}\left(1 + \frac{\varepsilon}{\mu}\right) \\ \varepsilon^{2(q-1)}|\Phi_{p}^{h}|_{L^{2}(S)}^{2} \leq Cc^{*}(h) \quad c^{*}(h) = \left(1 + \frac{\varepsilon}{\mu}\right) \text{ if } p_{2} = 1, \frac{1}{\varepsilon\mu} \text{ if } p_{2} = 2, \quad \varepsilon^{2} + \frac{\varepsilon}{\mu} \text{ if } p_{2} > 2 \\ |e(\widehat{U}_{p}^{h}), \nabla\Phi_{p}^{h}|_{L^{2}(S;\mathbb{R}^{2}\times\mathbb{R}^{2})}^{2} \leq C\left(\frac{1}{\varepsilon^{2q}} \cdot \frac{\varepsilon}{\mu}\right) \\ |S_{p}^{h} - \gamma_{o}^{\pm}((T^{\varepsilon}s_{p}^{h})^{\pm})|_{L^{2}(S;\mathbb{R}^{3}\times\mathbb{R})}^{2} \leq C\left(\varepsilon + \frac{\varepsilon}{\mu}\right) \text{ if } p_{1} = p_{2} = 1 \\ |U_{p}^{h} - \gamma_{o}^{\pm}((T^{\varepsilon}_{1}u_{p}^{h})^{\pm})|_{L^{2}(S;\mathbb{R}^{3})}^{2} \leq C\left(\varepsilon + \frac{\varepsilon}{\mu}\right) \text{ if } p_{1} = 1, \quad p_{2} > 1. \end{cases}$$

Thus, if $a \otimes_S b$ denotes the symmetrized tensor product of *a* and *b* in \mathbb{R}^3 , we deduce:

Proposition 2.1. There exists $\bar{s}_p = (\bar{u}_p, \bar{\varphi}_p)$ in $H^1_{\Gamma_{mD}}(\Omega \setminus S; \mathbb{R}^3) \times H^1_{\Gamma_{eD}}(\Omega \setminus S)$ such that $T^{\varepsilon}s^h_p$ weakly converges in $H^1(\Omega \setminus S; \mathbb{R}^3 \times \mathbb{R})$ toward some \bar{s}_p ; $\bar{\varphi}_p = 0$ when $p_2 > 1$ and \bar{s}_p belongs to $H^1(\Omega; \mathbb{R}^3 \times \mathbb{R})$ when $p_1 \le 2$. When $p_1 \ne 4$, $k_p(\varepsilon, s_p^h)$ weakly converges in $L^2(S; \mathbb{K})$ toward some $\bar{k}_p = (\bar{e}_p, \bar{g}_p)$, and there exists $(\overline{U}_p, \overline{\Phi}_p)$ in $H^1(S; \mathbb{R}^3 \times \mathbb{R})$

such that $(\widehat{U_p^h}, \Phi_p^h)$ converges weakly in $H^1(S; \mathbb{R}^2 \times \mathbb{R})$ toward $(\widehat{U_p}, \overline{\Phi_p}), (U_p^h)_3$ converges strongly in $L^2(S)$ toward $(\overline{U_p})_3$. Moreover

- i) when $p_1 = 1$, $\overline{U}_p = \gamma_0(\overline{u}_p)$ for all p_2 , while $\overline{\Phi}_p$ is equal to $\gamma_0(\overline{\varphi}_p)$ when $p_2 = 1$ or to $\gamma_0(\varphi_0)$ when $p_2 \ge 3$. Furthermore, the trace on γ_D of $\overline{\Phi}_p$ is equal to $\overline{\varphi}_0$ while $\overline{k}_p = (e(\widehat{u}_p), \nabla \overline{\Phi}_p), (\overline{g}_p)_3 = \Delta \varphi_{ol}$ when $p_2 = 4$;
- ii) when $p_1 = 2$, $\overline{U}_p = 0$, $\overline{\Phi}_p = 0$ and $\overline{k}_p = 0$; iii) when $p_1 = 3$, $\overline{U}_p = 0$ and $\overline{e}_p = [[\overline{u}_p]] \otimes_S e_3$ for all p_2 , while $\overline{\Phi}_p$ and $\widehat{\overline{g}_p}$ vanish only when $p_2 \neq 2$, $(\overline{g}_{(3,1)})_3 = [[\overline{\varphi}_p]]$, $(\overline{g}_{(3,4)})_3 = 0$.

Actually, in the next step, we will show that $(\bar{u}_p, \bar{\varphi}_p)$ is necessarily the unique solution to a variational problem so that the whole sequences converge. To identify k_p , when $p_1 > 1$, it suffices to go to the limit in the identity

$$\int_{B^{\varepsilon}} \left(k(s_p^h)(x) \cdot \tau^i(\hat{x}) + s_p^h(x) \cdot \operatorname{div} \tau^i(\hat{x}) \right) \mathrm{d}x = \int_{S} \left(\left[\left[T_1^{\varepsilon} u_p^h \right] \right]_i \theta_1 \right) + \left(\left[\left[T_2^{\varepsilon} \varphi_p^h \right] \right] \theta_2 \right) \mathrm{d}\hat{x}$$
(21)

with $\tau^i = (\theta_1 e_3 \otimes_S e_i, \theta_2 e_3), \theta_j \in C_0^{\infty}(S), j = 1, 2, i = 1, 2, 3$ and to use the convergence to 0 in the sense of distributions of $k_p(\varepsilon, s_p^h)$ by due account of (20)!

Step 3 (identification of (\bar{s}_p, \bar{k}_p)):

When $p_1 > 1$, we simply go to the limit in the variational formulation of (\mathcal{P}_p^h) by using suitable test-functions r_p^{ε} . For all w^1 in $H^1_{\Gamma_{mD}}(\Omega; \mathbb{R}^3)$ and all ζ^1 in $H^1_{\Gamma_{eD}}(\Omega)$ vanishing in a neighborhood of γ_D , let $(w^{1,\varepsilon}, \zeta^{1,\varepsilon})$ be defined by

$$(w^{1,\varepsilon},\zeta^{1,\varepsilon})(x) = \begin{cases} (w^1,\zeta^1)(x \mp \varepsilon e_3) & \text{a.e. } x \in \Omega_{\pm}^{\varepsilon} \\ (w^1,\zeta^1)(\hat{x},0) & \text{a.e. } x \in B^{\varepsilon} \end{cases}$$

For all w^2 in $H^1_{\Gamma_{mD}}(\Omega \setminus S; \mathbb{R}^3)$ and all ζ^2 in $H^1_{\Gamma_{eD}}(\Omega \setminus S)$ vanishing in a neighborhood of γ_D , let $(w^{2,\varepsilon}, \zeta^{2,\varepsilon})$ be defined by

$$(w^{2,\varepsilon},\zeta^{2,\varepsilon})(x) = \begin{cases} (w^2,\zeta^2)(x \mp \varepsilon e_3) & \text{a.e. } x \in \Omega_{\pm}^{\varepsilon} \\ (w^a,\zeta^a)(\hat{x},x_3/\varepsilon) + \frac{|x_3|}{\varepsilon}(w^s,\zeta^s)(\hat{x},x_3/\varepsilon) & \text{a.e. } x \in B^{\varepsilon} \end{cases}$$

with

$$(w^{a}, \zeta^{a})(x) = \frac{1}{2}[(w^{2}, \zeta^{2})(\hat{x}, x_{3}) - (w^{2}, \zeta^{2})(\hat{x}, -x_{3})]$$
$$(w^{s}, \zeta^{s})(x) = \frac{1}{2}[(w^{2}, \zeta^{2})(\hat{x}, x_{3}) + (w^{2}, \zeta^{2})(\hat{x}, -x_{3})]$$

Note (see the proof of Lemma 4.1 of [3]) that

$$\left| \left(e(w^{2,\varepsilon}) - \frac{\llbracket w^2 \rrbracket \otimes_S e_3}{2\varepsilon}, \nabla \zeta^{2,\varepsilon} - \frac{\llbracket \zeta^2 \rrbracket e_3}{2\varepsilon} \right) \right|_{L^2(B^\varepsilon;\mathbb{K})} \leq C \left| (w^2, \zeta^2) \right|_{H^1(B^\varepsilon \setminus S; \mathbb{R}^3 \times \mathbb{R})}$$

So $r_p^{\varepsilon} = (v_p^{\varepsilon}, \psi_p^{\varepsilon})$ reads as:

$$\begin{cases} v_p^{\varepsilon} = w^{\min(p_1 - 1, 2), \varepsilon}, & 1 \le p_2 \le 4 \\ \psi_p^{\varepsilon} = \begin{cases} \zeta^{\min(p_1 - 1, 2), \varepsilon}, & p_2 = 1 \\ (\theta_1 + x_3 \theta_2)/\varepsilon, & \theta_1, \theta_2 \in C_0^{\infty}(S) & p_1 = 3, 4, p_2 = 2 \\ (1 + x_3/\varepsilon)\theta, & \theta \in C_0^{\infty}(S) & p_1 = 3, 4, p_2 = 3 \\ 0 & \text{if } (2 \le p_1 \le 4, p_2 = 4) \text{ or } (p_1 = 2, p_2 = 2, 3) \end{cases}$$
(22)

When $p_1 = 1$, one proceeds in two steps. First we prove

$$(M\bar{k}_p)_p^2 = 0 \tag{23}$$

where k_p^i denotes the projection on \mathbb{K}_p^i of any element k of \mathbb{K} with:

$$\begin{cases} \mathbb{K} = \mathbb{K}_{p}^{1} \oplus \mathbb{K}_{p}^{2} \oplus \mathbb{K}_{p}^{3}, \\ p_{2} \leq 2 : \mathbb{K}_{p}^{1} := \{(e, g) \in \mathbb{K}; e_{i3} = 0, g_{3} = 0\}, \mathbb{K}_{p}^{2} := \{(e, g) \in \mathbb{K}; \hat{e} = 0, \hat{g} = 0\}, \mathbb{K}_{p}^{3} := \{0\}, \\ p_{2} > 2 : \mathbb{K}_{p}^{1} = \{(e, g) \in \mathbb{K}; e_{i3} = 0, \hat{g} = 0\}, \mathbb{K}_{p}^{2} = \{(e, g) \in \mathbb{K}; \hat{e} = 0, g = 0\}, \\ \mathbb{K}_{p}^{3} = \{(e, g) \in \mathbb{K}; e = 0, g_{3} = 0\} \end{cases}$$

$$(24)$$

For that, we simply use test functions ρ_p^{ε} built as follows: given (w, ψ) in $C_0^{\infty}(S; \mathbb{R}^3 \times \mathbb{R})$,

$$\rho_p^{\varepsilon}(x) = \begin{cases} (x_3 + \varepsilon)(w, I_{p_2}\psi)(\hat{x}) & \text{a.e. } x \in B^{\varepsilon} \\ 2\varepsilon(w^+, I_{p_2}\psi^+)(x - \varepsilon e_3) & \text{in } \Omega_+^{\varepsilon}, \ 0 \text{ in } \Omega_-^{\varepsilon} \end{cases}$$
(25)

where (w^+, ψ^+) is an extension into $H^1_{\Gamma_{\text{mD}+}}(\Omega_+; \mathbb{R}^3) \times H^1_{\Gamma_{\text{eD}+}}(\Omega_+)$ and $I_{p_2} = 1$ if $p_2 \leq 2$, $I_{p_2} = 0$ if $p_2 > 2$. Hence, as Proposition 2.1 yields $(\bar{k}_p)_p^3 = 0$, we deduce

$$(M_I \bar{k}_p)^1 = \widetilde{M}_{Ip} (\bar{k}_p)^1; \quad \widetilde{M}_{Ip} := M_{Ip}^{11} - M_{Ip}^{12} (M_{Ip}^{22})^{-1} M_{Ip}^{21}$$
(26)

with M_{Ip}^{ij} , $1 \le i, j \le 3$ being the decomposition of M_I in linear operators mapping \mathbb{K}_p^i into \mathbb{K}_p^j . Next, given (v, ψ) in $\left(H_{\Gamma_{mD}}^1(\Omega; \mathbb{R}^3) \times H_{\Gamma_{eD}}^1(\Omega)\right) \cap H^2(\Omega; \mathbb{R}^3 \times \mathbb{R}) \psi$ vanishing in a neighborhood of γ_D , we define $r_p^{\varepsilon} = \frac{1}{2} \int_{\Omega} \frac{1}{2} \int_{\Omega}$ $(v_n^{\varepsilon}, \psi_n^{\varepsilon})$ by:

$$\begin{aligned}
\widehat{v_p^{\varepsilon}}(x) &= \widehat{v}(\widehat{x}, 0) - x_3 \nabla v_3(\widehat{x}, 0), \quad \left(v_3^{\varepsilon}(x) = v_3(\widehat{x}, 0)\right) & \text{a.e. } x \in B^{\varepsilon} \\
v_p^{\varepsilon}(x) &= v(x \mp \varepsilon e_3) \mp \varepsilon R^{\pm} \left(\nabla v_3(\cdot, 0), 0\right)(x \mp \varepsilon e_3) & \text{a.e. } x \in \Omega_{\pm}^{\varepsilon} \\
\psi_p^{\varepsilon}(x) &= \psi(x \mp \varepsilon e_3) \text{ in } \Omega_{\pm}^{\varepsilon}, \quad \psi(\widehat{x}, 0) \text{ in } B^{\varepsilon} & \text{if } p_2 = 1 \\
\psi_p^{\varepsilon}(x) &= \psi(\widehat{x}, 0) \text{ in } B^{\varepsilon} & \text{if } p_2 = 2 \\
\psi_p^{\varepsilon}(x) &= 0 \text{ in } B^{\varepsilon} & \text{if } p_2 \ge 3
\end{aligned}$$
(27)

where R^{\pm} is a continuous lifting operator from $H^{1/2}(S; \mathbb{R}^3)$ into $H^1_{\Gamma_{\text{mD}\pm}}(\Omega_{\pm}; \mathbb{R}^3)$. As $(\widetilde{e(\hat{v})}, \nabla \psi)$ belongs to \mathbb{K}^1_p almost everywhere in S, (26) yields

$$\lim_{h \to \bar{h}} \int_{B^{\varepsilon}} \mu M_{I} k(s_{p}^{h}) k(r_{p}^{\varepsilon}) \, \mathrm{d}x = \int_{S} M_{I} \bar{k}_{p} \cdot (\widetilde{e(\hat{v})}, \nabla \psi) \, \mathrm{d}\hat{x} = \int_{S} \widetilde{M}_{Ip}(\bar{k}_{p}^{1}) \cdot (\widetilde{e(\hat{v})}, \nabla \psi) \, \mathrm{d}\hat{x}$$
(28)

while, obviously, we have:

$$\lim_{h \to \bar{h}} \int_{\Omega^{\varepsilon}} M_{E}^{\varepsilon} k(s_{p}^{h}) \cdot k(r_{p}^{\varepsilon}) dx = \int_{\Omega} M_{E} k(\bar{s}_{p}) \cdot k(v, \psi) dx \quad \text{if } p_{2} = 1$$

$$\lim_{h \to \bar{h}} \int_{\Omega^{\varepsilon}} a_{E}^{\varepsilon} e(u_{p}^{h}) \cdot e(v_{p}^{\varepsilon}) dx = \int_{\Omega} a_{E} e(\bar{u}_{p}) \cdot e(v) dx \quad \text{if } p_{2} \ge 2$$

$$\lim_{h \to \bar{h}} \mathcal{L}_{(1,p_{2})}(r_{(1,p_{2})}^{\varepsilon})$$

$$:= \begin{cases}
\int_{\Omega} f \cdot v dx + \int_{\Gamma_{mN}} F \cdot v d\mathcal{H}_{2} + \int_{\Gamma_{eN}} d_{E} \psi d\mathcal{H}_{2} + (\bar{\mu}_{1})^{1/2} \int_{\gamma_{N}} \left(\int_{-1}^{1} d_{I}(\cdot, x_{3}) dx_{3} \right) \psi d\mathcal{H}_{2} \quad p_{2} = 1$$

$$\int_{\Omega} f \cdot v dx + \int_{\Gamma_{mN}} F \cdot v d\mathcal{H}_{2} + (\bar{\mu}_{1})^{1/2} \int_{\gamma_{N}} \left(\int_{-1}^{1} d_{I}(\cdot, x_{3}) dx_{3} \right) \psi d\mathcal{H}_{2} \quad p_{2} \ge 2$$
(29)

Lastly, Jensen inequality and the previously established weak convergences achieve the proof of the following convergence result which supports our asymptotic models in the form of variational problems $(\overline{\mathcal{P}}_p)$ where the convention $\infty \times 0 = 0$ is understood.

Theorem 2.1. If $p_2 = 1$, when h goes to \bar{h} , $T^{\varepsilon}s_p^h$ converges strongly in $H^1(\Omega \setminus S; \mathbb{R}^3 \times \mathbb{R})$ toward \bar{s}_p the unique solution to

$$\left(\overline{\mathcal{P}}_{(p_1,1)}\right): \quad \begin{cases} Find (u,\varphi) in (0,\varphi_0) + V_{p_1} \times \Psi_{p_1} such that \\ \overline{\mathcal{M}}_{(p_1,1)}((u,\varphi), (v,\psi)) = \overline{\mathcal{L}}_{(p_1,1)}(v,\psi) \quad \forall (v,\psi) \in V_{p_1} \times \Psi_{p_1} \end{cases}$$

where

$$\begin{split} \overline{\mathcal{M}}_{(p_{1},1)}\big((u,\varphi),(v,\psi)\big) &:= \begin{cases} \int_{\Omega} M_{E}k(u,\varphi) \cdot k(v,\psi) \, dx + \bar{\mu}_{1} \int_{S} \widetilde{M}_{Ip}\big(e(\hat{u}),\nabla\varphi\big) \cdot \big(e(\hat{u}),\nabla\varphi\big) \, d\hat{x} \\ p_{1} &= 1 \\ \int_{\Omega} M_{E}k(u,\varphi) \cdot k(v,\psi) \, dx + \bar{\mu}_{2} \int_{S} M_{I}\big([\![u]\!] \otimes_{S} e_{3},[\![\varphi]\!] e_{3}\big) \cdot \big([\![v]\!] \otimes_{S} e_{3},[\![\psi]\!] e_{3}\big) \, d\hat{x} \\ p_{1} &\geq 2 \end{cases} \\ \overline{\mathcal{L}}_{(p_{1},1)}(v,\psi) &:= \begin{cases} \int_{\Omega} f \cdot v \, dx + \int_{\Gamma_{mN}} F \cdot v \, d\mathcal{H}_{2} + \int_{\Gamma_{eN}} d_{E} \psi \, d\mathcal{H}_{2} + (\bar{\mu}_{1})^{1/2} \int_{\gamma_{N}} \left(\int_{-1}^{1} d_{I}(\cdot,x_{3}) \, dx_{3}\right) \psi \, d\mathcal{H}_{2} \quad p_{1} &= 1 \\ \int_{\Omega} f \cdot v \, dx + \int_{\Gamma_{mN}} F \cdot v \, d\mathcal{H}_{2} + \int_{\Gamma_{eN}} d_{E} \psi \, d\mathcal{H}_{2} \qquad p_{1} &\geq 2 \end{cases} \\ V_{1} &:= \Big\{ v \in H_{\Gamma_{mD}}^{1}(\Omega; \mathbb{R}^{3}); \ \hat{v} \in H^{1}(S; \mathbb{R}^{2}) \Big\}, \quad V_{2} &:= H_{\Gamma_{mD}}^{1}(\Omega; \mathbb{R}^{3}), \quad V_{3} &= V_{4} &:= H_{\Gamma_{mD}}^{1}(\Omega \setminus S; \mathbb{R}^{3}) \\ \Psi_{1} &:= \Big\{ \psi \in H_{\Gamma_{eD}}^{1}(\Omega); \ \psi \in H_{\gamma_{D}}^{1}(S) \Big\}, \quad \Psi_{2} &:= H_{\Gamma_{eD}}^{1}(\Omega), \quad \Psi_{3} = \Psi_{4} &:= H_{\Gamma_{eD}}^{1}(\Omega \setminus S) \end{cases}$$

If $p_2 > 1$, when h goes to \bar{h} , $(T_1^{\varepsilon} u_p^h, \Phi_p^h)$ converges strongly in $H^1(\Omega \setminus S; \mathbb{R}^3) \times H^1(S)$ toward $(\bar{u}_p, \overline{\Phi}_p)$ the unique solution to

$$\left(\overline{\mathcal{P}}_{p}\right): \quad \begin{cases} Find (u, \phi) in \left(0, q \gamma_{0}(\varphi_{0})\right) + V_{p_{1}} \times \Psi_{p} such that \\ \overline{\mathcal{M}}_{p}((u, \phi), (v, \psi)) = \overline{\mathcal{L}}_{p}(v, \psi) \quad \forall (v, \psi) \in V_{p_{1}} \times \Psi_{p} \end{cases}$$

where

$$\overline{\mathcal{M}}_{(1,p_{2})}((u,\phi),(v,\psi)) := \begin{cases} \int_{\Omega} a_{E} e(u) \cdot e(v) \, dx + \bar{\mu}_{1} \int_{S} \widetilde{M}_{Ip}(e(\hat{u}), \nabla \phi) \cdot (e(\hat{v}), \nabla \psi) \, d\hat{x} & p_{2} = 2\\ \int_{\Omega} a_{E} e(u) \cdot e(v) \, dx + \bar{\mu}_{1} \int_{S} \widetilde{M}_{Ip}(e(\hat{u}), (\bar{g}_{p})_{3}) \cdot (e(\hat{v}), 0) \, d\hat{x} & p_{2} \ge 3\\ & \text{with } \widetilde{M}_{Ip}(e(\hat{u}), (\bar{g}_{p})_{3}) \cdot (0, e_{3}) = 0 & \text{if } p_{2} = 3\\ (\bar{g}_{p})_{3} = \Delta \varphi_{ol} & \text{if } p_{2} = 4\\ \int_{\Omega} a_{E} e(u) \cdot e(v) \, dx + \bar{\mu}_{1} \int_{S} \widetilde{M}_{I,p}(e(\hat{u}), \Delta \varphi_{ol}) \cdot (e(\hat{v}), 0) \, d\hat{x} & p_{2} = 4\\ \\ \overline{\mathcal{L}}_{(1,p_{2})}(v,\psi) := \int_{\Omega} f \cdot v \, dx + \int_{\Gamma_{mN}} F \cdot v \, d\mathcal{H}_{2} + (\bar{\mu}_{1})^{1/2} \int_{\mathcal{V}N} \left(\int_{-1}^{1} d_{I}(\cdot, x_{3}) \, dx_{3}\right) \psi \, d\hat{x} \quad \forall p_{2} \ge 2 \end{cases}$$

and for $2 \leq p_1, p_2 \leq 4$

$$\overline{\mathcal{M}}_{(p_{1},p_{2})}((u,\phi),(v,\psi)) := \begin{cases} \int_{\Omega} a_{\mathsf{E}} e(u) \cdot e(v) \, dx + \bar{\mu}_{2} \int_{\mathsf{S}} M_{I}(\llbracket u \rrbracket \otimes_{\mathsf{S}} e_{3}, (\nabla\phi, (\bar{g}_{p})_{3})) \cdot (\llbracket v \rrbracket \otimes_{\mathsf{S}} e_{3}, (\nabla\psi, 0)) \, d\hat{x} \\ \text{with } M_{I}(\llbracket u \rrbracket \otimes_{\mathsf{S}} e_{3}, (\nabla\phi, (\bar{g}_{p})_{3})) \cdot (0, e_{3}) = 0 \text{ if } p_{2} = 2, 3 \\ (\bar{g}_{p})_{3} = 0 \text{ if } p_{2} = 4 \text{ or } p_{1} = 2 \end{cases}$$
$$\overline{\mathcal{L}}_{(p_{1},p_{2})}(v,\psi) = \int_{\Omega} f \cdot v \, dx + \int_{\Gamma_{\mathsf{mN}}} F \cdot v \, d\mathcal{H}_{2} \\ \Psi_{(p_{1},2)} := H^{1}_{\gamma_{\mathsf{D}}}(\mathsf{S}) \text{ or } H^{1}_{\mathsf{m}}(\mathsf{S}) \text{ according to the positivity of the length of } \gamma_{\mathsf{D}}, \Psi_{(p_{1},3)} = \Psi_{(p_{1},4)} := \{0\}, p_{1} \neq 2 \\ \Psi_{(2,p_{2})} := \{0\}, 2 \leq p_{2} \leq 4 \end{cases}$$

3. Concluding remarks

In the case of piezoelectric adhesive and adherents ($p_2 = 1$), our results extend those obtained in elasticity (see [4–7]). The asymptotic behavior of the adhesive strongly depends on the magnitude of the stiffness compared to that of the thickness. When the magnitude of the stiffness is of the order of the inverse of the thickness, the adhesive is replaced by a *material piezoelectric surface* perfectly bonded to the adherents. When it is lesser, the adhesive is replaced by an *electrome*-*chanical constraint* between the two adherents which can be perfect adhesion, electromechanical pull-back or free separation, according to the order of magnitude of the stiffness which is, respectively, larger, equal or lower than that of the thickness. There is a large discrepancy between our results and that of [8,9] obtained by formal or questionable arguments.

Similarly, in the case of a thin piezoelectric layer embedded between two elastic adherents, depending on the magnitude of the stiffness, the adhesive is replaced by a material elastic surface perfectly bonded to the adherents or by a mechanical constraint between the adherents. In the case of electrically impermeable interfaces, the material surface has a *non-local* elastic behavior (since the additional state variable of electric nature ϕ can be eliminated!), the constitutive equations being derived from the asymptotic behavior of a thin piezoelectric plate acting as a sensor (case p = 1 in [10]). When one interface is electrocally impermeable while the other is electroded, the material surface is an elastic membrane. When the two interfaces are electroded, the material surface is an elastic membrane. When the two interfaces are electroded from the asymptotic behavior of a thin piezoelectric plate acting as an actuator (case p = 2 in [10]). The mechanical constraint is perfect adhesion, elastic pull-back or free separation according to the order of magnitude of the stiffness. In the case of electrically impermeable interfaces, the elastic pull-back is of non-local nature (since the state variable of electric nature ϕ , additional to the relative displacement, can be eliminated). In the two other cases, the elastic pull-back is local. When the two interfaces are electroded, it is similar to the purely elastic case, while, if only one interface is electroded, piezoelectric and dielectric coefficients enter the constitutive equations.

The realistic dual situation [11] in which an elastic layer is embedded between two piezoelectric bodies can be treated within the same framework.

References

- C. Licht, S. Orankitjaroen, P. Viriyasrisuwattana, T. Weller, Bonding a linearly piezoelectric patch on a linearly elastic body, C. R. Mecanique 342 (4)(2014) 234–239.
- [2] C. Licht, S. Orankitjaroen, Dynamics of elastic bodies connected by a thin soft inelastic layer, C. R. Mecanique 341 (3) (2013) 323-332.
- [3] C. Licht, A. Léger, S. Orankitjaroen, A. Ould Khaoua, Dynamics of elastic bodies connected by a thin soft viscoelastic layer, J. Math. Pures Appl. (2013) 685–703.
- [4] A. Aitmoussa, Modélisation et études des singularités de contraintes d'un joint collé très mince, Ph.D. thesis, Université Montpellier-2, France, 1989.
- [5] E. Acerbi, G. Buttazzo, D. Percivale, Thin inclusions in linear elasticity: a variational approach, J. Reine Angew. Math. 386 (1988) 99-115.
- [6] C. Licht, G. Michaille, A modelling of elastic adhesive bonded joints, Adv. Math. Sci. Appl. 7 (2) (1997) 711-740.
- [7] C. Licht, Some new mathematical modelings of junctions, East-West J. Math. 13 (1) (2011) 23-33.
- [8] M. Serpilli, An asymptotic model of a multimaterial with a thin piezoeletric interphase, C. R. Mecanique 342 (4) (2014) 258-262.
- [9] M. Serpilli, Asymptotic analysis of a multimaterial with a thin piezoelectric interphase, Meccanica 49 (7) (2014) 1641–1652.
- [10] T. Weller, C. Licht, Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech. 1 (2010) 173-188.
- [11] W. Geis, G. Mishuris, A.-M. Sändig, Asymptotic models for piezoelectric stack actuators with thin metal inclusions, preprint 2004/001, Universität Stuttgart, Germany.