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Introduction

We present various asymptotic models, indexed by p = (p 1 , p 2 ) ∈ {1, 2, 3, 4} 2 , for a thin piezoelectric junction between two linearly piezoelectric (p 2 = 1) or elastic (p 2 > 1) bodies. Index p 1 is relative to the magnitude of the piezoelectric coefficients of the adhesive, characterized by a single parameter μ, with respect to that of the constant thickness 2ε of a layer containing the adhesive. More precisely, we assume that h := (ε, μ) takes values in a countable set with a sole cluster point h ∈ {0} × [0, +∞] so that: ⎧ ⎪ ⎨ ⎪ ⎩ p 1 = 1 : μ1 := lim h→ h(εμ) ∈ (0, +∞) p 1 = 2 : μ1 := lim h→ h(εμ) = 0, μ2 := lim h→ h(μ/2ε) = +∞ p 1 = 3 : μ2 := lim h→ h(μ/2ε) ∈ (0, +∞) p 1 = 4 : μ2 := lim h→ h(μ/2ε) = 0.

(1)

As previously said, index p 2 characterizes the status of the adherents but also that of the interfaces between adherents and adhesive: ⎧ ⎪ ⎨ ⎪ ⎩ p 2 = 1 : the two interfaces are electromechanically perfectly permeable, p 2 = 2 : the two interfaces are electrically impermeable, p 2 = 3 : one interface is electrically impermeable while the other is electroded, p 2 = 4 : the two interfaces are electroded.

(2)

The space R 3 is assimilated with the physical Euclidean space with basis {e 1 , e 2 , e 3 }. Let be a domain, with Lipschitz- continuous boundary, whose intersection S with {x 3 = 0} is a domain of R 2 of positive two-dimensional Hausdorff measure H 2 (S). Let ± := ∩ {±x 3 > 0} and ε be a small positive number, then adhesive and adherents occupy B ε := S × (-ε, ε), ε ± := ± ± εe 3 , respectively; let ε = ε

+ ∪ ε -, S ε ± := S ± εe 3 , O ε := ε ∪ B ε ∪ ± S ε
± . Let ( mD , mN ), ( eD , eN ) be two partitions of ∂ with H 2 ( mD ), H 2 ( eD ) > 0 and 0 < δ := dist( eD , S). For all in { mD , mN , eD , eN }, ± , ε 

± , ε de- notes ∩ {±x 3 > 0}, ± ± εe 3 , ∪ ± ε ± , respectively; if (γ D , γ N ) is a partition of γ := ∂ S, we denote γ D , γ N , γ × (-ε, ε) by ε DI , ε NI , ε lat .
⎧ ⎪ ⎨ ⎪ ⎩ (σ h p , D h p ) = μM I e(u h p ), ∇ϕ h p in B ε ∀p 2 ∈ {1, 2, 3, 4} , (σ h p , D h p ) = M ε E e(u h p ), ∇ϕ h p in ε if p 2 = 1, σ h p = a ε E e(u h p ) in ε if p 2 > 1 (3) 
where

(M ε E , a ε E )(x) = (M E , a E )(x ∓ εe 3 ) ∀x ∈ ε ± (4) ⎧ ⎨ ⎩ (M I , M E ) ∈ L ∞ S × ; Lin(K) such that M P = a P -b P b T P c P ; ∃κ > 0, κ|k| 2 ≤ M P (x)k • k, ∀k ∈ K := S × R 3 , a.e. x ∈ , ∀P ∈ {I, E} (5) 
and Lin(S 3 ) is the space of linear operators on the space S N of N × N symmetric matrices whose inner product and norm are noted • and | • | as in R 3 (the same notations for the norm and inner product stand also for K).

Lastly we have to add the following conditions on S ε ± :

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ p 2 = 2 D h p • e 3 = 0 on S ε ± , p 2 = 3 D h p • e 3 = 0 on S ε + , ϕ h p = ϕ h p 0 on S ε -, p 2 = 4 ϕ h p = ϕ h p 0 on S ε ± , (6) 
the electric potential ϕ h p 0 being given on S ε + or S ε ± . It will be convenient to use the following notations:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ k := (ê, ĝ) ê := e αβ , 1 ≤ α, β ≤ 2, ĝ := (g 1 , g 2 ), ∀ k = (e, g) ∈ K ẽ ∈ S 3 ; ẽαβ = e αβ , 1 ≤ α, β ≤ 2, e i3 = 0, 1 ≤ i ≤ 3, ∀ e ∈ S 3 k(r) = k(v, ψ) := e(v), ∇ψ ∀r ∈ H 1 (O; R 3 × R) e(v) ∈ D (S; S 2 ); e(v) αβ = 1 2 (∂ α v β + ∂ β v α ), 1 ≤ α, β ≤ 2, ∀ v ∈ D (S; R 3 ) (7)
and the same symbol e(•) shall also stand for the symmetrized gradient in the sense of distributions of D (O; R 3 ), O ∈ O ε , , \ S, B ε , ε or D (S; R 2 ). An electromechanical state with vanishing electric potential on ε DI and on ε eD when

p 2 = 1 will belong to V ε p := H 1 ε mD (O ε ; R 3 ) × ε p 2 , with ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ε 1 = H 1 ε DI ∪ ε eD (O ε ) ε 2 = H 1 ε DI (B ε ) if H 2 ( ε DI ) > 0, H 1 m (B ε ) if H 2 ( ε DI ) = 0 ε 3 = H 1 ε DI ∪S ε - (B ε ) ε 4 = H 1 ε DI ∪ ± S ε ± (B ε ) (8)
where, for any domain 

O of R N , N = 2, 3, H 1 (O; R M ) denotes the subspace of H 1 (O; R M ), M = 1
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Given ( f , F , d E , d I ) in L 2 ( ; R 3 ) × L 2 ( mN ; R 3 ) × L 2 ( eN ) × L 2 γ N × (-1, 1) with lat d I = 0 when p 2 = 2 and H 2 γ D × (-1, 1) = 0, ϕ oI in H 3/2 (R) vanishing in {|x 3 | > 1 + δ/2} , and ϕ oE in H 1 ( ) vanishing on S, then: f ε (x) = f (x ∓ εe 3 ) a.e. x ∈ ε ± , f ε (x) = 0 a.e. x ∈ B ε , F ε (x) = F (x ∓ εe 3 ) a.e. x ∈ ε mN± , d ε (x) = (μ/ε) 1/2 d I (x, x 3 /ε) a.e. x ∈ B ε , d ε (x) = d E (x ∓ εe 3 ) a.e. x ∈ ε eN± if p 2 = 1, ϕ h p o (x) = ϕ oE (x ∓ εe 3 ) + ε p DI ϕ oI (x ± (1 -ε)e 3 ) a.e. x ∈ ε ± ε p DI ϕ oI (x, x 3 /ε) a.e. x ∈ B ε (9) where p DI is such that p DI = 0 if ∂ 3 ϕ oI = 0 in S × (-1, 1), p DI = 1 if ∂ 3 ϕ oI = 0 in S × (-1, 1). We also introduce the element ϕ o of H 1,1 ( , S) := {ψ ∈ H 1 ( ) whose trace γ o (ψ) on S belongs to H 1 (S)} defined by ϕ o (x) = ϕ oE (x) + (1 -p D I )ϕ oI (x ± e 3 ) a.e. x ∈ ± . We note ϕ o the trace on γ D of ϕ o and set ϕ oI = 1 2 ϕ oI (•, 1) -ϕ oI (•, -1) .
Then, if M p and L p are defined by:

⎧ ⎪ ⎨ ⎪ ⎩ M p (s, r) := ε M ε E k(s) • k(r) dx + μ B ε M I k(s) • k(r) dx, if p 2 = 1 ε a ε E e(u) • e(v) dx + μ B ε M I k(s) • k(r) dx, if p 2 > 1 L p (r) := f ε • v dx + ε mN F ε • v dH 2 + ε DI ∪ ε d ε ψ dH 2 ε = ε eN if p 2 = 1, ε = ∅ if p 2 > 1. ( 10 
)
Seeking an equilibrium state leads to the problem

(P h p ) : Find s h p in (0, ϕ h p 0 ) + V ε p such that M p (s h p , r) = L p (r), ∀r ∈ V ε p which, by
Stampacchia theorem, has a unique solution.

The asymptotic models

In the following C , C will denote various constants independent of h that may vary from line to line. It will be convenient in the cases p 2 > 1 to use the same symbol s h p for (u h p , φh p ) where φh p denotes the extension into ε of ϕ h p by 0.

Without loss of generality, we suppose H 2 ( mD+ ) > 0; moreover, when p 1 = 4, we assume H 2 ( mD± ) > 0, H 2 ( eD± ) > 0.

We recall that if the same symbol u h p denotes a continuous extension from H 1 ( ε

+ ; R 3 ) into H 1 ({x 3 > ε} ; R 3 ) and η is a C ∞ o (R) cut-off function such that η = 1 on [- δ 3 , δ 3 ], 0 ≤ η ≤ 1 and 0 < dη dx 3 ≤ 4 δ on δ 3 ≤ |x 3 | ≤ 2δ 3 , η = 0 on |x 3 | ≥ 2δ 3 (11) 
then Korn inequality imply

B ε |∇u h p | 2 dx ≤ S×(-ε,δ-ε) |∇ηu h p | 2 dx ≤ C S×(-ε,δ-ε) |e(ηu h p )| 2 dx ≤ C |e(u h p )| 2 L 2 (B ε ;S 3 ) + |e(u h p )| L 2 ( ε + ;S 3 ) ( 12 
)
We will propose our models by studying the asymptotic behavior of s h p when h goes to h in three steps. As announced in [START_REF] Licht | Bonding a linearly piezoelectric patch on a linearly elastic body[END_REF], we may proceed, when p 1 = 1, similarly but by taking due account of the realistic nonvanishing electric loading on ε lat easily handled though the standard inequalities:

ε NI ψ 2 dH 2 ≤ C B ε |∇ψ| 2 dx ∀ψ ∈ H 1 ε NI (B ε ) if H 2 ( ε DI ) > 0 ε lat ψ 2 dH 2 ≤ C B ε |∇ψ| 2 dx ∀ψ ∈ H 1 m (B ε ) if H 2 ( ε DI ) > 0 (13) 
When p 1 > 1, we proceed in the spirit of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft inelastic layer[END_REF][START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF][START_REF] Aitmoussa | Modélisation et études des singularités de contraintes d'un joint collé très mince[END_REF].

Step 1 (a priori estimates): By taking r = s h p -(0, ϕ h p 0 ) in the variational formulation of (P ε p ), (12), (13) and

S |s h p (•, ε) -s h p (•, -ε)| 2 dx ≤ 2ε B ε |∇s h p | 2 dx (14) imply: μ|k(s h p )| 2 L 2 (B ε ;K) + |k(s h p )| 2 L 2 ( ε ;K) ≤ C . ( 15 
)
Step 2 (convergence of (s h p )): The following two tools are well suitable to describe the asymptotic behavior of the electromechanical state in the adherents and adhesive, respectively. First, let T ε be the mapping from

H 1 ( ε ; R 3 × R) into H 1 ( \ S; R 3 × R) defined by: (T ε r)(x) = T ε (v, ψ) (x) = (T ε 1 v, T ε 2 ψ)(x) := (v, ψ)(x ± εe 3 ) ∀x ∈ ± . (16) Note that T ε s h p = (T 1 u h p , 0) if p 2 > 1! For any w in H 1 ( \ S; R N ), N ∈ {1, 3}, if γ ± o (w ± ) denotes the trace on S of its restriction w ± to ± , [ [w] ] stands for γ + o (w + ) -γ - o (w -). Next, as for all r of H 1 (B ε ; R 3 × R), one has B ε r(x) - 1 2ε ε -ε r(x, x 3 ) dx 3 2 dx ≤ C ε 2 B ε |∇r| 2 dx (17)
we introduce the following element of L 2 (S; K):

k p (ε, r) := 1 (2ε) q ε -ε k(r)(•, x 3 ) dx 3 , q = max(2 -p 1 , 0) (18)
and, obviously, there holds

k p (ε, r) = (e( U p ), ∇ p ), S h p := (U h p , h p ) := 1 (2ε) q ε -ε s h p (•, x 3 ) dx 3 . ( 19 
)
So ( 12), ( 14) and (15) imply:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ |k(T ε s h p )| L 2 ( \S;K) ≤ C , |[[T ε s h p ]]| 2 L 2 (S;R 3 ×R) ≤ C ε + ε μ |k p (ε, s h p )| 2 L 2 (S;K) ≤ C ε -2q • ε μ |U h p | 2 L 2 (S;R 3 ) ≤ C ε 2(1-q) 1 + ε μ ε 2(q-1) | h p | 2 L 2 (S) ≤ Cc * (h) c * (h) = 1 + ε μ if p 2 = 1, 1 εμ if p 2 = 2, ε 2 + ε μ if p 2 > 2 |e( U h p ), ∇ h p | 2 L 2 (S;S 2 ×R 2 ) ≤ C 1 ε 2q • ε μ |S h p -γ ± o ((T ε s h p ) ± )| 2 L 2 (S;R 3 ×R) ≤ C ε + ε μ if p 1 = p 2 = 1 |U h p -γ ± o ((T ε 1 u h p ) ± )| 2 L 2 (S;R 3 ) ≤ C ε + ε μ if p 1 = 1, p 2 > 1. (20) 
Thus, if a ⊗ S b denotes the symmetrized tensor product of a and b in R 3 , we deduce:

Proposition 2.1. There exists sp = ( ūp , φp ) in H 1 mD ( \ S; R 3 ) × H 1 eD ( \ S) such that T ε s h p weakly converges in H 1 ( \ S; R 3 × R) toward some sp ; φp = 0 when p 2 > 1 and sp belongs to H 1 ( ; R 3 × R) when p 1 ≤ 2.
When p 1 = 4, k p (ε, s h p ) weakly converges in L 2 (S; K) toward some kp = (ē p , ḡp ), and there exists

(U p , p ) in H 1 (S; R 3 × R) such that ( U h p , h p ) converges weakly in H 1 (S; R 2 × R) toward ( U p , p ), (U h p ) 3 converges strongly in L 2 (S) toward (U p ) 3 . Moreover i) when p 1 = 1, U p = γ 0 ( ūp
)
for all p 2 , while ¯ p is equal to γ 0 ( φp ) when p 2 = 1 or to γ 0 (ϕ 0 ) when p 2 ≥ 3. Furthermore, the trace on γ D of ¯ p is equal to φo while kp = e( ūp ), ∇ ¯ p , ( ḡp ) 3 = ϕ oI when p 2 = 4;

ii) when p 1 = 2, U p = 0, ¯ p = 0 and kp = 0; iii) when p 1 = 3, U p = 0 and ēp = [ [ ūp ] ] ⊗ S e 3 for all p 2 , while ¯ p and ḡp vanish only when p 2 = 2, ( ḡ(3,1)

) 3 = [ [ φp ] ], ( ḡ(3,4) ) 3 = 0.
Actually, in the next step, we will show that ( ūp , φp ) is necessarily the unique solution to a variational problem so that the whole sequences converge. To identify kp , when p 1 > 1, it suffices to go to the limit in the identity

B ε k(s h p )(x) • τ i (x) + s h p (x) • div τ i (x) dx = S [[T ε 1 u h p ]] i θ 1 + [[T ε 2 ϕ h p ]] θ 2 dx (21) 
with τ i = (θ 1 e 3 ⊗ S e i , θ 2 e 3 ), θ j ∈ C ∞ o (S), j = 1, 2, i = 1, 2, 3 and to use the convergence to 0 in the sense of distributions of k p (ε, s h p ) by due account of (20)!

Step 3 (identification of (s p , kp )):

When p 1 > 1, we simply go to the limit in the variational formulation of (P h p ) by using suitable test-functions r ε p . For all w 1 in H 1 mD ( ; R 3 ) and all ζ 1 in H 1 eD ( ) vanishing in a neighborhood of γ D , let (w 1,ε , ζ 1,ε ) be defined by

w 1,ε , ζ 1,ε (x) = (w 1 , ζ 1 )(x ∓ εe 3 ) a.e. x ∈ ε ± (w 1 , ζ 1 )(x, 0) a.e. x ∈ B ε For all w 2 in H 1 mD ( \ S; R 3 ) and all ζ 2 in H 1 eD ( \ S) vanishing in a neighborhood of γ D , let (w 2,ε , ζ 2,ε ) be defined by (w 2,ε , ζ 2,ε )(x) = (w 2 , ζ 2 )(x ∓ εe 3 ) a.e. x ∈ ε ± (w a , ζ a )(x, x 3 /ε) + |x 3 | ε (w s , ζ s )(x, x 3 /ε) a.e. x ∈ B ε with (w a , ζ a )(x) = 1 2 [(w 2 , ζ 2 )(x, x 3 ) -(w 2 , ζ 2 )(x, -x 3 )] (w s , ζ s )(x) = 1 2 [(w 2 , ζ 2 )(x, x 3 ) + (w 2 , ζ 2 )(x, -x 3 )] Note (see the proof of Lemma 4.1 of [3]) that e(w 2,ε ) - [[w 2 ]] ⊗ S e 3 2ε , ∇ζ 2,ε - [[ζ 2 ]]e 3 2ε L 2 (B ε ;K) ≤ C |(w 2 , ζ 2 )| H 1 (B ε \S;R 3 ×R) . So r ε p = (v ε p , ψ ε p ) reads as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ v ε p = w min (p 1 -1,2),ε , 1 ≤ p 2 ≤ 4 ψ ε p = ⎧ ⎪ ⎨ ⎪ ⎩ ζ min (p 1 -1,2),ε p 2 = 1 (θ 1 + x 3 θ 2 )/ε, θ 1 , θ 2 ∈ C ∞ 0 (S) p 1 = 3, 4, p 2 = 2 (1 + x 3 /ε)θ, θ ∈ C ∞ 0 (S) p 1 = 3, 4, p 2 = 3 0 i f (2 ≤ p 1 ≤ 4, p 2 = 4) or (p 1 = 2, p 2 = 2, 3) (22) 
When p 1 = 1, one proceeds in two steps. First we prove

(M kp ) 2 p = 0 ( 23 
)
where k i p denotes the projection on K i p of any element k of K with:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ K = K 1 p ⊕ K 2 p ⊕ K 3 p , p 2 ≤ 2 : K 1 p := {(e, g) ∈ K; e i3 = 0, g 3 = 0} , K 2 p := (e, g) ∈ K; ê = 0, ĝ = 0 , K 3 p := {0} , p 2 > 2 : K 1 p = (e, g) ∈ K; e i3 = 0, ĝ = 0 , K 2 p = (e, g) ∈ K; ê = 0, g = 0 , K 3 p = {(e, g) ∈ K; e = 0, g 3 = 0} ( 24 
)
For that, we simply use test functions ρ ε p built as follows: given

(w, ψ) in C ∞ o (S; R 3 × R), ρ ε p (x) = (x 3 + ε)(w, I p 2 ψ)(x) a.e. x ∈ B ε 2ε(w + , I p 2 ψ + )(x -εe 3 ) in ε + , 0 in ε - (25) 
where (w

+ , ψ + ) is an extension into H 1 mD+ ( + ; R 3 ) × H 1 eD+ ( + ) and I p 2 = 1 if p 2 ≤ 2, I p 2 = 0 if p 2 > 2.
Hence, as Proposition 2.1 yields ( kp ) 3 p = 0, we deduce

(M I kp ) 1 = M I p ( kp ) 1 ; M I p := M 11 Ip -M 12 Ip (M 22 Ip ) -1 M 21 Ip (26) with M ij Ip , 1 ≤ i, j ≤ 3 being the decomposition of M I in linear operators mapping K i p into K j p . Next, given (v, ψ) in H 1 mD ( ; R 3 ) × H 1 eD ( ) ∩ H 2 ( ; R 3 × R) ψ vanishing in a neighborhood of γ D , we define r ε p = (v ε p , ψ ε p ) by: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ v ε p (x) = v(x, 0) -x 3 ∇ v 3 (x, 0), v ε 3 (x) = v 3 (x, 0) a.e. x ∈ B ε v ε p (x) = v(x ∓ εe 3 ) ∓ εR ± ∇ v 3 (•, 0), 0 (x ∓ εe 3 ) a.e. x ∈ ε ± ψ ε p (x) = ψ(x ∓ εe 3 ) in ε ± , ψ(x, 0) in B ε if p 2 = 1 ψ ε p (x) = ψ(x, 0) in B ε if p 2 = 2 ψ ε p (x) = 0 in B ε if p 2 ≥ 3 (27) 
where R ± is a continuous lifting operator from H 1/2 (S; R 3 ) into H 1 mD± ( ± ; R 3 ). As ( e( v), ∇ψ) belongs to K 1 p almost everywhere in S, (26) yields lim

h→ h B ε μM I k(s h p )k(r ε p ) dx = S M I kp • ( e( v), ∇ψ) dx = S M Ip ( k1 p ) • ( e( v), ∇ψ) dx (28) 
while, obviously, we have:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim h→ h ε M ε E k(s h p ) • k(r ε p ) dx = M E k(s p ) • k(v, ψ) dx if p 2 = 1 lim h→ h ε a ε E e(u h p ) • e(v ε p ) dx = a E e( ūp ) • e(v) dx if p 2 ≥ 2 lim h→ h L (1,p 2 ) (r ε (1,p 2 ) ) := ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ f • v dx + mN F • v dH 2 + eN d E ψ dH 2 + ( μ1 ) 1/2 γ N 1 -1 d I (•, x 3 ) dx 3 ψ dH 2 p 2 = 1 f • v dx + mN F • v dH 2 + ( μ1 ) 1/2 γ N 1 -1 d I (•, x 3 ) dx 3 ψ dH 2 p 2 ≥ 2 (29) 
Lastly, Jensen inequality and the previously established weak convergences achieve the proof of the following convergence result which supports our asymptotic models in the form of variational problems P p where the convention ∞ × 0 = 0 is understood.

Theorem 2.1. If p 2 = 1, when h goes to h, T ε s h p converges strongly in H 1 ( \ S; R 3 × R) toward sp the unique solution to P (p 1 ,1) :

Find (u, ϕ) in (0, ϕ o ) + V p 1 × p 1 such that M (p 1 ,1) (u, ϕ), (v, ψ) = L (p 1 ,1) (v, ψ) ∀(v, ψ) ∈ V p 1 × p 1
where

M (p 1 ,1) (u, ϕ), (v, ψ) := ⎧ ⎪ ⎨ ⎪ ⎩ M E k(u, ϕ) • k(v, ψ) dx + μ1 S M Ip e( û), ∇ϕ • e( û), ∇ϕ dx p 1 = 1 M E k(u, ϕ) • k(v, ψ) dx + μ2 S M I [[u]] ⊗ S e 3 , [[ϕ]]e 3 • [[v]] ⊗ S e 3 , [[ψ]]e 3 dx p 1 ≥ 2 L (p 1 ,1) (v, ψ) := ⎧ ⎨ ⎩ f • v dx + mN F • v dH 2 + eN d E ψ dH 2 + ( μ1 ) 1/2 γ N 1 -1 d I (•, x 3 ) dx 3 ψ dH 2 p 1 = 1 f • v dx + mN F • v dH 2 + eN d E ψ dH 2 p 1 ≥ 2 V 1 := v ∈ H 1 mD ( ; R 3 ); v ∈ H 1 (S; R 2 ) , V 2 := H 1 mD ( ; R 3 ), V 3 = V 4 := H 1 mD ( \ S; R 3 ) 1 := ψ ∈ H 1 eD ( ); ψ ∈ H 1 γ D (S) , 2 := H 1 eD ( ), 3 = 4 := H 1 eD ( \ S) If p 2 > 1, when h goes to h, (T ε 1 u h p , h p ) converges strongly in H 1 ( \ S; R 3 ) × H 1 (S) toward ( ūp , p ) the unique solution to P p : Find (u, φ) in 0, q γ o (ϕ o ) + V p 1 × p such that M p (u, φ), (v, ψ) = L p (v, ψ) ∀(v, ψ) ∈ V p 1 × p where M (1,p 2 ) (u, φ), (v, ψ) := ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a E e(u) • e(v) dx + μ1 S M Ip e( û), ∇φ • e( v), ∇ψ dx p 2 = 2 a E e(u) • e(v) dx + μ1 S M Ip e( û), ( ḡp ) 3 ) • e( v), 0 dx p 2 ≥ 3 with M Ip e( û), ( ḡp ) 3 ) • 0, e 3 ) = 0 if p 2 = 3 ( ḡp ) 3 = ϕ oI if p 2 = 4 a E e(u) • e(v) dx + μ1 S M I,p (e( û), ϕ oI ) • (e( v), 0) dx p 2 = 4 L (1,p 2 ) (v, ψ) := f • v dx + mN F • v dH 2 + ( μ1 ) 1/2 γ N 1 -1 d I (•, x 3 ) dx 3 ψ dx ∀p 2 ≥ 2 and for 2 ≤ p 1 , p 2 ≤ 4 M (p 1 ,p 2 ) (u, φ), (v, ψ) := ⎧ ⎨ ⎩ a E e(u) • e(v) dx + μ2 S M I ([[u]] ⊗ S e 3 , (∇φ, ( ḡp ) 3 )) • ([[v]] ⊗ S e 3 , (∇ψ, 0)) dx with M I ([[u]] ⊗ S e 3 , (∇φ, ( ḡp ) 3 )) • (0, e 3 ) = 0 if p 2 = 2, 3 ( ḡp ) 3 = 0 if p 2 = 4 or p 1 = 2 L (p 1 ,p 2 ) (v, ψ) = f • v dx + mN F • v dH 2 (p 1 ,2) := H 1 γ D (S) or H 1 m (S) according to the positivity of the length of γ D , (p 1 ,3) = (p 1 ,4) := {0} , p 1 = 2 (2,p 2 ) := {0} , 2 ≤ p 2 ≤ 4

Concluding remarks

In the case of piezoelectric adhesive and adherents (p 2 = 1), our results extend those obtained in elasticity (see [START_REF] Aitmoussa | Modélisation et études des singularités de contraintes d'un joint collé très mince[END_REF][START_REF] Acerbi | Thin inclusions in linear elasticity: a variational approach[END_REF][START_REF] Licht | A modelling of elastic adhesive bonded joints[END_REF][START_REF] Licht | Some new mathematical modelings of junctions[END_REF]).

The asymptotic behavior of the adhesive strongly depends on the magnitude of the stiffness compared to that of the thickness. When the magnitude of the stiffness is of the order of the inverse of the thickness, the adhesive is replaced by a material piezoelectric surface perfectly bonded to the adherents. When it is lesser, the adhesive is replaced by an electromechanical constraint between the two adherents which can be perfect adhesion, electromechanical pull-back or free separation, according to the order of magnitude of the stiffness which is, respectively, larger, equal or lower than that of the thickness.

There is a large discrepancy between our results and that of [START_REF] Serpilli | An asymptotic model of a multimaterial with a thin piezoeletric interphase[END_REF][START_REF] Serpilli | Asymptotic analysis of a multimaterial with a thin piezoelectric interphase[END_REF] obtained by formal or questionable arguments. Similarly, in the case of a thin piezoelectric layer embedded between two elastic adherents, depending on the magnitude of the stiffness, the adhesive is replaced by a material elastic surface perfectly bonded to the adherents or by a mechanical constraint between the adherents. In the case of electrically impermeable interfaces, the material surface has a non-local elastic behavior (since the additional state variable of electric nature φ can be eliminated!), the constitutive equations being derived from the asymptotic behavior of a thin piezoelectric plate acting as a sensor (case p = 1 in [START_REF] Weller | Asymptotic modeling of thin piezoelectric plates[END_REF]). When one interface is electrically impermeable while the other is electroded, the material surface is an elastic membrane. When the two interfaces are electroded, the material surface is an elastic membrane with residual stress. In these last two cases, the constitutive equations are derived from the asymptotic behavior of a thin piezoelectric plate acting as an actuator (case p = 2 in [START_REF] Weller | Asymptotic modeling of thin piezoelectric plates[END_REF]). The mechanical constraint is perfect adhesion, elastic pull-back or free separation according to the order of magnitude of the stiffness. In the case of electrically impermeable interfaces, the elastic pull-back is of non-local nature (since the state variable of electric nature φ, additional to the relative displacement, can be eliminated). In the two other cases, the elastic pull-back is local. When the two interfaces are electroded, it is similar to the purely elastic case, while, if only one interface is electroded, piezoelectric and dielectric coefficients enter the constitutive equations.

The realistic dual situation [START_REF] Geis | Asymptotic models for piezoelectric stack actuators with thin metal inclusions[END_REF] in which an elastic layer is embedded between two piezoelectric bodies can be treated within the same framework.

  The structure made of the adhesive and the two adherents, perfectly stuck together along S ε ± , is clamped on ε mD , subjected to body forces of density f ε and to surface forces of density F ε on ε

	a given electric potential ϕ h p 0 is applied on ε	mN and vanishing on ε lat . Moreover,
	If σ h p , u h p , e(u h p ), D h p , ϕ h	

DI and, when p 2 = 1, on ε eD , while electric charges of density d ε appear on ε NI and, when p 2 = 1, on ε eN .

p stand for the fields of stress, displacement, strain, electric displacement and electric potential, respectively, the constitutive equations of the structure, for all p 1 in {1, 2, 3, 4}, read as: