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State and parameter estimation: a nonlinear Luenberger

approach

Chouaib Afri1∗, Vincent Andrieu1,3, Laurent Bako2 and Pascal Dufour1∗†‡§

November 24, 2015

Abstract

The design of a nonlinear Luenberger observer for a parametrized linear SISO (single-input single-

output) system is studied. From an observability assumption of the system, the existence of such an observer

is concluded. In a second step, a novel algorithm for the identification of such systems is suggested and is

implemented on a third order system. Compared to the adaptive observer available in the litterature, it has

the advantage to be of low dimension and to admit a strict Lyapunov function.

1 Introduction

In this paper, a parametrized linear system described by the following equations is considered:

ẋ = A(θ )x+B(θ )u , y =C(θ )x, (1)

where θ in Θ ⊂ R
q is a vector of unknown constant parameters and Θ is a known set, u in R is a controlled

input (in L ∞
loc(R+)). The state vector x is in R

n and y is the measured output in R. Mappings A : Θ →R
n×n,

B : Θ →R
n×1 and C : Θ → R

1×n are known C1 matrix valued functions.

In the following, an estimation problem is considered: The design of an observer to estimate the state and

the unknown parameters of the system from the knowledge of y and u. In other words, an asymptotic observer

for the extended (nonlinear) n+ q dimensional system

ẋ = A(θ )x+B(θ )u , θ̇ = 0 , y =C(θ )x (2)

has to be designed.

The nonlinear Luenberger methodology introduced in [13] (see also [22, 10, 12, 4, 2]) is a method which

permits to design an observer based on weak observability assumptions. Following this approach, the first
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step is to design a C1 function (x,θ ,w) 7→ T (x,θ ,w) such that the following partial differential equation

(PDE) is satisfied:
∂T

∂x
(x,θ ,w) [A(θ )x+B(θ )u]+

∂T

∂w
(x,θ ,w)g(w,u)

= ΛT (x,θ ,w)+LC(θ )x

(3)

where Λ is a Hurwitz squared matrix, L a column vector and g is a controlled vector field. The dimensions of

the matrices and of the vector field g must be chosen consistently. This will be precisely defined in the sequel.

The interest in this mapping is highlighted if (z(·),w(·)), the solution of the dynamical system initiated from

(z0,w0), is considered:

ż = Λz+Ly , ẇ = g(w,u) .

Indeed, assuming completeness (of the w part of the solution), for all positive time t:

˙︷ ︷

z(t)−T (x(t),θ ,w(t)) = Λ(z(t)−T (x(t),θ ,w(t))) .

Hence, due to the fact that Λ is Hurwitz, asymptotically it yields

lim
t→+∞

|z(t)−T(x(t),θ ,w(t))| = 0 . (4)

In other words, z provides an estimate of the function T .

The second step of the Luenberger design is to left invert the function T in order to reconstruct the

extended state (x,θ ) from the estimate of T . Hence, a mapping T ∗ has to be constructed such that

T ∗(T (x,θ ,w),w) = (x,θ ) . (5)

Of course, this property requires the mapping T to be injective. Then, the final observer is simply

ż = Λz+Ly , ẇ = g(w,u) , (x̂, θ̂ ) = T ∗(z,w) . (6)

A particularly interesting feature of this observer is that its convergence rate can be made as large as requested

(see [2]) and that the convergence analysis does not rely on LaSalle invariance principle.

In this paper, this strategy is adopted to suggest a solution to the state and parameter estimation for linear

systems (2). This paper can be seen as an extension of the result of [19] in which a nonlinear Luenberger

observer is constructed for a harmonic oscillator which fits in the class of the studied systems.

As it will be seen in Section 3, the new approach proposed here can be employed to identify the state and

all parameters describing an unknown linear model. This topic has been widely studied in the literature (see

the books [8, 16, 18]). Adaptive identifiers can be traced back to G. Kreisselmeier in [11]. This work has

then been extended in many directions to allow time varying matrices and multi-input multi-output systems

(see for instance [5, 15, 23]).

The algorithm given in Section 3 gives a new approach to address the same problem. It has the advantage

to allow for a prescribed convergence rate. Moreover, its structure is relatively simple (see (28)) and its

dimension is not too high compared to existing algorithms. Compared to the preliminary version of this

work which has been presented in [1], all proofs are given. Moreover, a study is given which shows how

inputs have to be generated in order to ensure convergence of the proposed algorithm. The robustness of

the observer is also studied. One of the main difference is that, in contrast to all other available approaches,

a strict Lyapunov function is available. This allows to give an estimate of the asymptotic estimation error

knowing some bounds on the disturbances. Finally an illustrative example is given.

Also, in [1], results are given for multi input multi-output (MIMO) systems. To simplify the presentation,

only SISO system are considered all along this paper.
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The paper is divided in two parts. In a first part, some general statements are given concerning the crucial

steps allowing to design a nonlinear Luenberger observer for a linear system with unknown parameters. More

precisely, in Section 2.1, the existence of a mapping T which solves the partial differential equation (3) is

discussed. Section 2.2 is devoted to the study of the injectivity of the mapping T assuming some observability

properties. An observer is then given in Section 2.3 and its robustness is studied.

In the second part of the paper, this general framework is then adapted to the particular case of system

identification problems. In Section 3.2 a novel notion of differentially exciting system is introduced and

compared with existing notions. This notion allows to describe precisely the kind of input that allows to

estimate the parameters and the state. In Section 3, a left inverse of the mapping T is constructed to get the

observer when considering a specific canonical structure for the matrices A, B and C. This leads to a novel

solution for the identification of linear time invariant systems. This algorithm is then tested on an academic

example.

To simplify the presentation, most of the proofs of results are given in the appendix.

Notations:

• Given a matrix A in R
n×n, σ{A} denotes its spectrum and σmin{A} the eigenvalue with smallest real

part.

• 1n denotes the n dimensional real vector composed of 1.

• In denotes the n dimensional identity matrix.

• Given a C j function u: ū( j)(t) =
[
u(t) . . . u( j)(t)

]⊤
.

• For a vector or a matrix | · | denotes the usual 2-norm.

• Given a set C, Cl(C) is its closure.

2 Existence of a nonlinear Luenberger observer for state and param-

eters estimation

2.1 Existence of the mapping T

In [4], it is shown that, in the autonomous case the existence of the mapping T , solution of the PDE (3), is

obtained for almost all Hurwitz matrices Λ. In the context of the controlled system (2), the same type of

result still holds. Moreover, an explicit solution of the PDE (3) may be given.

Theorem 1 (Existence of T ). Let r be a positive integer. For all r-uplet of negative real numbers (λ1, . . . ,λr)
such that

λi /∈
(
⋃

θ∈Θ

σ{A(θ )}
)

, i = 1, . . . ,r, (7)

there exists a linear in x function T :Rn×Θ×R
r →R

r solution to the PDE (3) with Λ=Diag{λ1, . . . ,λr} , L=
1r and g : Rr ×R 7→R

r defined as g(w,u) = Λw+Lu.

Proof. Keeping in mind that the spectrum of Λ and A(θ ) are disjoint (see (7)), the matrix Mi(θ ) in R
1×n can

be defined for all i in {1, . . . ,r}:

Mi(θ ) =C(θ )(A(θ )−λiIn)
−1 .

For all i = 1, . . . ,r, let Ti : Rn ×Θ×R→R and the vector field be defined as:

Ti(x,θ ,wi) = Mi(θ )[x−B(θ )wi] . (8)
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Let also the vector field gi : R×R→ R be defined as

gi(wi,u) = λiwi + u . (9)

It can be noticed that Ti is solution to the PDE

∂Ti

∂x
(x,θ ,wi) [A(θ )x+B(θ )u]+

∂Ti

∂wi

(x,θ ,wi)gi(wi,u)

= λiTi(x,θ ,wi)+C(θ )x .

Hence, the solution of the PDE (3) is simply taken as

T (x,θ ,w) =
[
T1(x,θ ,w1) . . . Tr(x,θ ,wr)

]⊤
. (10)

This ends the proof.

Remark 1. Note that in the particular case in which the system is autonomous, the mapping T is given as

To(x,θ ) = M(θ )x , M(θ ) =






M1(θ )
...

Mr(θ )




 . (11)

This matrix M(θ ) is solution to the following parametrized Sylvester equation

M(θ )A(θ ) = ΛM(θ )+LC(θ ) . (12)

Hence, taking r = n, the well known Luenberger observer introduced in [13] in the case of autonomous

systems is recovered. Note however that, here, the injectivity is more involved than in the context of [13]

since θ is unknown.

Remark 2. Note that if the set Θ is bounded, then it is ensured that there exist (λi)’s which satisfy equation

(7). Indeed, if Θ is bounded, then the set (
⋃

θ∈Θ σ{A(θ )}) is a bounded set. This can be obtained from the

fact that each eigenvalue λ in σ{A(θ )} is a zero of the characteristic polynomial:

λ n + µ1(θ )λ
n−1 + · · ·+ µn−1(θ )λ + µn(θ ) = 0, (13)

where µi(θ ) are continuous functions of θ . Boundedness of Θ together with the continuity of the µi’s imply

that there is c > 0 such that |µi(θ )| ≤ c ∀i ∈ {1, . . . ,n}, ∀θ ∈ Θ. As a consequence if |λ |> 1, we must have

|λ | ≤
n

∑
j=1

|µ j(θ )||λ |1− j ≤ c

1− 1/|λ |

which hence implies that |λ | ≤ c+ 1.

2.2 Injectivity of the mapping T

As seen in the previous section, it is known that if the following dynamical extension is considered:

ż = Λz+Ly , ẇ = Λw+Lu (14)
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with z in R
r and w in R

r, then it yields that along the solution of the system (2)-(14), equation (4) is true.

Consequently, T (x,θ ,w) defined in (8)-(10) is asymptotically estimated. The question that arises is whether

this information is sufficient to get the knowledge of x and θ . This is related to the injectivity property of this

mapping. As shown in [4], in the autonomous case this property is related to the observability of the extended

system (2). With observability, it is sufficient to take r large enough to get injectivity. Here, the same type of

result holds if it is assumed an observability uniform with respect to the input in a specific set.

The following strong observability assumption is made:

Assumption 1 (Uniform differential injectivity). There exist two bounded open subsets Cθ and Cx whose

closures are respectively in Θ and R
n, an integer r and Ur a bounded subset of Rr−1 such that the mapping

Hr(x,θ ,v) = Hr(θ )x+
r−1

∑
j=1

S jHr(θ )B(θ )v j−1 ,

with

Hr(θ ) =








C(θ )
C(θ )A(θ )

...
C(θ )A(θ )r−1








v = (v0, . . . ,vr−2) and S is the shift matrix operator such that for all s = (s1, . . . ,sr), S× s = (0,s1, . . . sr−1) is

injective in (x,θ ), uniformly in v ∈ Ur and full rank. More precisely, there exists a positive real number LH

such that for all (x,θ ) and (x∗,θ ∗) both in Cl(Cθ )×Cl(Cx) and all v in Ur

|Hr(x
∗,θ ∗,v)−Hr(x,θ ,v)| ≥ LH

∣
∣
∣
∣

[
x− x∗

θ −θ ∗

]∣
∣
∣
∣
.

The following result establishes an injectivity property for large eigenvalues of the observer.

Theorem 2. Assume Assumption 1 holds. Let u(·) be a bounded Cr−1([0,+∞]) function with bounded r− 1

first derivatives, i.e. there exists a positive real number u such that

|ū(r−1)(t)| ≤ u , ∀t ≥ 0 . (15)

For all r-uplet of distinct negative real numbers (λ̃1, . . . , λ̃r), for all positive time τ and for all w0 in R
r,

there exist two positive real numbers k∗ and L̄T such that for all k > k∗, the mapping defined in (8)-(10) with

λi = kλ̃i, i = 1, . . . ,r satisfies the following injectivity property in C = Cx ×Cθ . For all t1 ≥ τ , if ū(r−2)(t1) is

in Ur, then for all (x,θ ) and (x∗,θ ∗) in Cx ×Cθ the following inequality holds:

|T (x,θ ,w(t1))−T (x∗,θ ∗,w(t1))| ≥
L̄T

kr

∣
∣
∣
∣

[
x− x∗

θ −θ ∗

]∣
∣
∣
∣

(16)

where w(·) is the solution of the w dynamics in (14) initiated from w0.

The proof of this result is reported in Appendix .1.

Remark 3. Note that in the case in which the control input is such that for all t ≥ 0, ū(r−2)(t) is in Ur, the

inequality (16) can be rewritten by removing the time dependency. More precisely, by introducing Cw a subset

of Rr defined as

Cw =
⋃

t≥t1

{w(t)},

where w(·) is the solution of the w dynamics in (14) initiated from w0, the inequality (16) can be restated as

follows: for all (x,θ ) and (x∗,θ ∗) in Cx ×Cθ and all w in Cw,

|T (x,θ ,w)−T (x∗,θ ∗,w)| ≥ L̄T

kr

∣
∣
∣
∣

[
x− x∗

θ −θ ∗

]∣
∣
∣
∣
.
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2.3 Construction of the observer

From the existence of an injective function T solution to the partial differential equation (3), it is possible

to formally define a nonlinear Luenberger observer as in equation (6). Note however that the mapping T ∗

solution of (5) has to be designed. Following the approach introduced in [20], the Mc-Shane formula can be

used (see [17] and more recently [14]).

Indeed, assuming we have in hand a function T uniformly injective, then the following proposition holds.

Proposition 1 ([17]). If there exist bounded open sets Cx and Cθ and a set Cw such that for all (x,θ ) and

(x∗,θ ∗) both in Cl(Cx)×Cl(Cθ ) and w in Cw

|T (x,θ ,w)−T (x∗,θ ∗,w) | ≥ LT

∣
∣
∣
∣

[
x− x∗

θ −θ ∗

]∣
∣
∣
∣
, (17)

then the mapping T ∗ : Rr ×Cw →R
n ×Θ, T ∗(z,w) =

(

(T ∗
xi(z,w))1≤i≤n,(T

∗
θ j(z,w))1≤ j≤q

)

defined by

T ∗
xi(z,w) = inf

(x,θ)∈Cl(Cx×Cθ )

{

xi +
1

LT

|T (x,θ ,w)− zp|
}

, (18)

T ∗
θ j
(z,w) = inf

(x,θ)∈Cl(Cx×Cθ )

{

θ j +
1

LT

|T (x,θ ,w)− zp|
}

, (19)

satisfies for all (z,x,θ ,w) in R
r ×Cx ×Cθ ×Cw

∣
∣
∣
∣
T ∗(z,w)−

[
x

θ

]∣
∣
∣
∣
≤

√
n+ q

LT

|z−T (x,θ ,w)| . (20)

Note that one of the drawback of the suggested construction for T ∗ is that this one is based on a minimiza-

tion algorithm and hence may lead to numerical problems. Some alternative solution has been investigated

in [6] (see also[3]) to overcome this optimization step but it is still an open question to employ these tools in

this context.

Moreover, in Section 3, when considering a particular structure of the matrices A, B and C, an explicit

function T ∗ is given.

2.4 Robustness

In this section, the robustness of the proposed algorithm is investigated. Note that contrary to most of existing

identification algorithms, the convergence result of the current identifier, does not rely on LaSalle invariance

principle (as this is the case for instance in [11]). Indeed, considering the function V : Cx ×R
r ×Cw → R+

defined by

V (x,θ ,z,w) = |z−T(x,θ ,w)| .
assuming that inequality (17) holds, this implies that

V (x,θ ,z,w) ≥ LT

∣
∣
∣
∣

[
x

θ

]

−T ∗(z,w)

∣
∣
∣
∣
.

Along the trajectories of the system, it yields

˙︷ ︷

V (x,θ ,z,w) ≤ max
i=1,..,r

{λi}V (x,θ ,z,w) ,
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with λi < 0. In other words, V is a strict Lyapunov function associated to the observer.

This allows to give an explicit characterization of the robustness in term of input-to-state stability gain.

Indeed, consider now the case in which we add three time functions δx, δθ and δy to system (2) such that we

consider the system

ẋ = A(θ )x+B(θ )u+ δx , θ̇ = δθ , y =C(θ )+ δy (21)

where (δx,δθ ,δy) are time functions of appropriate dimensions.

Following the same approach, we consider the observer (6) with the function T ∗ given in (18).

Proposition 2 (Robustness). Let Cx, Cθ and Cw be three bounded open sets which closure is respectively in

R
n, Θ and R

r. Consider the mapping T given in (8). Assume that there exist three positive real numbers LT ,

Lx and Lθ such that (17) is satisfied and for all (x,θ ,w) in Cx ×Cθ ×Cw

∣
∣
∣
∣

∂T

∂x
(x,θ ,w)

∣
∣
∣
∣
≤ Lx ,

∣
∣
∣
∣

∂T

∂θ
(x,θ ,w)

∣
∣
∣
∣
≤ Lθ ,

then considering the observer (6) with the function T ∗ given in (18) it yields along the solutions of system

(21) the following inequality for all t positive such that (x(t),θ (t),w(t)) is in Cx ×Cθ ×Cw.

∣
∣
∣
∣

[
θ (t)− θ̂(t)
x(t)− x̂(t)

]∣
∣
∣
∣
≤

√
n+ q

LT
exp

(

max
i=1...,r

{λi}t

)

|z(0)−T(x(0),θ (0),w(0))|

+

√
n+ q

(

sups∈[0,t]{Lx|δx(s)|+Lθ |δθ (s)|+
√

r|δy(s)|}
)

LT maxi=1...,r{|λi|}
. (22)

Proof. Note that along the solutions of system (21) and (6), it yields for all t ≥ 0

˙︷ ︷

z−T (x,θ ,w) = Λ(z−T (x,θ ,w))

−∂T

∂x
(x,θ ,w)δx(t)−

∂T

∂θ
(x,θ ,w)δθ (t)+1rδy.

The solution of this last equation is given as

z(t)−T (x(t),θ ,w(t))= exp(Λt)(z(0)−T (x(0),θ (0),w(0))

+
∫ t

0
exp(Λ(t − s))

(

−∂T

∂x
(x,θ ,w)δx(s)

−∂T

∂θ
(x,θ ,w)δθ (s)+1rδy

)

ds
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Hence, the norm |z(t)−T (x(t),θ (t),w(t))| is upper bounded as

|z(t)−T (x(t), θ (t),w(t))| ≤
∫ t

0
exp

(

max
i=1...,r

{λi}(t − s)

)

ds

× sup
s∈[0,t]

{Lx|δx(s)|+Lθ |δθ (s)|+
√

r|δy(s)|}

+ exp

(

max
i=1...,r

{λi}t

)

|z(0)−T (x(0),θ (0),w(0)|

≤
sups∈[0,t]{Lx|δx(s)|+Lθ |δθ (s)|+

√
r|δy(s)|}

maxi=1...,r{|λi|}

+ exp

(

max
i=1...,r

{λi}t

)

|z(0)−T (x(0),θ (0),w(0)|

Consequently with the function T ∗ defined in (18), it yields from Proposition 1 equation (20) that the result

holds.

Remark 4. It may be interesting to see how the constants LT , Lx and Lθ behave when the eigenvalues of the

observer are multiplied by a positive real number k. Following the proof of Theorem 2, it can be seen that

LT = L̄T
kr . Moreover, it can be checked that the following estimation can be made:

∣
∣
∣
∣

∂T

∂x
(x,θ ,w)

∣
∣
∣
∣
≤ Cx

k
,

∣
∣
∣
∣

∂T

∂θ
(x,θ ,w)

∣
∣
∣
∣
≤ Cθ

k

with Cθ and Cx denoting some constant numbers. As a consequence, the previous bound becomes

∣
∣
∣
∣

[
θ (t)− θ̂(t)
x(t)− x̂(t)

]∣
∣
∣
∣
≤

kr
√

n+ q

L̄T

exp

(

k max
i=1...,r

{λ̃i}t

)

|z(0)−T(x(0),θ (0),w(0)|

+

kr√n+ qsups∈[0,t]

{

Cx
k
|δx(s)|+

Cθ

k
|δθ (s)|+

√
r|δy(s)|

}

L̄T maxi=1...,r{|λ̃i|}
. (23)

From this estimate, we conclude that increasing the speed of convergence (by increasing the eigenvalues

factor k) of the observer has the consequence of reducing its robustness to output and state perturbations.

3 Application to system identification problems

3.1 Considered realization

In the previous section, it has been shown that based on a differential observability assumption and its asso-

ciated set of good inputs Ur, it is possible to design a robust observer which reconstructs the state and the

unknown parameters of a linear system in the form (1) as long as the input remains in Ur.

Note however that this observer relies on the construction of a mapping T ∗ given in (18) which requires a

nonlinear (and probably non convex) optimization. In this section, a particular canonical structure for system

(1) is considered. This allows to give an explicit construction of a mapping T ∗ left inverse of T . Moreover, it

8



allows to give a complete characterization of the number of dimension of the observer and the class of inputs

which guarantees that the differential observability property (i.e. Assumption 1) holds.

The considered particular canonical structure for the matrix-valued functions A, B, C is given as follows.

A(θ ) = A(θa) =










−θa1 1 0 ·· 0

−θa2 0 1 ·· 0

: : :
. . . :

: : : 1

−θan 0 0 ·· 0










∈ R
n×n;

B(θ ) = B(θb) =
[
θb1 θb1 · · · · · · θbn

]⊤ ∈R
n×1;

C(θ ) =C =
[

1 0 · · · ·· 0
]
∈ R

1×n.

(24)

where θ = [θa,θb] is in R
2n with θa =

[
θa1 ·· θan

]
∈ R

n , θb =
[
θb1 ·· θbn

]⊤ ∈ R
n . Note that assum-

ing the structures (24) for A,B,C is without loss of generality: any input-output behavior of a linear SISO

system can be described with a model of this structure. Such a realization is observable for any vector θ .

The interest of this structure is twofold:

1. it is possible to select r and to characterize the class of input such that Assumption 1 is satisfied.

2. it is possible to give explicitly a candidate for the mapping T ∗ which allows us to define a complete

algorithm.

The following two subsections are devoted to addressing these two points. The complete identification

algorithm is given at the end of this section.

3.2 Input generation in order to satisfy the Assumption 1

It is usual that in adaptive control and in identification problem the class of input considered is sufficiently

exciting. This means that the signal has to be composed of a sufficiently large number of frequencies such that

some integral are positive definite. The characterization of a good input is now well understood for discrete

time systems. For instance, as mentioned in [7], a sequence of input (u(k))k∈N is sufficiently rich of order p

if there exist m ∈ N and ρ > 0 such that the following inequality holds for all integer k

k+m

∑
i=k






u(i)
...

u(i+ p− 1)






[
u(i) . . . u(i+ p− 1)

]
≥ ρIp.

There have been some attempts to extend this assumption to continuous time systems (see [9] or [21]). In

the context of this paper, the approach is different. The assumption we make on the input is that sufficient

information is obtained from its time derivative. To be more precise, given an integer r and a vector v =
(v0, . . . ,v2r) in R

2r+1 we introduce Mr(v) the (r+ 1)× (r+ 1) (Hankel) real matrix defined as

Mr(v) =









v0 v1 . . . vr

... . . . vr+1

...
vr vr+1 . . . v2r









(25)

With this notation, we can now define the notion of differentially exciting inputs.
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Definition 1 (Differentially exciting function). A C2r function u is said to be differentially exciting of order r

at time t if the matrix Mr(ū
(2r)(t)) is invertible.

As it will be shown in the following proposition, there is a link between this property and the property of

persistency of excitation for continuous time system (as introduced for instance in [21]).

Proposition 3 (Link with persistency of excitation). Let u :R→R be a smooth function which is differentially

exciting of order r at time t. Then there exist two positive real numbers ε(t) and ρ(t) such that

∫ t+ε(t)

t
ū(r)(s)

(
ū(r)(s)

)⊤
ds ≥ ρ(t)I (26)

The proof of this proposition is given in Appendix .2.

Remark 5. As seen in the proof of the proposition, when

(

Mr(ū
(2r)(t))

)⊤
Mr(ū

(2r)(t)) ≥ ρuI with ρu in-

dependent of t and when the first 2r+ 1 derivatives of u are bounded for all t, ε may not depend on t. This

implies that inequality (26) can be made uniform in time.

The interest we have in inputs satisfying the differential exciting property is that at each time this property

is satisfied for r = 2n, then the mapping H4n−1 satisfies Assumption 1 when we restrict ourselves to sets Θ of

coefficients θ = [θa,θb] for which the couple (A(θa),B(θb)) is controllable.

Proposition 4. Let Cx be a bounded open set in R
n. Let Cθ be a bounded open set with closure in Θ and such

that for all θ = (θa,θb) in Cl(Cθ ) the couple (A(θa),B(θb)) is controllable. Let U4n be a compact subset

of R4n−1 such that for all v = (v0, . . . ,v4n−2) in U4n the matrix Mn−1(v) is invertible. Then Assumption 1 is

satisfied. More precisely there exists a positive real number LH such that for all (x,θ ) and (x∗,θ ∗) both in

Cl(Cθ )×Cl(Cx) and all v in U4n

|H4n−1(x
∗,θ ∗,v)−H4n−1(x,θ ,v)| ≥ LH

∣
∣
∣
∣

[
x− x∗

θ −θ ∗

]∣
∣
∣
∣
.

The proof of this proposition is given in Appendix .3.

A natural question that arises from the former Proposition is whether or not it is possible to generate an

input which satisfies the differentially exciting property. As shown in the following proposition inputs with

such property may be easily generated by observable and conservative linear systems.

Lemma 1 (Generation of differentially exciting input). Consider the linear system

v̇ = Jv , u = Kv v(0) = v0 (27)

with v in R
2r and J being an invertible skew adjoint matrix with distinct eigenvalues and K a matrix such

that the couple (J,K) is observable. Then there exists v0 in R
2r such that u is differentially exciting of order

2r− 1 for all time.

Proof. Direct calculations show that

Mr(ū
(4r−2)(t)) =








K

KJ
...

KJ2r−1








[
v(t) Jv(t) · · · J2r−1v(t)

]
.
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System (27) being observable, invertibility of the matrix Mr(ū
(4r−2)(t)) is obtained if the second matrix is

full rank for some v0. To this end, note J being skew adjoint and invertible there exist ωi, i = 1, . . . ,r, real

positive and distinct numbers such that J can be written (in some specific coordinates) in the form

J = Diag{S(ω1), · · · ,S(ωr)} ∈ R
2r×2r ,

where

S(ωi) =

[
0 ωi

−ωi 0

]

.

The minimal polynomial of such a matrix J has degree equal to its dimension 2r. As a consequence, there

exists a nonzero vector v0 such that
[
v0 Jv0 . . .J2r−1v0

]
is non singular. For example, it can be verified

that v0 =
[
0 1 0 1 · · · 0 1

]⊤
(i.e., with one entry out of two equal to 1) fulfills the condition. Let

the initial state v0 of (27) be selected so as to satisfy this condition. Then the state trajectory of (27) is defined

by v(t) = eJt v0 with

eJt = Diag{eS(ω1)t , ··,eS(ωr)t} ,eS(ωi)t =

[
cos(ωit) sin(ωit)
−sin(ωit) cos(ωit)

]

We then claim that for any t,
[
v(t) Jv(t) . . .J2r−1v(t)

]
is also non singular. To see this, suppose for

contradiction that the matrix in question is singular. Then there is a nonzero polynomial p(z) of degree less

than 2r such that p(J)eJt v0 = 0. Since eJt commutes with any polynomial of J, we have eJt p(J)v0 = 0 which

in turn implies that p(J)v0 = 0 because eJt is invertible. But the last equality contradicts the assumption made

on v0.

Lemma 1 can be employed to select signals that fulfill the differentially exciting property. For example it

follows from this lemma that a multisine signal of the form

u(t) =
r

∑
i=1

αi sin(ωit)

where αi 6= 0∀i, ωi 6= 0∀i and ωi 6=ωk for i 6= k, is differentially exciting of order 2r−1. Indeed, the multisine

signal corresponds to the situation when K =
[
ᾱ1 · · · ᾱr

]
, ᾱi =

[
αi 0

]
, v0 =

[
0 1 0 1 · · · 0 1

]⊤

and J defined as in the proof of Lemma 1.

3.3 Explicit candidate for the mapping T ∗

Another interest of the canonical structure given in (24) is that it leads to a simple expression of the left

inverse T ∗ of the mapping T .

Proposition 5 (Explicit T ∗). Let Cx, Cθ and Cw be three bounded open sets which closure are respectively in

R
n, R2n and R

r. Let r be a positive integer and a r-uplet of negative real numbers (λ1, . . . ,λr) such that (7)

holds. Consider the associated mapping T : Cx ×Cθ ×Cw → R
r given in (8) and assume that there exists a

positive real numbers LT , such that (17) is satisfied for all (x,θ ) and (x∗,θ ∗) both in Cl(Cx)×Cl(Cθ ) and

w in Cw. Then there exist three positive real numbers pmin, εT and LT ∗ such that the function

T ∗(z,w)=

{
(P(z,w)⊤P(z,w))−1P(z,w)⊤z if P⊤P ≥ pminI3n

0 elsewhere
(28)

with P(z,w) =
[
P1(z1,w1)

⊤ · · · Pr(zr,wr)
⊤]⊤ ∈ R

r×(3n) defined as

Pi(z,w) =
[

V T
i ziV

T
i −wiV

T
i

]
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with Vi =
[

1
λi

. . . 1
λ n

i

]⊤
is well defined and satisfies for all (z,w,x,θ ) such that |z−T (x,θ ,w)| ≤ εT the

following inequality ∣
∣
∣
∣
T ∗(z,w)−

[
x

θ

]∣
∣
∣
∣
≤ LT ∗ |z−T (x,θ ,w)| . (29)

The proof of Proposition 5 is given in Appendix .4.

Note that the function defined in (28) is not continuous. However, since it is known that z converges

asymptotically to imT , it yields that after a transient period z reaches the set in which inequality (29) applies

and in which T ∗ remains continuous. A solution to avoid this problem has been deeply investigated in [19]

considering an autonomous second order system with only one parameter. It is an open question to know if

these tools could be applied in the current context.

Employing the results obtained so far, it is possible now to derive a complete algorithm and criterion for

convergence of the proposed estimation scheme.

Theorem 3. Consider the system with A, B, C defined in (24) and with the input u defined as

v̇(t) = Jv(t) , u(t) = Kv(t) v(0) = v0

Let Cx be a bounded open set in R
n. Let Cθ be a bounded open set which closure is in Θ and such that for all

θ = (θa,θb) in Cl(Cθ ) the couple (A(θa),B(θb)) is controllable. Given (λ̃1, . . . , λ̃r) with r = 4n− 1, there

exists k∗ > 0 such that for all k > k∗, the observer (6) with λi = kλ̃i with the function T ∗ given in (28) yields

the following property. For all solution (x(t),θ ) which remains in Cx ×Cθ , it yields

lim
t→+∞

|x(t)− x̂(t)|= 0 , lim
t→+∞

|θ − θ̂(t)|= 0 .

3.4 Numerical illustration

In this part we show via simulation the performances and robustness of the observer (14)-(28) in the presence

of an output noise. Let us select an controllable and observable third order system of the class (1) where

matrices A, B and C are given as

A =





−2.31 −0.17 −0.16

−0.17 −1.02 0.04

−0.15 0.04 −0.26



 ; B =





0

0.88

0



 ;

C =
[

1.18 −0.78 −0.96
]
.

Since this system is observable it admits an canonical representation of the form (24) with matrices Â, B̂,Ĉ
given by

Â(θ̂ ) =





−θ̂a1 1 0

−θ̂a2 0 1

−θ̂a3 0 0



 ; B̂(θ̂ ) =





θ̂b1

θ̂b2

θ̂b3



 ;

C(θ̂ ) =
[

1 0 0
]

We set in Table 1 the observer configuration and necessary initial points to run a simulation with the Matlab

software.

The results of simulation are given in Fig.1 and Fig.2. We can see from Fig.1 that the estimated system

eigenvalues σ{Â(θ̂ )} (which are invariant through a similar transformation) converge to the real system

eigenvalues. Moreover, the speed of convergence is proportional to the gain k but on the other side the output
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r = 4n− 1 ; n = 3 ; x(0) = 0 ; z(0) = w(0) = 0

θ̂a(0) = θ̂b(0) = 0; x̂(0) = 0

Λ = k (Diag([0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1]))

The input u(t) is a sum of sin signals of 4n− 1 distinct frequencies

Table 1: System configuration.

Figure 1: Convergence of Martix Â eigenvalues to the target (Matrix A eigenvalues) in presence of added

output noise of 40dB and for various values of the observer gain

noise (40dB) effect is also proportional to k. As a consequence, a trade-off must be found between speed of

convergence and robustness. This is completely in line with the result of Proposition 2. Another invariant

parameter through a similar transformation is the relative error presented in Fig.2 which gives consistent

results with those of Fig.1.

4 Conclusions

The design of a nonlinear Luenberger observer to estimate the state and the unknown parameters of a

parametrized linear system was studied here. In a first part of the study, a Luenberger observer was shown to

exist. This result is obtained from the injectivity property of a certain mapping. A novel persistence excitation

condition is given named Differential excitation and a link with the classic definition was shown. Then, a

method to generate a persistent input based on Differential excitation is given. This result has been used on a

third order linear system example and seems to offer very promising results.

.1 Proof of Theorem 2

First of all, picking k sufficiently large implies that the matrix Mi which satisfies

Mi(θ ) =
1

kλ̃i

C(θ )

(
1

kλ̃i

A(θ )− In

)−1

is well defined. On another hand, assume that k is sufficiently large such that for all i in [1,r],

k|λ̃i|> max{|σ{A(θ )}|} , ∀θ ∈ Cθ . (30)

This implies that, for θ in Cθ :

Mi(θ ) =−
r

∑
j=1

1

(kλ̃i) j
C(θ )A(θ ) j−1 +Ri(θ ) ,

Figure 2: Evolution of Markov parameters in presence of added output noise of 40dB and for k = 1,5,10,15.
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with

Ri(θ ) =−
+∞

∑
j=r+1

C(θ )A(θ ) j−1

(kλ̃i) j
.

Let K be the matrix in R
r×r defined as

K = Diag

{
1

k
, . . . ,

1

kr

}

and Ṽi =

[
1

λ̃i

1

λ̃ 2
i

. . .
1

λ̃ r
i

]

Note that Mi satisfies the following equality:

Mi(θ ) =−ṼiK Hr(θ )+Ri(θ ) .

On the another hand, for all t, since u is Cr and w(·) being solution of (14), one get:

w
( j)
i (t) = (kλ̃i)w

( j−1)
i (t)+ u( j−1)(t) , j = 1, . . . ,r .

which implies that wi satisfies:

wi(t) =−
r−2

∑
j=0

u( j)(t)

(kλ̃i) j+1
+Rwi(t)

where:

Rwi(t) =
w
(r−1)
i (t)

(kλ̃i)r−1

=
exp(kλ̃it)w

(r−1)
i (0)

(kλ̃i)r−1
+

∫ t

0
exp((kλ̃i)(t − s))

u(r−1)

(kλ̃i)r−1
ds

and with:

w
(r−1)
i (0) = (kλ̃i)

r−1wi(0)+
r−1

∑
j=1

(kλ̃i)
r−1− ju( j)(0) .

Hence, with (15), it yields that for all t :

|Rwi(t)| ≤C exp(kλ̃it)+
u

(kλ̃i)r

where C is a positive real number which depends on wi(0) and (u(0), . . . ,u(r−2)(0)). Keeping in mind that λ̃i

is negative, when t is larger than τ > 0, the previous inequality implies:

|Rwi(t)| ≤ Rwi0(k) =C exp(kλ̃iτ)+
u

(kλ̃i)r
,∀t ≥ τ ,

where Rwi0 depends on k but not on t.

By collecting terms of higher order in 1
k

in a function denoted RMBi, it yields the following equality.

Mi(θ )B(θ )wi(t) = ṼiK

r−1

∑
j=1

S jHr(θ )B(θ )u
( j−1)(t)+RMBi(θ , t),

and with
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RMBi(θ , t) =
r

∑
j=1

r−2

∑
ℓ=r− j

C(θ )A(θ ) j−1u(ℓ)(t)

(kλ̃ ) j+ℓ+1

−Rwi(t)ṼiK Hr(θ )−Ri(θ )
r−2

∑
j=0

u( j)(t)

(kλ̃i) j+1
.

Using the fact that Cθ and u( j)(t) are bounded, it yields the existence of two positive real numbers C0 and

C1 such that for all t ≥ τ :

|RMBi(θ , t)| ≤
C0

kr+1
,

∣
∣
∣
∣

∂RMBi

∂θ
(θ , t)

∣
∣
∣
∣
≤ C1

kr+1
.

Finally with (8)

Ti(x,θ ,wi(t)) = ṼiK Hr(x,θ , ū
(r−2)(t))+RTi(x,θ , t)

with

RTi(x,θ , t) = Ri(θ )x+RMBi(θ , t)

By denoting RT (x,θ , t) = (RT 1(x,θ , t), . . .RTr(x,θ , t)), this implies:

T (x,θ ,wi(t)) = Ṽ K Hr(x,θ , ū
(r−2)(t))+RT (x,θ , t) , (31)

where Ṽ in R
r×r is the Vandermonde matrix defined as:

Ṽ =






1

λ̃1
·· 1

λ̃ r
1

: :
1

λ̃r
·· 1

λ̃ r
r




 .

Note that RT is a C1 function and it is possible to find two positive real number CT 0 and CT 1 such that for all

(x,θ ) in Cx ×Cθ and t ≥ τ:
∣
∣
∣
∣

∂RT (x,θ , t)

∂x

∣
∣
∣
∣
≤ CT 0

kr+1
,

∣
∣
∣
∣

∂RT (x,θ , t)

∂θ

∣
∣
∣
∣
≤ CT 1

kr+1
.

Hence the mapping RT is globally Lipschitz with a Lipschitz constant in o
(

1
kr

)
. Hence, it is possible to find

k0 such that for all k ≥ k0 and all quadruples (x,x∗,θ ,θ ∗) in C 2
x ×C 2

θ , for all t ≥ τ:

|RT (x,θ , t)−RT (x
∗,θ ∗, t)| ≤ L

2
∣
∣Ṽ −1

∣
∣kr

∣
∣
∣
∣

[
x− x∗

θ −θ ∗

]∣
∣
∣
∣
. (32)

It can be shown that the result holds with this value of k0. Indeed, employing (31), it yields that, for all t:

|T (x,θ ,w(t))−T (x∗,θ ∗,w(t))| ≥ −|RT (x,θ , t)−RT (x
∗,θ ∗, t)|

+
∣
∣
∣Ṽ K

(

Hr(x,θ , ū
(r−2)(t))−Hr(x

∗,θ ∗, ū(r−2)(t))
)∣
∣
∣ ,

|T (x,θ ,w(t))−T (x∗,θ ∗,w(t))| ≥ −|RT (x,θ , t)−RT (x
∗,θ ∗, t)|

+

∣
∣
∣Hr(x,θ , ū

(r−2)(t))−Hr(x
∗,θ ∗, ū(r−2)(t))

∣
∣
∣

|Ṽ −1||K −1|
.

Consider now t1 ≥ τ , the last term of the previous inequality can be lower-bounded by (32). Moreover,

if u(t1) . . . ,u
(r−2)(t1) is in Ur, the other term can be lower-bounded based on Assumption 1 and the result

follows.
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.2 Proof of Proposition 3

Given an integer ℓ, the taylor expansion of u at t leads to the following expression

u(ℓ)(t + s) =
r

∑
j=0

u(ℓ+ j)(t)
s j

j!
+Rℓ(t,s) , ∀ s ∈ R . (33)

where Rℓ(t,s) =
∫ s

0

∫ s1
0 . . .

∫ sr
0 u(ℓ+r+1)(t + sr)ds1 . . .dsr. Hence this implies

ū(r)(t + s) =Mr(ū
(2r)(t))DrVr(s)+






R0(t,s)
...

Rr(t,s)




 ,

where Dr = Diag
{

1,1, . . . , 1
r!

}
and Vr(s) =

[
1 s . . . sr

]⊤
. Since by assumption, u is differentially

exciting of order r at time t, this implies the following equality.

∫ t+ε

t
ū(r)(s)

(

ū(r)(s)
)⊤

ds =Mr(ū
(2r)(t))P(ε, t)Mr(ū

(2r)(t))⊤

where

P(ε, t) = Dr









ε ε2

2
ε3

3
. . . εr+1

r+1
ε2

2
ε3

3
. . . εr+1

r+1
εr+2

(r+2)
...

εr+1

r+1
. . . ε2r+1

2r+1









Dr

+DrN(ε, t)(Mr(ū
(2r)(t))⊤)−1 +Mr(ū

(2r)(t))−1N(ε, t)⊤Dr

where N(ε, t) is the (r+ 1)× (r+ 1) real matrix defined as N(ε, t) =
∫ ε

0 Vr(s)
[
R0(s, t) . . . Rr(s, t)

]
.

To show that inequality (26) holds, it is needed to show that matrix P is positive definite for sufficiently

small ε . In order to show this, let Dε = Diag{1,ε, . . . ,εr}. The matrix P can be decomposed as follows.

P(ε, t) = Dε ε (DrHrDr +Q(ε, t))Dε . (34)

where Hr is the Hilbert matrix defined as Hr =








1 1
2

1
3

. . . 1
r+1

1
2

1
3

. . . 1
r

1
(r+2)

...
1
r

. . . 1
2r+1








and Q(ε, t) is the matrix defined

as

Q(ε, t) =
DrD

−1
ε N(ε, t)(Mr(ū

(2r)(t))⊤)−1D−1
ε

ε

+
D−1

ε Mr(ū
(2r)(t))−1N(s, t)⊤D−1

ε Dr

ε
.

The Hilbert matrix being positive definite, it implies that P is positive definite for sufficiently small ε if the

norm of the matrix Q goes to zero as ε goes to zero. In order to upper bound the norm of Q, the following

inequality can be obtained.

|Rℓ(t,s)| ≤ sup
ν∈[0,s]

∣
∣
∣u

(ℓ+r+1)(t +ν)
∣
∣
∣

sr+1

(r+ 1)!
.
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This leads to the following inequality.

∣
∣
∣
∣
∣

(
D−1

ε N(ε, t)

ε

)

i,ℓ

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
ε−i

∫ ε

0
si−1Rℓ(t,s)ds

∣
∣
∣
∣

≤ sup
ν∈[0,ε]

∣
∣
∣u

(ℓ+r+1)(t +ν)
∣
∣
∣

εr+1

(i+ r+ 1)(r+ 1)!

Hence, for ε < 1, it yields

|Q(ε, t)| ≤ 2|Dr|
∣
∣
∣
∣

D−1
ε N(ε, t)

ε

∣
∣
∣
∣

∣
∣
∣(Mr(ū

(2r)(t))⊤)−1
∣
∣
∣

∣
∣D−1

ε

∣
∣

≤ 2(1+ r) sup
ℓ∈[0,r],ν∈[0,ε]

∣
∣
∣u

(ℓ+r+1)(t +ν)
∣
∣
∣

× ε1+r

(2+ r)(r+ 1)!

∣
∣
∣Mr(ū

(2r)(t))−1
∣
∣
∣ε−r

This gives finally

|Q(ε, t)| ≤ ε2(r+ 1)
supℓ∈[r+1,2r+1],ν∈[0,1]

∣
∣
∣u(ℓ)(t +ν)

∣
∣
∣

√

ρu(t)(2+ r)(r+ 1)!

where ρu(t) is a positive real number such that Mr(ū
(2r)(t))⊤Mr(ū

(2r)(t)) ≥ ρu(t)I which exists since u is

differentially exciting of order r at time t.

This implies that for ε sufficiently small |Q(ε, t)| becomes small. This allows to say that the matrix P

defined in (34) is positive definite for small ε . Consequently, inequality (26) holds and the result follows.

.3 Proof of Proposition 4

This proof is decomposed into two parts. In a first part the injectivity of the mapping H4n−1 is demonstrated.

Then it is shown that it is also full rank. From this, the existence of the positive real number LH is obtained

employing [2, Lemma 3.2].

Part 1: Injectivity Assume there exist (x,θ ) and (x∗,θ ∗) both in Cx ×Cθ and v = (v0, . . . ,v4n−2) in U4n such

that

H4n−1(x,θ ,v) = H4n−1(x
∗,θ ∗,v) .

To simplify the notation, let us denote y j = (H4n−1(x,θ ,v)) j+1 = (H4n−1(x
∗,θ ∗,v)) j+1 for j = 0, . . . ,4n−1.

Note that for all j ≥ n we have

y j =−θany j−n −·· ·−θ1y j−1 +θbnv j−n + · · ·+θb1v j−1 . (35)
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It follows that the following set of 3n equations holds,

0 =








(Hr(x,θ ,v)−Hr(x
∗,θ ∗,v))n

(Hr(x,θ ,v)−Hr(x
∗,θ ∗,v))n+1

...
(Hr(x,θ ,v)−Hr(x

∗,θ ∗,v))4n−1








=








y . . . yn−1 v0 . . . vn−1

y1 . . . yn v1 . . . vn

...
...

...
y3n−1 . . . y4n−2 v3n−1 . . . v4n−2




















δan

...
δa1

δbn

...
δb1













(36)

where δa j = θ ∗
a j −θa j and δb j = θb j −θ ∗

b j. This yields for ℓ= 0, . . . ,2n− 1








yℓ . . . yℓ+n−1 vℓ . . . vℓ+n−1

yℓ+1 . . . yℓ+n vℓ+1 . . . vℓ+n

...
...

...
yℓ+n . . . yℓ+2n−1 vℓ+n . . . vℓ+2n−1




















δan

...
δa1

δbn

...
δb1













= 0 .

Hence, employing equality (35) on the last line of the previous vector and multiplying the previous vector by
[
θan θa(n−1) . . . θa1 1

]
leads to an algebraic equation depending only on v in the form

2n−1

∑
j=0

c jvℓ+ j = 0 , ℓ= 0, . . . ,2n− 1 . (37)

where
c0 = δbnθan + δanθbn

c1 = θanδb(n−1)+θa(n−1)δbn +θb(n−1)δan +θbnδa(n−1)

and more generally, the c j are given by the matrix definition






c0

...
c2n−1




= M (θa,θb)













δan

...
δa1

δbn

...
δb1
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where M (θa,θb) is the Sylvester real matrix defined as

M (θa,θb) =















θbn · · · 0 θan · · · 0

θb(n−1)
. . .

...
...

. . .
...

...
. . . θbn θa1

. . . θan

θb1

. . . θb(n−1) 1
. . .

...
...

. . .
...

...
. . . θa1

0 · · · θb1 0 · · · 1















. (38)

Finally, this can be rewritten

Mn−1(v)M (θa,θb)













δan

...
δa1

δbn

...
δb1













= 0

Note that due to the particular structure of the couple (A(θa),B(θb)) and with controllability, it implies that

the Sylvester matrix is invertible for all (θa,θb) in Cl(Cθ ). The matrix Mn−1(v) being also invertible by

assumption, this implies that 0 = δa1 = · · · = δan = δb1 = · · ·= δbn and consequently θ = θ ∗. From the ob-

servability property of the couple (A(θa),C), this yields that x = x∗. We conclude injectivity of the mapping

H4n−1 with respect to (x,θ ).

Part 2: The mapping H4n−1 is full rank.

Let H4n−1 satisfy the following equation

∂H4n−1

∂x
(x,θ ,v)vx +

∂H4n−1

∂θ
(x,θ ,v)vθ = 0. (39)

Then, we must prove that [vT
x vT

θ ]
T = 0 for all (x,θ ) in Cx ×Cθ . We have for i = 0, ...,4n− 1

∂yi

∂ (x,θ )

[
vx

vθ

]

= 0

and for i = n, ...,4n− 1,

yi = θanyi−n + · · ·+θa1yi−1 +θbnvi−n + · · ·+θb1vi−1

So

∂yi

∂ (x,θ )

[
vx

vθ

]

= θan

∂yi−n

∂ (x,θ )

[
vx

vθ

]

+ · · ·+θa1

∂yi−1

∂ (x,θ )

[
vx

vθ

]

+
[
yi−1 · · · yi−n vi−1 · · · vi−n

]
vθ

=
[
yi−1 · · · yi−n vi−1 · · · vi−n

]
vθ

And so, if we follow exactly the same reasoning as in the previous step and consider the same assumptions,

one can conclude that vθ = 0.
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On the other hand, we can write H4n−1(x,θ ,v) in the following form

H4n−1(x,θ ,v) = H4n−1(θ )x+
4n−2

∑
j=1

S jH4n−1(θ )B(θ )v j−1 ,

and from (39) we get

∂H4n−1

∂x
vx +

∂H4n−1

∂θ
vθ = H4n−1(θ )vx +

∂H4n−1

∂θ
vθ = 0.

But we have proved that vθ = 0. Therefore H4n−1(θ )vx = 0. Since we assume that y is observable for each θ
in Cθ , H4n−1(θ ) is full column rank so that vx = 0 and the result follows.

.4 Proof of Proposition 5

The proof of this result is made in three steps. In a first step it is shown that the function T is solution to an

implicit equation in which the unknown x and θ appear linearly. In a second step, it is shown that the linear

matrix which appears is full rank. Finally, the selection of pmin is made.

Step 1 The function T and the matrix P satisfy the following equality for all (x,θ ,w),

Ti(x,θ ,w) =
[

V T
i Ti(x,θ ,w)V

T
i −wT

i V T
i

]

︸ ︷︷ ︸

Pi(Ti,wi)





x

θa

θb



 (40)

Indeed, note that the function Mi(θ ) can be rewritten

Mi(θ ) =C(A(θa)−λiIn)
−1 . (41)

Let

Ji =








−λi 1 · · · 0
...

. . .
. . .

...
0 · · · −λi 1

0 · · · 0 −λi







∈ R

d×d ,

then:

A(θa)−λiIn = Ji −θaC .

Applying the Sherman-Morrison-Woodbury formula, one gets:

(A(θa)−λiIn)
−1 = J−1

i +
J−1

i θaCJ−1
i

1−CJ−1
i θa

(42)

where 1− eT
1 J−1

i θa 6= 0 is obtained from (7). Combining (41) and (42) gives us:

(1−CJ−1
i θa)Mi(θa) = (CJ−1

i ) ,

which, together with (8), reveals that:

(
1−CJ−1

i θa

)
Ti(x,w) =CJ−1

i x−CJ−1
i B(θb)wi .

it can be verified that V T
i = eT

1 J−1
i . Rearranging the previous expression, one gets the proof of (40).
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Step 2: The matrix P defined in (40) has full column rank for all (z,x,θ ,w) such that z = T (x,θ ,w) with

(x,θ ,w) in Cl(Cx)×Cl(Cθ )×Cl(Cw).
Differentiating (40) with respect to (x,θ ) yields for all (x,θ ,w)

∂Ti

∂ (x,θ )
(x,θ ,w) =

∂Ti

∂ (x,θ )
(x,θ ,w)V⊤

i θa +Pi(Ti(x,θ ,w),w)

This implies that

[1−V⊤
i θa]

∂Ti

∂ (x,θ )
(x,θ ,w) = Pi(Ti(x,θ ,w),w)

Hence:

Diag
{

1−VT
1 θa, ...,1−V T

r θa

} ∂T

∂ (x,θ )
(x,θ ,w) = P(z,w)

Again, since condition (7) holds, it yields that Diag
{

1−VT
1 θa, ...,1−V T

r θa

}
is invertible. Moreover, since

(17) is satisfied, it implies that ∂T
∂ (x,θ)

(x,θ ,w) is full column rank. Consequently P is full column rank for all

(z,x,θ ,w) such that z = T (x,θ ,w) with (x,θ ,w) in Cl(Cx)×Cl(Cθ )×Cl(Cw).
Step 3: Conclusion: Finally, let for all (x,θ ,w) ∈ Cl(Cx)×Cl(Cθ )×Cl(Cw)

pmin =
1

2
minσmin

{

P(T (x,θ ,w),w)⊤P(T (x,θ ,w),w)
}

. (43)

With this definition, it yields that given (x,w,θ ) in Cl(Cx)×Cl(Cθ )×Cl(Cw), we have

P(T (x,θ ,w),w)⊤P(T (x,θ ,w),w) ≥ pminI3n .

Hence, with the mapping T ∗ defined in (28) it yields,

T ∗(T (x,θ ,w)) = (P(T (x,θ ,w),w)⊤P(T (x,θ ,w),w))−1

×P(T (x,θ ,w),w)⊤T (x,θ ,w)

which gives from (40)

T ∗(T (x,θ ,w),w) =





x

θa

θb



 .

Let also Czw be the open subset of R2r such that

Czw =
{

(z,w),z = T (x,θ ,w),σmin

{
P(z,w)⊤P(z,w)

}
> pmin

}

.

Note that Cz,w is an open subset in which T ∗ is smooth and which contains the compact set {(z,w),z =
T (x,θ ,w),x ∈ Cx,θ ∈ Cθ}. Let εT be a positive real number sufficiently small such that the compact set

Cl(Cz) ={z ∈R
r,∃(x,θ ,w) ∈ Cl(Cx)×Cl(Cθ )×Cl(Cw),

|z−T (x,θ ,w)| ≤ εT}

satisfies Cl(Cz)×Cl(Cw)⊂ Czw. Note that T ∗ is Lipschitz in Cl(Cz)×Cl(Cw). Hence the result holds for

a particular LT ∗ .
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