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Abstract: We develop a Hamiltonian control theory suitable for a 4D symplectic map that models a
ring particle accelerator composed of elements with sextupole nonlinearity. The controlled system
is designed to exhibit a more regular orbital behavior than the uncontrolled one. Using the Smaller
Alignement Index (SALI) chaos indicator, we are able to show that the controlled system has a
dynamical aperture up to 1.7 times larger than the original model.
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1 Introduction

Particle accelerators are technological devices allowing studies at both “infinitely small scale”,
e.g. particles responsible for elementary forces, and “extremely large scale”, e.g. the origin
of cosmos. In a simplified approach, such devices are composed of basic elements sequence:
focusing magnets, defocusing magnets, accelerating electromagnetic fields and trajectory bending
elements in the case of ring accelerators. The resulting total dynamics is thus nonlinear, and
can be described, in the absence of strong damping, by a conservative system. This system
can be modelled by a symplectic map built from the composition of several elementary maps
corresponding to each basic magnetic element.
One of the main problems in the dynamics of ring accelerators is to study the stability around the
nominal orbit, i.e. the circular orbit passing through the centre of the ring. Each component of
the ring can be seen as a nonlinear map that deforms the trajectory at large amplitude. Moreover,
such maps possess stochastic layers whose effect is the reduction of the stability domains around
the nominal circular orbit (the so-called dynamical aperture - DA) [1]. Such behaviors imply that
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(chaotic) nearby orbits can drift away after a few ring turns, eventually colliding with accelerator’s
boundaries, and consequently reducing the beam lifetime and the accelerator performance.
The goal of this paper is to present a reliable improvement of beam stability by increasing the
DA in a simplified accelerator model, consisting of only one type of element having a sextupole
nonlinearity [2, 3, 4, 5].
We work in the framework of the Hamiltonian Control Theory presented in [7, 8], where two
methods of controlling symplectic maps have been described, namely using Lie transformations
and generating functions. In the present paper we use the former method, which allows direct
determination of the new controlled map; avoiding the possible problems related to coordinate
inversion.
The aim of control theory is to improve selected features of a given system by slightly modifying
its Hamiltonian with the addition of a small control term, so that the new system and the original
one are conjugated namely, they have the same dynamics. This technique is particularly suitable
whenever one can directly act on the system and modify it, e.g. in the case of a particle accelerator
where the addition of a control term in the Hamiltonian function can be seen as the introduction
of a suitable magnet in the accelerator lattice.
In our study, we use the Smaller Alignement Index (SALI) [6, 10, 11, 12] method, which is
an efficient indicator for characterising orbits as chaotic or regular in Hamiltonian flows and
symplectic maps. The SALI is computed using the time evolution of two deviation vectors along
the studied orbit.
The paper is organized as follows: After the introduction of the accelerator model in Section 2,
we present a general result for the control of symplectic maps in Section 3 and the application
to the studied model in Section 4. Then we briefly recall the SALI chaos indicator in Section 5,
while Section 6 presents our results on the chaotic behavior of the model. Finally, in Section 7 we
summarize our conclusions. In the appendix, several technical theoretical issues are discussed in
detail.

2 The model

Let us consider a charged particle passing through a simplified accelerator ring with linear
frequencies (tunes) qx, qy, having a localized thin sextupole magnet (for more details the interested
reader is referred to [2]). The magnetic field of this element induces a modification of the orbit
once the particle passes through it, modelled by the following 4D symplectic map


x′1
x′2
x′3
x′4


 =


cosω1 − sinω1 0 0
sinω1 cosω1 0 0

0 0 cosω2 − sinω2

0 0 sinω2 cosω2





x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3


 (2.1)

= T



x1

x2

x3

x4


 . (2.2)

where x1 (x3) denotes the deflection from the ideal circular orbit in the horizontal (vertical)
direction before the particle enters the element, and x2 (x4) is the associated momentum. Primes
denotes positions and momenta after the particle passes through the element. The parameters ω1

and ω2 are related to the accelerator’s tunes 1 qx and qy by ω1 = 2πqx and ω2 = 2πqy. The first
matrix in (2.1) describes the linear motion of a particle, which corresponds to a simple rotation in

1Such parameters have been fixed throughout this work to the values qx = 0.61803 and qy = 0.4152,
corresponding to a non-resonant condition (see [5]).
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the phase space. The nonlinearity induced by the thin sextupole magnet is represented by the 2nd

order polynomial expression in (2.1). The particle dynamics at the n-th turn, can be described

by the sequence (x
(n)
1 , x

(n)
2 , x

(n)
3 , x

(n)
4 )n≥0, where the (n+ 1)-th positions and momenta are defined

as a function of the n-th ones by 2.1.
Map (2.1) decomposes naturally in an integrable part, the rotation by angles ω1, ω2, in the planes
x1, x2 and x3, x4 respectively, and a quadratic “perturbation”. The following observation will be a
key point used in the next section: such maps can be obtained as the time-1 flow of the following
Hamiltonian systems (see A)

H(x1, x2, x3, x4) = −ω1
x2

1 + x2
2

2
− ω2

x2
3 + x2

4

2
and V (x1, x2, x3, x4) = −x

3
1

3
+ x1x

2
3 , (2.3)

more precisely using the compact form of the Poisson brackets 2

~x′ = T (~x) = e{H}e{V }~x , (2.4)

where ~x = (x1, x2, x3, x4)T, with T denoting the transpose of a matrix, and by definition, for any

function f defined in the phase space, {H}f = {H, f} = (∇H)TJ∇f , with J =

(
0 1
−1 0

)
,

being the symplectic constant matrix,

e{H}f =
∑
n≥0

{H}n

n!
f and {H}nf = {H}n−1({H}f) . (2.5)

The dynamics of map 2.1 has been already studied in [6] where it has been shown that its
phase space contains both regular and chaotic orbits. The chaotic orbits reduce the DA to a
hypersphere of radius ∼ 0.39 in the 4-dimensional phase space (see Figs. 5 and 6 of [6]). The
goal of the present paper is to show that the stability region of the nominal circular orbit can be
increased once map 2.1 is controlled by an appropriately designed map.

3 Control theory for symplectic maps

The general aim of Hamiltonian control theory is to slightly modify a given system, by introducing
a small control term, to improve some chosen feature of the system (e.g. to reduce the chaotic
regions or to build invariant tori).
In the following we will be interested in controlling a quasi-integrable symplectic map in such a
way that it will allow us to obtain a new, controlled map “closer” to the integrable part of the
original map, and thus increase the stability region around the nominal circular orbit. Since chaos
opens the way to diffusion in the physical space, the controlled map is expected to have a smaller
number of escaping orbits and a larger region occupied by invariant curves in a neighbourhood
of the origin. For this purpose, we apply the method of [8], except that in the present case the
integrable part is not expressed in action-angle variables. In particular, the integrable part is
a rotation, so the present theory applies to perturbations of rotations, instead of maps close to
identity.
Let us consider an integrable symplectic map defined through its infinitesimal generator 3 H

~x′ = e{H}~x , (3.6)

and consider the quasi-integrable map perturbation of the former

~x′ = T (~x) = e{H}e{V }~x , (3.7)

2In the literature one can sometimes find the alternative equivalent notation {H} = LH .
3In [8] a similar theory has been developed for a general symplectic map devoid of an infinitesimal generator.
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where ~x ∈ R2N and V is a perturbation, namely V = o(H). The aim of Hamiltonian control theory
is to construct a third map, the control map, whose generator F is small (it satisfies F = o(V ))
and moreover the controlled map

Tctrl = e{H}e{V }e{F} , (3.8)

will be conjugated to a map T∗, closer to e{H} than T (see 3.12 below). We note that the use of
the exponential of a Poisson bracket, ensures that such maps are symplectic by construction.
More precisely, let us define the unperturbed map

A−1 = e−{H} , (3.9)

and observe that (1−A−1) is not invertible, since its kernel contains any smooth function of H.
Thus we assume the existence of a “pseudo-inverse”operator, G, that should verify (see [8] for
details)

G
(
1−A−1

)
G = G . (3.10)

At this point we can define the non-resonant and the resonant operators

N :=
(
1−A−1

)
G and R := 1−N , (3.11)

which are projectors, i.e. N 2 = N and R2 = R.
Our main theoretical result is the following theorem:

Theorem 1 Under the above hypotheses and defining S = GV we have

e{S}Tctrle
−{S} = e{H}e{RV } := T∗ , (3.12)

where
Tctrl = e{H}e{V }e{F} , (3.13)

with a control term given by

e{F} = e−{V }e{(N−G)V }e{RV }e{GV } . (3.14)

Remark 2 (Warped addition) Let us define as in [8] the warped addition, {A} ⊕ {B}, of two
operators by

e{A}e{B} := e{A}⊕{B} . (3.15)

An explicit formula can be obtained using the Baker-Campbell-Hausdorff formula [9], where
{A} ⊕ {B} is a series whose first terms are

{A} ⊕ {B} = {A}+ {B}+
1

2
({A}{B} − {B}{A}) + . . . , (3.16)

hence the warped addition is a deformation of the usual addition between operators.

Proof: Using this warped addition, we can rewrite the controlled map

Tctrl = e{H}⊕{V }⊕{F} , (3.17)

where the control term 3.14 can also be rewritten as

{F} = −{V } ⊕ {(N − G)V } ⊕ {RV } ⊕ {GV } . (3.18)

From 3.11 we have:
N − G = −A−1G . (3.19)
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One can easily prove (see appendix A of [8]) that

(−{H})⊕ (−{S})⊕ {H} = −{A−1S} , (3.20)

hence, recalling the definition of S and 3.19, we can rewrite 3.18 as

{F} = −{V } ⊕ (−{H})⊕ (−{S})⊕ {H} ⊕ {RV } ⊕ {S} . (3.21)

By rearranging the terms we can easily get

{S} ⊕ {H} ⊕ {V } ⊕ {F} ⊕ (−{S}) = {H} ⊕ {RV } , (3.22)

which is nothing but 3.12 rewritten using the warped addition.Q.E.D.

Remark 3 Let us observe that the control term is, as required, small compared to V . In fact
from 3.18 and by using the approximated formula for the warped addition 3.16, we obtain

{F} = −{V } ⊕ {(N − G)V } ⊕ {RV } ⊕ {GV } (3.23)

= −{V }+ {NV } − {GV }+ {RV }+ {GV }+ o(V ) = o(V ) , (3.24)

where we use the relation N +R = 1.
Under the assumption of absence of resonances, i.e. RV = 0, the o(V ) term in the control map
can be explicitly computed to give (see Appendix A)

F =
1

2
{V }GV + o(V 2) . (3.25)

4 The control term for the non-resonant map (2.1)

Let us now calculate the control map for system (2.1). The variables (x1, x2, x3, x4) in which the
generators 2.3 are given are not suitable to develop the control term, roughly because the operator
{H} is not diagonal in these variables. So, we introduce complex variables

ζ1 = x2 + ix1 and ζ2 = x4 + ix3 , (4.26)

and rewrite H, still denoting it with the same letter, as

H(ζ1, ζ2) = −ω1

2
|ζ1|2 −

ω2

2
|ζ2|2 . (4.27)

Using these complex variables the Poisson bracket with H takes the form

{H} = iω1

(
ζ̄1∂ζ̄1 − ζ1∂ζ1

)
+ iω2

(
ζ̄2∂ζ̄2 − ζ2∂ζ2

)
. (4.28)

Hence, for any ~n = (n1, n2) ∈ N2 and ~m = (m1,m2) ∈ N2 we obtain

{H}ζ~nζ̄ ~m = i (ω1m1 − ω1n1 + ω2m2 − ω2n2) ζ~nζ̄ ~m = i~ω · (~m− ~n)ζ~nζ̄ ~m, (4.29)

where we introduce the vector ~ω = (ω1, ω2) and use the compact notation ζ~n = ζn1
1 ζn2

2 for the
complex vector ζ = (ζ1, ζ2). The operator {H} is diagonal in these variables and thus map 3.9 is
straightforwardly obtained as

A−1ζ~nζ̄ ~m = e−{H}ζ~nζ̄ ~m = e−i~ω·(~m−~n)ζ~nζ̄ ~m . (4.30)

Once we have this map, we can compute the operators G, N and R. For all ~n and ~m ∈ N2 \ {0},
such that ~n 6= ~m and

~ω · (~m− ~n) 6= 2kπ ∀k ∈ Z (4.31)
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(which defines the non-resonance condition), we get

Gζ~nζ̄ ~m =
1

1− e−i~ω·(~m−~n)
N ζ~nζ̄ ~m , (4.32)

with
N ζ~nζ̄ ~m = ζ~nζ̄ ~m (4.33)

if
~ω · (~m− ~n) 6= 2kπ ∀k ∈ Z (4.34)

and is 0 otherwise
In the rest of the paper, we will assume the above non-resonant condition 4.31 to hold for the
considered values of qx and qy. Let us remark that this is not a limitation of the actual theory, but
just a working assumption. We could equivalently have chosen to work in the resonant regime,
using a different control term suitable for resonant dynamics.
We are now able to explicitly compute the control term 3.14. Even under the non-resonance
assumption, RV = 0, the computation is cumbersome. In fact, we need to express V in the
complex variables, then compute S = GV , go back to the original variables, and finally (what is
really the difficult task) compute the exponential e{GV }. Actually, even if GV is a polynomial of
degree three in the variables x1, x2, x3, x4 the map e{GV } is given by an infinite series. The terms of
this series can be sequentially computed, but the degree of complexity (i.e. the number of involved
terms) increase very fast. That’s why we decided to use the approximated generator of the control
map 3.25 truncated at order 2

F2 =
1

2
{V }GV . (4.35)

We note that F2 is composed by about twenty terms. A detailed discussion of the whole procedure
needed to obtain F2, as well as its explicit formula, are presented in A.
We now face another difficulty, namely the computation of the control map from the generator
F2. This is equivalent to performing the sum of

e{F2} = 1 + {F2}+
1

2
{F2}2 + . . . , (4.36)

whose complexity once again grows very fast. We thus introduce a second approximation to our
construction, by computing only a finite number of terms in the above sum. So, we define a
truncated control map of order k

Ck(F2) =
k∑
l=0

{F2}l

l!
, (4.37)

and a truncated controlled map of order k

Tk(F2) = e{H}e{V }Ck(F2) = T Ck(F2) . (4.38)

Let us now discuss the properties of the truncated controlled map. Since the exact control map
e{F2} given by 4.36 is symplectic, the controlled map 3.8 will also be symplectic. On the other
hand, we cannot expect the k-th order control map Ck(F2) to be symplectic. We know that a
map is symplectic if its Jacobian matrix A verifies (in its definition domain) the equality

ATJA− J = 0 , (4.39)

Thus, in order to check the symplecticity defect of Tk(F2) we compute the norm Dk of matrix
AT
k JAk− J , where Ak is the Jacobian of Tk(F2) given by 4.38. The results are presented in Fig. 1

for orders k = 1 up to k = 5, in the region (x1, x3) ∈ [−1, 1] × [−1, 1], x2 = x4 = 0. These
results show that Tk(F2) is a good approximation of a symplectic map for k ≥ 4, because we get
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Figure 1: The simplicity defect of the controlled map Tk(F2) 4.38. Plot of log10Dk, where
Dk = ||ATk JAk−J || and Ak is the Jacobian of the k-order controlled map Tk(F2) given by 4.38, for
16000 uniformly distributed values in the square (x1, x3) ∈ [−1, 1] × [−1, 1], x2 = x4 = 0, for (a)
k = 1, (b) k = 2, (c) k = 3, (d) k = 4 and (e) k = 5. The percentage of orbits with log10Dk < −4
is 0.5%, 11%, 28%, 53% and 73% for k = 1, 2, 3, 4 and 5 respectively. The gray scale corresponds
to the value of log10Dk: the darker the color, the smaller the value of log10Dk is, and hence the
closer the map is to a symplectic one.
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Dk . 10−4 for a large portion (& 53 %) of variables values. We note that in the central region of
the truncated controlled map, where the actual physical process of beam’s evolution occurs, the
symplectic character of the map is established quite well since there Dk . 10−8. As expected, the
larger the order k, the closer to symplecticity the approximation is.
The main objective of the addition of a control term is to increase the size of the stability region
around the central periodic orbit. This increase leads to decreasing the number of escaping orbits4,
as we can see from the results presented in Fig. 2, where we plot in black the initial conditions on
the square (x1, x3) ∈ [−1, 1]× [−1, 1], x2 = x4 = 0, giving rise to orbits that do not escape up to
105 iterations of the map. In particular, we consider in Fig. 2(a) the original uncontrolled map 2.1,
and in Figs. 2(b) to 2(d), the k order controlled map Tk(F2) for k = 1 to k = 5 respectively. One
can easily see that the region of non-escaping orbits for the original map is smaller than the one
of the controlled maps. This observation can be quantified by considering initial conditions inside
a circle centered at the origin of each panel of Fig. 2 (which represent the actual physical plane
since the initial momenta are x2(0) = x4(0) = 0) with radius r2 = x1(0)2 + x3(0)2, and evaluate
the number of escaping and non-escaping orbits as a function of the circle radius for Tk(F2) with
k = 1 up to k = 5. Results reported in Fig. 3 support the previous claim, by clearly showing that
controlled maps of orders 3, 4 and 5 behave very similarly and lead to an increase of the non-
escaping region. Let us note that the behavior of the controlled maps of orders k = 1 (Fig. 2(b))
and k = 2 (Fig. 2(c)) is somewhat misleading if it is not analyzed together with the information
from the symplecticity defect (see Figs. 1(a) and (b) respectively). In fact, these maps are strongly
dissipative and produce a strong shift of orbits towards the origin, preventing them from escaping.
This dissipation effect is not physical, as it is not observed in real accelerators, and therefore we
do not discuss further the k = 1 and k = 2 controlled maps.
From the results of Figs. 2 and 3 we see that the addition of even the lower order (k = 3) control
term, having an acceptable symplecticity defect, increases drastically the size of the region of non-
escaping orbits around the central periodic orbit. A further increase of the order of the control term
results to less significant increment of this region, while the computational effort for constructing
the controlled map increases considerably. In fact, T1(F2) contains around 100 elementary terms,
i.e. monomials in x1 . . . x4, while this number is almost doubled for each order, so that T5(F2)
contains around 2000 terms. Also the CPU time needed to evolve the orbits increases with the
order. For example, while the integration of one orbit using T1(F2) takes about 1.4 times the CPU
time needed to integrate the original map (2.1), the use of T5(F2) needs almost 21.5 times more.
Thus we conclude that the T4(F2) controlled map, which can be considered quite accurately to
be symplectic, is sufficient to get significant increment of the percentage of non-escaping orbits,
without paying an extreme computational cost.

5 The SALI method

The Smaller Alignment Index (SALI) [10] has been proved to be an efficiently simple method to
determine the regular or chaotic nature of orbits in conservative dynamical systems. Thanks to
its properties, it has been already successfully distinguished between regular and chaotic motion
both, in symplectic maps and Hamiltonian flows [11, 12, 13, 14, 15].
For the sake of completeness, let us briefly recall the definition of the SALI and its behavior for
regular and chaotic orbits, restricting our attention to 2N -dimensional symplectic maps. The
interested reader can consult [10] for a more detailed description. To compute the SALI of a
given orbit of such maps, one has to follow the time evolution of the orbit itself and also of two
linearly independent unitary deviation vectors v̂1(0), v̂2(0). The evolution of an orbit of a map T

4an orbit (x1(k), x2(k), x3(k), x4(k))0≤k≤N is defined as non–escaping if for all k ≤ N x2
1(k) + x2

2(k) + x2
3(k) +

x2
4(k) ≤ R2 for a certain R (in the simulations we used R2 = 10 and N = 104, 105) and escaping otherwise.

8/18



Figure 2: Non-escaping regions of controlled map Tk(F2) as a function of the truncation order
k. 16000 uniformly distributed initial conditions in the square (x1, x3) ∈ [−1, 1] × [−1, 1],
x2(0) = x4(0) = 0 are iterated up to n = 105 using (a) the uncontrolled map 2.1 and (b)–(f) the
k = 1 to k = 5 order controlled map Tk(F2) 4.38, respectively. Initial conditions corresponding
to non-escaping orbits up to n = 105 are coloured in black, while escaping orbits are color ed in
white.
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Figure 3: Percentages of non-escaping orbits for the controlled map Tk(F2) 4.38 as a function
of the distance from the origin in the physical space (x1, x3). We iterate initial conditions in a
circle of radius r centred at the origin of plane (x1, x3), with x2(0) = x4(0) = 0, and compute the
percentages of non-escaping orbits during n = 105 iterations, for the controlled map Tk(F2) with
k = 1, 2, 3, 4, 5, as a function of r.

is described by the discrete-time equations of the map

~x(n+1) = T (~x(n)) , (5.40)

where ~x(n) = (x
(n)
1 , x

(n)
2 , ..., x

(n)
2N)T, represents the orbit’s coordinates at the n-th iteration. The

deviation vectors ~v
(n)
1 , ~v

(n)
2 at time n are given by the tangent map

~v
(n+1)
i = A(~x(n)) · ~v(n)

i i = 1, 2 , (5.41)

where A denotes the Jacobian matrix of map 5.40, evaluated at the points of the orbit under
study. Then, according to [10] the SALI for the given orbit is defined as

SALI(n) = min
{∥∥∥v̂(n)

1 + v̂
(n)
2

∥∥∥ ,∥∥∥v̂(n)
1 − v̂

(n)
2

∥∥∥} , (5.42)

where ‖·‖ denotes the usual Euclidean norm and v̂i = ~vi
‖~vi‖ , i = 1, 2 are unitary normalised vectors.

In the case of chaotic orbits, the deviation vectors v̂1, v̂2 eventually become aligned in the direction
defined by the maximal Lyapunov characteristic exponent (LCE), and SALI(n) falls exponentially
to zero. An analytical study of SALI’s behavior for chaotic orbits was carried out in [12], where
it was shown that

SALI(n) ∝ e−(σ1−σ2)n, (5.43)

with σ1, σ2 being the two largest LCEs.
On the other hand, in the case of regular motion the orbit lies on a torus and the vectors v̂1, v̂2

eventually fall on its tangent space, following a n−1 time evolution, having in general different
directions. This behavior is due to the fact that for regular orbits the norm of a deviation vector
increases linearly in time. Thus, the normalization procedure brings about a decrease of the
magnitude of the coordinates perpendicular to the torus, at a rate proportional to n−1, and so
v̂1, v̂2 eventually fall on the tangent space of the torus. In this case, the SALI oscillates about
non-zero values (for more details see [11]).
The symplecticity of SALI’s definition, its completely different behavior for regular and chaotic
orbits, and its rapid convergence to zero in the case of chaotic motion are the main advantages
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that make SALI an ideal chaos detection tool. Recently a generalization of the SALI, the so-
called Generalized Alignment Index (GALI) has been introduced [16, 17], which uses information
of more than two deviation vectors from the reference orbit. Since the advantages of GALI over
SALI become relevant in the case of multi-dimensional systems, in the present paper we apply the
SALI method for the dynamical study of the 4D map (2.1).

6 Dynamics of the controlled map

As already mentioned, the goal of constructing the controlled map Tctrl = T e{F} is to increase the
percentage of regular orbits up to a given (large) number of iterations, or equivalently increase
the size of the stability region around the nominal circular trajectory (i.e. the DA). Because the
presence of chaotic regions can induce a large drift in the phase space, that eventually could lead
to the escape of orbits, the achievement of a larger DA can be qualitatively inspected by checking
via the SALI method the regular or chaotic nature of orbits in a neighborhood of the origin (see
Fig. 4). We note that we define an orbit to be chaotic whenever SALI(t) < 10−8, and regular for
the contrary.

Figure 4: Stability analysis in the (x1, x3) plane. 16000 uniformly distributed initial conditions
in the square (x1, x3) ∈ [−1, 1] × [−1, 1], x2(0) = x4(0) = 0 are integrated using the T3(F2) ((a)
and (b)), and the T4(F2) controlled map ((c) and (d)), up to n = 104 ((a) and (c)) and n = 105

iterations ((b) and (d)). The gray scale represents the value of log10SALI for each orbit at the
end of the integration time. The lighter the color the more stable is the orbit, while white color
denotes that an orbit escaped before the total number of iterations was reached. The black circle
indicate the initial condition of the orbit studied in Fig. 5.
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In Fig. 4 (which should be compared with Fig.5 of [6]) we observe a strong enlargement of the
region of regular orbits. This region is characterized by large SALI values. In particular, for 104

iterations of the T4(F2) map, 54% of the considered orbits are regular, while for the uncontrolled
map this percentage reduces to 33%. This improvement can be also confirmed by visual inspection
of Fig. 2, where the regions of non-escaping orbits are shown for different orders of the controlled
map (4.38).
In Figs. 4(a) and (b), we see that there exist orbits of the T3(F2) map, which are characterized as
regular up to n = 104 iterations, while they show their chaotic character once they are iterated up
to n = 105. Such orbits correspond to the dark regions marked by a black circle in Fig. 4(b) (for
comparison this circle is also plotted in all panels of Fig. 4). This discrepancy is absent for the
T4(F2) map, which shows almost the same geometrical shape for the non-escaping region when
we pass from 104 to 105 iterations. In order to better understand this behavior we followed the
evolution of a single orbit with initial condition ~x(0) = (−0.50, 0,−0.65, 0)T –inside the black
circle in Fig. 4– for both the T3(F2) and the T4(F2) controlled maps, computing the corresponding
SALI values up to 2 × 105 iterations. The results are reported in Fig. 5 and clearly show that
the orbit behaves regularly up to n ≈ 105 iterations of the T3(F2) map since its SALI values are
different from zero, but later on a sudden decrease of SALI to zero denotes the chaotic character
of the orbit. This behavior clearly implies this is a slightly chaotic, sticky orbit, which remains
close to a torus for long time intervals (n ≈ 105), while later on it enters a chaotic region of the
phase space. It is interesting to note that iterating the same initial condition by the T4(F2) map
we get a regular behavior at least up to n = 2× 105.

Figure 5: (Color online) Dynamics of two orbits with the same initial conditions for the 3rd

and 4th order controlled maps. Time evolution of the SALI for the orbit with initial conditions
~x(0) = (−0.50, 0,−0.65, 0)T (see Fig. 4), using the T3(F2) [(r) red curve] and the T4(F2) controlled
map [(b) blue curve].

In order to provide additional numerical evidence of the effectiveness of the controlled map (4.38)
in increasing the DA, we consider initial conditions inside a 4D sphere centered at the origin
x1 = x2 = x3 = x4 = 0 of the map, with radius, r2 = x1(0)2 + x2(0)2 + x3(0)2 + x4(0)2. We
compute the number of regular, escaping and chaotic orbits as a function of the sphere radius.
The corresponding results are reported in Fig. 6(b), while in Fig. 6(a) we reproduce Fig. 6 of [6]
for comparison. From this figure we observe a strong increase of the DA, since the largest sphere
containing 100% regular orbits has a radius r ≈ 0.66, while this radius was r ≈ 0.39 for the
original uncontrolled map. We also observe that increasing the total number of iterations from
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104 to 105 (dashed and solid lines in Fig. 6 respectively) increases the percentage of chaotic orbits,
but the radius of the 4D sphere containing only regular orbits does not change significantly.

Figure 6: (Color online) Dynamical aperture of the (a) original map (2.1) and (b) the T4(F2)
controlled map (4.38). The percentages of regular [(b) blue curves], escaping [(g) green curves]
and chaotic [(r) red curves] orbits after n = 104 (dashed curves) and n = 105 iterations (solid
curves) for initial conditions in a 4D sphere centred at the origin x1 = x2 = x3 = x4 = 0, as
a function of the sphere radius r. Each point corresponds the average value over 5000 initial
conditions. The largest radius at which the percentage of regular orbits is still 100%, is marked
by an arrow in each panel.

7 Conclusions

In this paper we considered a simple model of a ring particle accelerator with sextupole nonlinearity
that can be described by a symplectic map. In the framework of Hamiltonian control theory, we
were able to control the dynamics of the original system by providing a suitable control map,
resulting in a small “perturbation”of the initial map. This control map has been constructed with
the aim of DA enlargement of the particle accelerator, and thus improving the beam’s life-time
and the accelerator’s performance.
In particular, the theoretical framework we developed allows a 1-parameter family of approximated
controlled maps. We performed several numerical simulations in order to choose “the
best”approximated controlled map Tk(F2) (4.38), taking into account the complexity of the map,
i.e. the number of terms by which it is composed, the CPU time needed to perform the numerical
iteration of orbits, and the accuracy of the results in terms of the symplectic character of the map.
We find that the 4th order controlled map T4(F2) is an optimal choice for the controlled system.
Using this controlled map we succeeded in achieving our initially set goal, since the T4(F2) map
exhibits a DA with a radius more than 1.7 times larger than the one for the original map (see
Fig. 6).

A Computation of the control term.

The aim of this section is to introduce further details for the construction of the control term and
of the controlled map, and to provide explicit formulas for the interested reader.
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1.1 Notations

Let us first introduce some notations and recall some useful relations.

• Lie brackets and operators. Let X be the vector space of C∞ real or complex functions
of 2N variables (p, q). For any F, G ∈ X , the Lie bracket is given by

{F,G} :=
N∑
i=1

[∂piF∂qiG− ∂qiF∂piG] , (1.44)

where ∂xif ≡
∂f
∂xi

denotes the partial derivative with respect to the variable xi.

Using the above definition, we can define a linear operator, induced by an element F of X ,
acting on X

{F} : X → X
G 7→ {F}G := {F,G} (1.45)

This operator is linear, antisymmetric and verifies the Jacobi identity

∀F,G ∈ X {{F}G} = {F}{G} − {G}{F} (1.46)

• Exponential. We define the exponential of such an operator {F}, by

e{F} :=
∞∑
k=0

{F}k

k!
, (1.47)

which is also an operator acting on X . The power of an operator is the composition :
{F}kG = {F}k−1 ({F}G).

We observe that in the case of the Hamiltonian function H, the exponential provides the
flow, namely e{H}x0 = x(t), of the Hamilton equations

ṗ = −∂qH (1.48)

q̇ = ∂pH . (1.49)

• Vector Field. The action of the above defined operators, can be extended to vector fields
“component by component”

∀F,G,H ∈ X {F}
(
G
H

)
:=

(
{F}G
{F}H

)
. (1.50)

1.2 Mappings as time-1 flows.

We show now that map (2.1) can be seen as the time-1 flow of a given Hamiltonian system. More
precisely we show that

T


x1

x2

x3

x4

 =


cos(ω1) − sin(ω1) 0 0
sin(ω1) cos(ω1) 0 0

0 0 cos(ω2) − sin(ω2)
0 0 sin(ω2) cos(ω2)




x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3



= e{H}e{V }


x1

x2

x3

x4

 (1.51)
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where

H(x1, x2, x3, x4) = −ω1
x2

1 + x2
2

2
− ω2

x2
3 + x2

4

2
(1.52)

and

V (x1, x2, x3, x4) = −x
3
1

3
+ x1x

2
3 . (1.53)

Let us observe that H is the sum of two non-interacting harmonic oscillators with frequencies ω1

and ω2, hence its dynamics is explicitly given by

x1(t) = A cos(ω1t)−B sin(ω1t) (1.54)

x2(t) = B cos(ω1t) + A sin(ω1t) (1.55)

x3(t) = C cos(ω2t)−D sin(ω2t) (1.56)

x4(t) = D cos(ω2t) + C sin(ω2t) . (1.57)

By definition ~y = e{H}~x is the solution at time 1 with initial condition ~x = (x1, x2, x3, x4)T , hence
we obtain

y1 = cos(ω1)x1 − sin(ω1)x2 (1.58)

y2 = sin(ω1)x1 + cos(ω1)x2 (1.59)

y3 = cos(ω2)x3 − sin(ω2)x4 (1.60)

y4 = sin(ω2)x3 + cos(ω2)x4 , (1.61)

that is

e{H}


x1

x2

x3

x4

 =


cos(ω1) − sin(ω1) 0 0
sin(ω1) cos(ω1) 0 0

0 0 cos(ω2) − sin(ω2)
0 0 sin(ω2) cos(ω2)




x1

x2

x3

x4

 . (1.62)

From 1.53 and the definition 1.45 we easily get

{V } := ∂x2V ∂x1 − ∂x1V ∂x2 + ∂x4V ∂x3 − ∂x3V ∂x4 (1.63)

= (x2
1 − x2

3)∂x2 − 2x1x3∂x4 .

This means that once applied to a vector ~x only the second and fourth components of {V }~x will be
non-zero and moreover they only depend on the first and third components of ~x, hence {V }2~x = ~0.
We can thus conclude that ∀ k ≥ 2 and ∀~x ∈ R4, we get {V }k~x = ~0. Finally using the definition
(1.47) we obtain

e{V }~x =
∞∑
k=0

{V }k

k!
~x = Ix + {V }~x =


x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3

 (1.64)

1.3 Computation of the generator F under the assumption RV ≡ 0.

Let us recall that the composition of maps expressed by exponential defines the warped addition

e{A}e{B} := e{A}⊕{B} , (1.65)

whose first terms are

{A} ⊕ {B} = {A}+ {B}+
1

2
({A}{B} − {B}{A}) + . . . (1.66)
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Using the warped addition with equation 3.14 of Theorem 1, we obtain

e{F} = e−{V }e{(N−G)V }e{RV }e{GV} = e−{V }⊕{(N−G)V }⊕{RV }⊕{GV} , (1.67)

and thus

{F} = −{V } ⊕ {(N − G)V } ⊕ {RV } ⊕ {GV} = −{V } ⊕ {(1− G)V } ⊕ {GV }+ o(V 2)

=

1

2
({V }{GV } − {GV }{V })︸ ︷︷ ︸

(1.46)
= {{V }GV }

−{GV }

⊕ {GV }+ o(V 2)

=
1

2
{{V }GV }+

1

4
{{{V }GV }GV }︸ ︷︷ ︸

=o(V 2)

+o(V 2) =
1

2
{{V }GV }+ o(V 2) , (1.68)

where we explicitly used the assumption RV = 0 to remove the third term on the the right hand
side on the first equation and hence to write NV = V . We are thus able to define the non-resonant
control term, up to order V 2, to be

F2 =
1

2
{V }GV =

1

2
{V,GV } . (1.69)

1.4 The operator G
To get the explicit formula for F2 we need to compute the expression of G. From definition 3.10
the operator G should satisfy

G
(
1− e−{H}

)
G = G . (1.70)

To construct it, it will be more convenient to use complex variables

ζ1 = x2 + ix1 and ζ2 = x4 + ix3 . (1.71)

Then the function H becomes

H(ζ1, ζ2) = −ω1

2
ζ1ζ̄1 −

ω2

2
ζ2ζ̄2 , (1.72)

and using

∂

∂x1

=
∂ζ1

∂x1

∂

∂ζ1

+
∂ζ̄1

∂x1

∂

∂ζ̄1

= i
∂

∂ζ1

− i ∂
∂ζ̄1

(1.73)

∂

∂x2

=
∂ζ1

∂x2

∂

∂ζ1

+
∂ζ̄1

∂x2

∂

∂ζ̄1

=
∂

∂ζ1

+
∂

∂ζ̄1

(1.74)

for (x1, x2), the operator {H} becomes

∂x2H∂x1 − ∂x1H∂x2 = 2i
(
∂ζ1H∂ζ̄1 − ∂ζ̄1H∂ζ1

)
= iω1

(
ζ̄1∂ζ̄1 − ζ1∂ζ1

)
, (1.75)

with a similar expression holding for (x3, x4). Hence for any ~n = (n1, n2) ∈ N2 and ~m = (m1,m2) ∈
N2 we obtain

{H}ζ~nζ̄ ~m = i (ω1m1 − ω1n1 + ω2m2 − ω2n2) ζ~nζ̄ ~m = i~ω · (~m− ~n)ζ~nζ̄ ~m , (1.76)

where we introduced the vector ~ω = (ω1, ω2) and we used the compact notation ζ~n = ζn1
1 ζn2

2 , for
the complex vector ζ = (ζ1, ζ2).

16/18



We note that from the knowledge of the operators’ action on such monomials ζ~nζ̄ ~m, we can
reconstruct the operator action on any regular function. The operators are linear and they will be
applied on polynomials in the ~x variable, which are nothing more than polynomials in the complex
variables.
Let us now compute the time-1 flow of {H} by using complex variables. Starting from 1.76 and
then proceeding by induction, we can easily prove that for all k ∈ N

{H}kζ~nζ̄ ~m = (i~ω · (~m− ~n))k ζ~nζ̄ ~m , (1.77)

and finally

e{H}ζ~nζ̄ ~m =
∞∑
k=0

(i~ω · (~m− ~n))k

k!
ζ~nζ̄ ~m = ei~ω·(~m−~n)ζ~nζ̄ ~m. (1.78)

Similarly e−{H}ζ~nζ̄ ~m = e−i~ω·(~m−~n)ζ~nζ̄ ~m.
Assuming a non-resonance condition

~ω · (~m− ~n) 6= 2kπ ∀~n 6= ~m ∈ N2 \ {0} and ∀k ∈ Z , (1.79)

a possible choice for the operator G is the following

Gζ~nζ̄ ~m :=
1

1− e−i~ω·(~m−~n)
N ζ~nζ̄ ~m (1.80)

with
N ζ~nζ̄ ~m = ζ~nζ̄ ~m (1.81)

if
~ω · (~m− ~n) 6= 2πk (1.82)

and is 0 otherwise
It is easy to check that the operator G defined by (1.80) verifies (1.70). In order to do so we
introduce the compact notation

Zn,m := ζ~nζ̄ ~m and �n,m := e−i~ω·(~m−~n) . (1.83)

Developing the left hand side of 1.70 and using the linearity of all operators, we get

G
(
1− e−{H}

)
GZn,m =

(
G − Ge−{H}

) 1

1−�n,m
Zn,m (1.84)

=
1

1−�n,m
GZn,m −

1

1−�n,m
Ge−{H}Zn,m (1.85)

=
1

(1−�n,m)2
Zn,m −

1

1−�n,m
G(�n,mZn,m) (1.86)

=
1

(1−�n,m)2
Zn,m −

�n,m
(1−�n,m)2

Zn,m (1.87)

=
1

1−�n,m
Zn,m = GZn,m . (1.88)

1.5 Expression of the control term F2

The function F2 is defined by 1.69, where V is a known function. The term GV will be computed
starting from the previously obtained expression of G. To construct F2 we first have to express V
in the complex variables (1.71):

V (ζ1, ζ2) = − 1

24
iζ3

1 +
1

8
iζ̄1ζ

2
1 −

1

8
iζ̄2

1ζ1 +
1

24
iζ̄3

1 +
1

8
iζ1ζ

2
2 −

1

4
iζ1ζ2ζ̄2

+
1

8
iζ1ζ̄

2
2 −

1

8
iζ̄1ζ

2
2 +

1

4
iζ̄1ζ̄2ζ2 −

1

8
iζ̄1ζ̄

2
2 . (1.89)
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By the linearity of the operator, and by using (1.80), we easily compute GV . In particular we
apply G to each term of (1.89). Then using the inverse change of coordinates

x1 =
1

2
i(ζ̄1 − ζ1) and x2 =

1

2
(ζ1 + ζ̄1) (1.90)

(similar expressions hold for (x3, x4) and (ζ2, ζ̄2)), we can go back to the original variables ~x. The
obtained expression after some algebraic simplifications is

GV = −1/6 csc (3/2ω1) [x2 cos (1/2ω1) + x1 sin (1/2ω1)]
[
x1

2 − 3x3
2 + x2

2

+
(
2x1

2 − 6x3
2 + x2

2
)

cos (ω1)− x1 x2 sin (ω1)
]

+1/4
sin (ω2)

cos (ω1 − ω2)− cos (ω2)

−1/4
(−x2 x4

2 + x2 x3
2 + 2x1 x4 x3) sin (ω2)

cos (ω2)− cos (ω1 + ω2)
(1.91)

Then the explicit expression of the control term F2 is

F2 = 1/2(x2
1 − x2

3)

(
− 1/6 csc(3/2ω1) cos(1/2ω1)(x2

1 − 3x2
3 + x2

2

+(2x2
1 − 6x2

3 + x2
2) cos(ω1)− x1x2 sin(ω1))

−1/6 csc(3/2ω1)
(
x2 cos(1/2ω1) + x1 sin(1/2ω1)

)
(2x2 + 2x2 cos(ω1)− x1 sin(ω1))

−1/4
(x2

3 − x2
4) sin(ω2)

cos(ω2)− cos(ω1 + ω2)

)
+ 1/4

x1x3(2x1x3 − 2x2x4) sin(ω2)

cos(ω2)− cos(ω1 + ω2)
. (1.92)
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Paris)

18/18



[10] Skokos Ch 2001 J. Phys. A 34 10029

[11] Skokos Ch, Antonopoulos Ch, Bountis T and Vrahatis M N 2003 Prog. Theor. Phys. Supp.
150 439

[12] Skokos Ch, Antonopoulos Ch, Bountis T C and Vrahatis M N 2004 J. Phys. A 37 6269
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