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) and Hardy and Panjer (1998), we propose a credibility approach which consists on reviewing, as new observations arrive, the assumption on the mortality curve. Unlike the methodology considered in Hardy and Panjer (1998) that consists on updating the aggregate deaths we have chosen to add an age structure on these deaths. Formally, we use a Makeham graduation model. Such an adjustment allows to add a structure in the mortality pattern which is useful when portfolios are of limited size so as to ensure a good representation over the entire age bands considered. We investigate the divergences in the mortality forecasts generated by the classical credibility approaches of mortality including Hardy and Panjer (1998) and the Poisson-Gamma model on portfolios originating from various French insurance companies.

Introduction

Recently, interest from life insurers to assess their experienced mortality risk has considerably increased. The new regulation and norms, Solvency II, shed light on the need of life tables that best reect the experience of insured portfolios so as to reliably quantify the underlying mortality risk. Insurers, in France for example, are used to rely on regulatory life tables for pricing purposes, which are sometimes too conservative. In general, ill-suited mortality assumptions and life tables, especially being too conservative, lead to two eects:

(i) Increase of Best Estimate technical provisions (and thus decrease Basic Own-Funds );

(ii) Increase of the base gure used for calculating the capital charge for mortality risk (15 % increase scenario of the conditional death rates under the Solvency II framework).

Therefore, the question of which mortality table can be considered for pricing and reserving purposes is of substantial importance. A rst attempt, to handle this issue, is to use the available data at the portfolio level and build a specic mortality table. However, practitioners may face technical diculties related to the size of the portfolio and the heterogeneity of the guarantees (for the same underlying risk). For instance, an insurer may detain a fairly big portfolio but with insureds holding dierent policies: pure endowment contracts, unit-linked contracts with minimum death guarantees, loan insurance and so on. In such a case, it is dicult to build mortality tables only based on the sole experience of each policy. Especially since it may induce signicant impacts on the technical reserves if the table has to be updated more frequently over time. In this paper, we consider an insurer with exposures to dierent policies and aiming at establishing an experience-based mortality table for each policy.

In the academic literature, various methodologies have been proposed to built and graduate mortality rates at the insured portfolio level. They are usually divided into non-parametric and parametric techniques. The latter are very useful in practice especially when there is sucient data, see [START_REF] Forfar | On graduation by mathematical formula[END_REF] for a comprehensive introduction to the use of parametric models for graduation. These approaches t the parametric structure to the mortality of interest over a given period. The graduated mortality is then used to project future liabilities related to the underlying population. By doing so, the evolution of the ow of data related to latest available information is not taken into account. This should be, for example, used to update the graduated mortality. However, if one decides to re-calibrate the parametric model each year, the forecasts are likely to be unstable. This is mainly due to the instability of parameters estimation due to the lack of sucient data.

In this context and following the work of [START_REF] Bühlmann | A course in credibility theory and its applications[END_REF] and [START_REF] Hardy | A credibility approach to mortality risk[END_REF], we propose a credibility approach which consists on reviewing, as new observations arrive, the parameters of a Makeham t. The framework considered in [START_REF] Hardy | A credibility approach to mortality risk[END_REF] focuses on the update of the aggregate deaths recorded over the whole portfolio. However, such an approach may be not eective in situations where the insurer liability is highly dependent on the age structure of the underlying portfolio. Thus, using an adjustment makes possible to add a structure in the mortality pattern which is useful when portfolios are of limited size so as to ensure a good representation over the entire age-band considered. Note that, adding an age structure is also benecial given the heterogeneity observed in the cost of the guarantees according to the age. To recap, as we can see in Section 5, the proposed adjustment approach is intended to enhance the predictive ability of the credibility-based revisions at the age-level and not on the aggregate portfolio level.

The remainder of the paper is organized as follows. Section 2 has still an introductory purpose. It species the notation, assumptions and the Makeham settings used in the following. Section 3 introduces the Makeham credibility approach and assess the estimation of the credibility model. Section 4 describes the classical credibility approaches of mortality including [START_REF] Hardy | A credibility approach to mortality risk[END_REF] and the Poisson-Gamma model. Section 5 presents an application with experience data originating from French insurance companies. Finally, some remarks in Section 6 conclude the paper.

2 A Credibility Model for Makeham's Law 2.1 Data Structure and Notation. We suppose that we have at our disposal age-specic mortality statistics originating from n portfolios. For each portfolio i ∈ {1, • • • , n}, we observe the deaths of exposures over a period T i . Denote the number of individuals at attained age x during calendar year t = 1, • • • , T i by L i x,t and D i

x,t represents the number of deaths recorded.

We also introduce the following notation,

D i x,• = T i t=1 D i x,t , L i x,• = T i t=1 L i x,t , and D i •,t = x x=x D i x,t , L i •,t = x x=x L i x,t ,
which refer respectively to the aggregate deaths and individuals over the age-band {x, x + 1, . . . , x} and calendar years 1 to T i for each portfolio i. Henceforth, the • indexation refers to the summation over the index of interest. For example, D •

x,• refers to the aggregate deaths over the period [1, T i ] and over the n portfolios, i.e. D

• x,• = n i=1 T i t=1 D i x,t .
2.2 Mortality Law. We consider the (rst) Makeham law of mortality, which generalizes the Gompertz law. Omitting the time dependency, [START_REF] Makeham | On the law of mortality[END_REF] assumes that the force of mortality ϕ i x at attained age x during calendar year t has the following form:

ϕ x = A + B × C x , (2.1)
with A, B and C are some constants. These parameters capture the essential properties of the progression of mortality. For instance, the dominant eect, i.e. the aging eect, over the age is captured by the multiplicative component factor B × C x . The non-age dependent parameter A can be interpreted as the non-senescent mortality, for instance, due to accidents. Both of these capture the exponential increase in the forces of mortality observed for adult mortality, see [START_REF] Bongaarts | Long-range trends in adult mortality: Models and projection methods[END_REF] for more details.

Various modication of the above law have been proposed, especially, to encounter for the time dependency of the mortality, see for e.g. [START_REF] Keytz | The limits of population forecasting[END_REF] among others. Indeed, as soon as age-specic mortality patterns over time are concerned, the time series records of the latter show a discernible downward trend with minor uctuations around. In order to correct this deciency in the model (2.1), we suppose that the time trend is incorporated in the parameter B i denoted henceforth B i t . Therefore, the force of mortality ϕ i x,t for portfolio i writes now as the following expression

ϕ i x,t = A i + B i t (C i ) x . (2.2)
This model should capture the behavior of the probability of death over years through the time-dependent parameter B i t . This also make possible the prediction of future mortality, i.e.

for t = T + 1, T + 2, . . ., through the study of the time series B i t for t = 1, . . . , T . When it comes to small portfolios, the model in (2.2) is not easy to implement. Indeed, as discussed later in this paper, the temporal behavior the factor B i cannot be accurately extracted. Nevertheless, one can use the estimated values of B i t even over the few periods to predict the future behavior of B i .

Note that in order to estimate the parameters of the model (2.2), given the growth of the forces of mortality with the age, we must have a constant C greater than 1 and a positive B. Then,

q i x,t = 1 -exp - x+1 x ϕ y,t dy = 1 -exp - x+1 x A i + B i t × (C i ) y dy = 1 -exp(-A i ) exp - B i t ln C i (C i ) x (C i -1) , (2.3)
where q i x,t denotes the one-year probability of death at attained age x during calendar year t for portfolio i. Consistent estimates A i , B i t and C i of the parameters are obtained by minimizing the following weighted distance:

x x=x L i x,t q i x,t (1 -q i x,t ) (q i x,t -q i x,t ) 2 , with q i x,t = D i x,t /L i
x,t is the crude mortality rates.

2.3 Dierential Mortality Law. It is common in modeling specic portfolio's mortality to consider an adjustment with regard to a baseline mortality. Generally, this implicitly assumes that both populations share common features up to a random eect. Relational models stipulate a deterministic relationship in the form q i x = f (q b x ) links the two mortalities, where q b

x refers to the baseline mortality. The function f : [0, 1] → [0, 1] is a known and deterministic function, see [START_REF] Delwarde | Modèles linéaires et additifs géneralisés, maximum de vraisemblance local et méthodes relationelles en assurance sur la vie[END_REF] for more details. A simple example would suggest that the death rate is common for all companies. Specically, q i x = q b x for any i ∈ {1, • • • , n}. However, such an assumption does not appreciate the specic characteristic of each portfolio's portfolio.

In other words, portfolios having lives in poorer or better conditions than the baseline mortality do not behave in a similar fashion than the baseline mortality. This implies that one should encounter for dierential mortality that arises due to portfolio specic features, e.g. particular socioeconomic groups involved, average income level, etc. However, when it comes to the study of the mortality at a single portfolio level, some specic issues arise:

(i) Size of populations: Insured population are generally of small size, so none or very few deaths are observable at some ages. This may not only bias the estimation of the force of mortality but also lead to a mis-estimation of the parameters in (2.3). This may cause high uctuations for q i x,t and consequently for A i , B i t and C i .

(ii) Length of historical data: Available age-specic mortality statistics lacks of deepness. This makes dicult to isolate a possible time trend as it may be captured by B i t . The latter may be uctuating due to the small size of the dataset as noted before.

(iii) Scale of available data: Insured portfolios show a typical behavior compared to a national mortality. The mortality of insured population is signicantly lower than the national popula-tion from which it is drawn. This could make the use of a baseline mortality based on national demographic statistics as a substitute useless as it may not have the same characteristics of the initial population.

All these characteristics make forecasting of future mortality evolution problematic. In order to overcome these issues when implementing and tting the model (2.3) for each portfolio i ∈ {1, . . . , n} we will make the following assumptions: (i) The baseline mortality q b

x,t is described by the Makeham model in (2.3).

(ii) The age eect is similar on the n portfolios and companies specic model is assumed to share the same parameters A i and C i . Those are set equal to the baseline ones, i.e. A i = A b and C i = C b for any i ∈ {1, • • • , n}.

(iii) The time-dependent parameter B i t is tted at each period. This is given by the following formula:

B i t = D i •,t -A b L i •,t x x=x (C b ) x L i x,t
.

The assumptions (i) and (ii) allows to overcome potential estimation bias of the parameters A i and C i . Indeed, basing the estimation on a large population allows to avoid erroneous inferences of the parameters. Also, if the portfolio i is a subset of the baseline population composed of the aggregated portfolios, we may think that both the non-senescent factor A i and the slope C i are equivalent and thus normalized with the baseline mortality. Empirical evidence of a normalized slope can be found in [START_REF] Thatcher | The long-term pattern of adult mortality and the highest attained age[END_REF]. It is shown that relative rate of increase is the same at all ages and is a shared feature with over subset populations, see also the empirical study of [START_REF] Zhu | Logistic regression for insured mortality experience studies[END_REF]. As for the non-senescent parameter, the assumption is relevant to the extent that this eect is generally of small impact and sometimes ignored (especially for industrialized countries), see [START_REF] Gavrilova | Ageing and longevity: Mortality laws and mortality forecasts for ageing populations[END_REF]. The unique parameter that captures the specic mortality at the portfolio level is B i t , which would a priori not be the same over companies due to the heterogeneity of the underlying populations as explained above. This can be regarded as an unobservable random factor and similar to the so-called frailty factor. Such a methodology is widely understood in the literature as well as in life insurance practice. Assumption (iii) gives an estimate of the time-dependent parameter. By time-dependent we only track the uctuation of B i t over time that might be caused by the small size and length of data. Thus our main aim is to sequentially adjust the estimation of B i t over time in view of the ow of information at our disposal.

3 Credibility of the Makeham Mortality 3.1 Next Period Prediction. In the following, we are interested in the behavior, over time, of the random variable

X i t = B i t B b t , (3.1)
and specically on its next period prediction X i T +1 merging information from other portfolios j = 1, • • • , n with j = i. Specically, suppose that we are at the end of the year T , i.e. at time T + 1, and we want predict the next period deaths D i

x,T +1 in the portfolio (equivalently the probability of death q i

x,T +1 ). Naturally, we can assume that this ratio is constant over time and thus invoke a widespread practice that applies a single factor of reduction/increase to the baseline mortality. On the other hand, one could propose a dynamic model on the same line as [START_REF] Plat | Stochastic portfolio specic mortality and the quantication of mortality basis risk[END_REF]. The latter proposes a modeling framework of the relative ratio of an experienced mortality (death rates) to a baseline and consider that this can be diused using either an autoregressive model or a decomposition similar to the one introduced by [START_REF] Lee | Modeling and forecasting us mortality[END_REF].

Other methodologies have been also proposed, see [START_REF] Ngai | Longevity risk management for life and variable annuities: The eectiveness of static hedging using longevity bonds and derivatives[END_REF] and Hyndman et al.

(2013) among others. However, random eects that constitute the decomposition of the experienced mortality have to be projected using their temporal and statistical features. In our case, we are not only interested in handling populations of small size but also with potentially limited historic period of observation. Therefore, such a methodology would typically not be useful in our setting as it requires a long experience.

Note that the behavior of X i t is broadly related to the so-called basis risk. This refers to the fact that the evolution of the policyholders mortality is usually dierent from that of the national population (baseline), due to some selection eects. This selection eect has dierent impacts on dierent insurance companies portfolios, as mortality improvements and accelerations are very heterogeneous in the insurance industry, see [START_REF] Barrieu | Understanding, modelling and managing longevity risk: key issues and main challenges[END_REF].

3.2 Heterogeneity and Makeham's Law Adjustment. As noted above, we are interested in the accurate adjustment of the portfolio-dependent parameter in (2.3), i.e. B i t . Given the specic parameterization of the problem, one may think of the n portfolios as a subset of the reference population and thus each population is characterized by a risk prole Θ i . In addition,

it is benecial to borrowing information across the dierent portfolios to enhance the knowledge and estimation of the mortality at the single portfolio level. Furthermore, these subpopulations may, for example, share a common mortality feature, while showing some specicity in their mortality prole. This can be seen as a random variable eect or heterogeneity characterizing the specic prole of each portfolio, for i = 1, • • • , n. Therefore, we implicitly assume that each portfolio is endowed by a risk prole θ i which is a realization of a random variable Θ.

In view of the various stylized facts presented above and in order to predict D i x,T +1 , for each age x, we focus on the projection of X i T +1 . Therefore, we suppose that this relative trend level of portfolio i with respect to the baseline mortality (trend) is characterized by the risk prole θ i which is a realization of Θ i . In other words, X i t is viewed as a function of a random element Θ i representing the unobserved characteristics of the portfolio mortality trend (with respect to the baseline). By doing so, we implicitly take into account the heterogeneity of the portfolio i's portfolio mortality prole. It thus remains to predict X i T +1 taking into account this random het- erogeneity. By doing so, we naturally invoke the use of a credibility approach to estimate X i T +1 .

3.3 Credibility Based Adjustment. As noted above, the objective is to estimate the next period projection of the relative ratio for each portfolio i. More precisely, in view the available data up to time T

i , i.e. X i t , for t = 1, • • • , T i , one aims to nd the best estimate of E[X i T i +1 |Θ i ] = µ(Θ i )
, which is unknown. Let µ(Θ i ) be this estimation. For this purpose and using the usual credibility setting, we shall make the following hypotheses:

(H1) Conditionally on Θ i , the random variables X i t , for t ∈ {1, . . . , T i }, are independent with mean and variance given as follows

E X i t | Θ i = µ Θ i and Var X i t | Θ i = σ 2 Θ i ω i t , ω i t = x x=x (C b ) x L i x,t n i=1 x x=x (C b ) x L i x,t
, measures the weight given to the period t experience from the portfolio i.

(H2) The pairs Θ i , X i t , Θ k , X k l , k = i are independent and identically distributed.

The rst assumption (H1) implies that for each risk prole i (portfolio), the true relative ratio µ Θ i (conditionally on the knowledge of the risk prole Θ i ) does not change over time and its variance given Θ i , Var X i t | Θ i changes in proportion to the relative size of the portfolio ω i t .

The latter expresses dierent concerns outlined earlier. Specically, it links the variability of the estimation of the parameter B i t to the size of the underlying population: very small portfolios are subject to larger variability on the estimation of B i t and vice versa.

The second assumption (H2) means that the risk proles are independent. The successive realizations of the relative ratio X i t for any portfolio are independent of each other except through the risk parameter Θ i . Moreover, using the random variable X i t instead of B i t permits to avoid data adjustment for Intuitively, assumption (H2) implicitly suggests that portfolios are comparable as they random sub-groups of a reference (national) population, but not entirely similar which induces the conditional independence.

In view of these assumptions, the following results are straightforward:

(i) The expected prediction of X i T +1 unconditionally on the risk prole Θ i is given by E X i T +1 = E X T +1 (Θ i ) = 1.
In other words, in the absence of any information on the heterogeneity level on the parameter B i t , the best next-period prediction of the latter is the reference one, i.e.

E B i t = B b t .
(ii) Using the law of total variance, the dependence structure of portfolio i associated risk factor over time, is, for l, t ∈ {1, . . . , T },

Cov X i l , X i t = Cov E X i l |Θ i , E X i t |Θ i + E Cov X i l , X i t |Θ i = Var µ Θ i + E Cov X i l , X i t |Θ i =    τ 2 if l = t τ 2 + σ 2 ω i t if l = t, (3.2) 
where Var µ

Θ i = Var Θ i := τ 2 , while E σ 2 Θ i = E Θ i := σ 2 .
3.4 Credibility Estimator. Following the Bühlmann-Straub credibility approach, the aim is to nd the best estimate of the actual to expected mortality ratio E X i T i +1 | Θ i = µ Θ i which is linear in the observations. For each portfolio, due to the assumption (H2), µ(Θ i ) depends only on the observations and the linear credibility estimator is of the form

µ Θ i = a i 0 + T i t=1 a i t X i t , (3.3)
where the coecients a i t , for t = 0, • • • , T i , are those minimizing the mean squared errors crite-rion

a i t t=0,••• ,T i = argmin (a i t ) (t=0,••• ,T i ) E µ Θ i -a i 0 - T i t=1 a i t X i t 2
.

In view of Equation 3.2, taking the derivatives of the above criterion with respect to the a i,t 's and equating to zero gives,

a i 0 = 1 - τ 2 ω i • σ 2 + τ 2 ω i • and a i t = τ 2 ω i t σ 2 + τ 2 ω i • , with ω i • = T i t=1 ω i t .
(3.4)

Then, substituting Equation 3.4 into (3.3), leads to the following the Bühlmann-Straub credibility estimator of X i

T i +1 X i T i +1 (Θ i ) = α i X i • + (1 -α i ), with α i = ω i • τ 2 /(ω i • τ 2 + σ 2 ), (3.5)
where

X i • = ( T i t=1 ω i t X i t )/ω i • .
Note that the ratio σ 2 /τ 2 represents the credibility coecient. The parameter α i is called the credibility factor or credibility weight for portfolio i and takes values in [0, 1]. For each portfolio i, note that the larger the volume of historical data, the larger α i will be, see Equation 3.5.

3.5 Estimators of the Structure Parameters. As the risk parameters, Θ i , for i ∈ {1, . . . , n}, are assumed to be identically distributed, their moments are identical. Therefore τ 2 and σ 2 are the same for all portfolios and measure the residual heterogeneity of the risk proles and the pure randomness respectively. These parameters are the key determinants of the credibility estimator, i.e. Equation 3.5. In the following, special attention is addressed to the estimation of these quantities. Recall the denition of the structure parameters,

σ 2 = E σ 2 Θ i = ω i t E Var X i t |Θ i , and τ 2 = Var E[X i t |Θ i .
Then, it is reasonable to propose the estimators σ 2 and τ 2 in the same vein as [START_REF] Bühlmann | A course in credibility theory and its applications[END_REF] based on the observations X i t :

σ 2 = 1 n n i=1 s 2 i , with s 2 i = 1 T i -1 T i t=1 ω i t X i t -X i • 2 , (3.6) and τ 2 = ω • • (ω • • ) 2 -n i=1 (ω i • ) 2 n i=1 ω i • X i • -X • • 2 -(n -1) σ 2 , with X • • = 1 ω • • n i=1 ω i • X i • and ω • • = n i=1 ω i • .
These estimators are unbiased and consistent, see [START_REF] Bühlmann | A course in credibility theory and its applications[END_REF] for more details.

Note that τ 2 can be negative. This would mean that there would be no dierence between the risks. In this case, τ 2 is set to 0. Hence we use as estimator τ 2 = max τ 2 , 0 .

3.6 Empirical Credibility Estimator. The empirical credibility estimator is obtained from the credibility formula (3.3) by replacing the structural parameters σ 2 and τ 2 by their estimators derived in Subsection 3.5. Hence, we have

     X i T i +1 = α i X i • + (1 -α i ), α i = τ 2 ω i • σ 2 + τ 2 ω i • . (3.7)
It follows from Equation 3.5, that the mortality time varying coecient is successively updated as follows

B i T i +1 = B b T +1 1 + α i (X i • -1) , (3.8)
and similarly, the forces of mortality and the probabilities of death are given respectively by

ϕ i x,T i +1 = α i 1 -X i • A b + α i X i • -1 + 1 ϕ b x,T +1 ,
and

q i x,T i +1 = q b x,T +1 1 -q b x,T +1 exp(-A b ) 1 α i (X i
• -1) .

(3.9)

4 Classical Credibility Approaches to Mortality

Next, we wish to compare our model to the [START_REF] Hardy | A credibility approach to mortality risk[END_REF] and Poisson-Gamma credibility analysis to mortality. The actual to expected mortality ratio is the key observation that is the focus of the two following approaches. Specically, the a priori expected number of deaths for portfolio i in calendar year t in the age-band x , x is denoted by

ω i t = E D i •,t = x x=x q b x,t L i x,t .
The actual to expected mortality ratios denoted by X i t are computed for each calendar year t in aggregate for each portfolio i,

X i t = D i •,t E D i •,t = D i •,t ω i t .
Both estimators for τ 2 and σ 2 . The Hardy and Panjer (1998) credibility approach to mortality estimates the structure parameters from the aggregated data using the estimators derived in

σ 2 0 = 1 n i=1 C i n i=1 C i s 2 i , where C i = 1 1 + 2 T i -1 φ with φ = E σ 4 Θ i V σ 2 Θ i .
Again, as the risk parameters, Θ i n i=1

, are assumed to be identically distributed, the factors E σ 4 Θ i and V σ 2 Θ i are independent of the portfolio. Hence, the only portfolio dependent variable in C i is T i , the number of years data available for the portfolio.

Both methods give the same result. In addition, the latter approach, derived from [START_REF] Centeno | The bühlmann-straub model with the premium calculated according to the variance principle[END_REF], allows to obtain a credibility estimator for the variance part of the credibility premium which has the form:

σ i 2 = C i s 2 i + (1 -C i ) σ 2 0 .
The estimate of V µ Θ i denoted by τ 2 is

τ 2 = ω • • W -σ 2 ω • • Ω
, where Ω = 1

n i=1 T i -1 n i=1 ω i • ω • • 1 - ω i • ω • • , and W = 1 n i=1 T i -1 n i=1 T i t=1 ω i t ω • • X i t -X • • 2 , with ω • • = n i=1 ω i • , and X • • = 1 ω • • n i=1 ω i • X i • .
Then, the estimate of E σ 4 Θ i denoted by σ 4 is

σ 4 = 1 n i=1 T i + 1 n i=1 T i -1 s 2 i 2 ,
and the estimate of V σ 2 Θ i denoted by υ σ 2 is

υ σ 2 = 1 R n i=1 T i -1 s 2 i -β 2 2 -2 σ 4 (n -1) , where R = n i=1 (T i -1) - n i=1 (T i -1) 2 n i=1 (T i -1)
, and

β 2 = 1 n n i=1 s 2 i .
4.2 The Poisson-Gamma Approach. A priori, we could assume that E Θ i = 1 so that the baseline mortality produces the a priori expected number of deaths,

E D i •,t = E ω i t Θ i = ω i t .
We suppose here that the parametric distribution for the number of deaths D i

•,t is Poisson conditional to the relative risk level Θ i , so that E D i •,t |Θ i = V D i •,t |Θ i = ω i t Θ i .
Then, under assumption H1, Subsection 3.3, the conditional mean and variance of the actual to expected mortality ratios become:

E X i t | Θ i = µ Θ i = Θ i and V X i t | Θ i = σ 2 Θ i ω i t = Θ i ω i t ,
and the p.d.e with respect to a i,0 and a i,t , Equation 3.4 are:

a i,0 = 1 - τ 2 ω i • 1 + τ 2 ω i • and a i,t = τ 2 ω i t 1 + τ 2 ω i • , since σ 2 = E Θ i = 1.
Then the linear credibility estimator is given by

µ Θ i = X i T i +1 = 1 1 + τ 2 ω i • + τ 2 ω i • 1 + τ 2 ω i • 1 ω i • T i t=1 ω i,t X i,t . (4.1)
And, the expected number of deaths for portfolio i for next year

T i + 1 is ω i T i +1 X i T i +1 = ω i T i +1 1 + τ 2 D i •,• 1 + τ 2 ω i • .
Then, we need to obtain the structure parameter τ 2 = V Θ i . As the distribution of the total number of deaths in portfolio i is D i •,• ∼ MP ω i • Θ i and using the variance decomposition principle,

V D i •,• = V E D i •,• | Θ i + E V D i •,• | Θ i = V ω i • Θ i + E ω i • Θ i = τ 2 (ω i • ) 2 + ω i • .
And,

n i=1 V D i •,• = ω 2 n i=1 (ω i • ) 2 + n i=1 ω i • , leads to τ 2 = n i=1 V D i • -ω i • / n i=1 (δ i • ) 2 . Thus, the estimator of τ 2 writes τ 2 = n i=1 D i •,• -ω i • 2 -D i •,• n i=1 (ω i • ) 2
.

5 Numerical Analysis 5.1 Data Quantitative Analysis. The data come from studies conducted by Institut des

Actuaires. These studies include in total 14 portfolio covering the period 2007-2011 with each companies contributing data for at least 4 of a possible 5 years. Table 1 presents the observed characteristics of the male population of the portfolios. For this dataset, we are considering respectively T i = 3 and T i = 4 for all companies. The remaining years serve to test the predictive feature of the model through an in-sample analysis. The age band for all companies ranges from 30 to 95 years old. Figure 1 shows the age distribution of two portfolios. It graphically depicts the heterogeneity observed between the portfolios with insureds holding dierent policies.

5.2 The Baselines Mortality. We consider two prospective tables as baselines for our credibility models. One is the national demographic projections for the French population over 

A b t = A b T and C b t = C b
T remain xed. Table 3 presents the estimated parameters for each year and baselines considered.

5.4 Proximity Between the Observations and the Model. We assess the overall deviation with the observed mortality by comparing criteria measuring the distance between the observations and the models with the χ 2 applied by [START_REF] Forfar | On graduation by mathematical formula[END_REF], the mean average (2002) as well as the standardized mortality ratio (SMR) and the number of standardized residuals larger then 2 and 3, see [START_REF] Tomas | Constructing entity specic projected mortality table: adjustment to a reference[END_REF]. In addition, we nd useful to use the SMR test proposed by [START_REF] Liddell | Simple exact analysis of the standardised mortality ratio[END_REF] and the likelihood ratio test. The tests and quantities summarizing the proximity between the observations and the model are described in the following. The χ 2 allows to measure the quality of the t of the model. It writes,

χ 2 = (x,t) D x,t -L x,t q x (t) 2 L x,t q x (t) 1 -q x (t) .
The MAPE is the average of the absolute values of the deviations from the observations,

MAPE = (x,t) D x,t /L x,t -q x (t) / D x,t /L x,t (x,t) D x,t
× 100.

We can also determine if the t corresponds to the underlying mortality law (null hypothesis H 0 ) with the likelihood ratio test. The statistic, ξ LR , writes

ξ LR = (x,t) D x,t ln D x,t L x,t q x (t) + L x,t -D x,t ln L x,t -D x,t L x,t -L x,t q x (t)
. .

If H 0 is true, this statistic follows a χ 2 law with a number of degrees of freedom equal to the number of observations n: ξ LR ∼ χ 2 (n). Hence, the null hypothesis H 0 is rejected if ξ LR > χ 2 1-α (n), where χ 2 1-α (n) is the (1 -α) quantile of the χ 2 distribution with n degrees of freedom. The p-value is the lowest value of the type I error (α) for which we reject the test. We will privilege the model having the p-value

= P χ 2 1-α (n) > ξ LR = 1 -F χ 2 (n) (ξ LR ) closest to 1.
The SMR is computed as the ratio between the observed and tted number of deaths:

SMR = (x,t) D x,t (x,t) L x,t q x (t)
.

Hence, if SMR > 1, the tted deaths are under-estimated and vice-versa if SMR < 1. Note that we can consider the SMR as a global criterion which does not take the age structure into account, compared to the chi2 and MAPE for instance. We can also apply a test to determine if the SMR is signicatively dierent from 1. [START_REF] Liddell | Simple exact analysis of the standardised mortality ratio[END_REF] proposes to compute the statistic,

ξ SMR = 3 × D 1 2 1 -(9D) -1 -(D/E) 1 3 If SMR > 1, 3 × D * 1 2 (D * /E) 1 3 + (9D * ) -1 -1 If SMR < 1, where D = (x,t) D x,t , D * = (x,t) D x,t + 1 and E = (x,t) L x,t q x (t).
If the SMR is not signicatively dierent from 1 (null hypothesis H 0 ), this statistic follows a standard Normal law, ξ SMR ∼ N(0, 1). Thus, the null hypothesis H 0 is rejected if ξ SMR > N 1-α (0, 1), where N 1-α (0, 1) is the (1 -α) quantile of the standard Normal distribution. The p-value is given by p-value = 1 -F N(0,1) (ξ SMR ).

5.5

In-Sample Numerical Analysis. We tted the approaches over a history covering 3 and 4 years (2007-2009 and 2007-2010 respectively) and compared the overall deviation between the observations and the models (for the year 2010 and 2011 respectively). Table 4 displays the estimates of the structure parameters for the three approaches.

Table 5 presents the tests and quantities summarizing the overall deviation between the observations and the credibility analysis for the male population of portfolio 1 obtained by the The Hardy-Panjer and Poisson-Gamma approaches produce relatively similar graduations.

However, we notice some dierences with the Makeham credibility model which displays more favorable results whatever the baseline mortality considered for the two periods tted.

It is also apparent that using the market baseline mortality IA2013 produces better results than the national demographic projections originating from INSEE, see Subsection 5.2. It illustrates the importance of using an adequate baseline mortality when adjusting the models.

When looking at criteria and quantities which take the age structure of the error into account, the Makeham credibility approach is a benet. The quality of the t increases, sometimes For clarity, the graphical comparisons only consider the market baseline mortality IA2013 as it leads to better results than using the national demographic projections.

(a) Fitted probabilities of death in the log scale. Figure 2a displays the the tted probabilities of death in the log scale for portfolio 1 for the year 2010. Figure 3 and 4 in Appendix C and D display the comparisons for all the portfolios and for the years 2010 and 2011 respectively. It gives us the opportunity to visualize the similarities and dierences between the ts obtained by the approaches. It is again apparent that the Hardy-Panjer and Poisson-Gamma models lead to similar results. In addition, we observe that these approaches have a tendency to strongly overestimate the probabilities of death for the age band 30, 60 and reciprocally underestimate them for the age band 60, 95 . This is explained by the fact that the age structure is not taken in account by the Hardy-Panjer and Poisson-Gamma approaches, conversely to the Makeham credibility model. We can visualize this lack of t in the plots of the tted number of deaths, Figure 2b for portfolio 1 and Figure 5 and 6 for all portfolios in Appendix E and F.

In conjunction with looking to the plots of the ts, we should study the residuals plots.

Such residual plots provide a powerful diagnostic that nicely complements the analysis. The diagnostic plots can show lack of t locally and we have the opportunity to judge the lack of t based on our knowledge on the data and of the performance of the models. We superimposed a smooth curve on the standardized residuals. This smooth helps search for clusters of residuals that may indicate a lack of t. The plots of the standardized residuals, for the male population, are display in Figure 2c for portfolio 1 and 

Concluding Remarks

We considered the periodic adjustment of a mortality graduated curve using a Makeham parametric model. This relies on the revision of a single parameter the two remaining been xed.

The framework considered here is closely related to the one introduced in Hardy and Panjer (1998). The main dierence is the age-structure included through the parametric Makeham model. By doing so, we showed that adding an age structure enhances the predictive ability of the death forecast especially when we consider age-sensitive proxies. If one is only interested in predicting deaths at the aggregate portfolio level our methodology yields to the same forecast as in the [START_REF] Hardy | A credibility approach to mortality risk[END_REF] framework. Moreover, we should note that in our methodology especially using the ratio of the considered Makeham parameters allows to overcome the de-trending step recommended in [START_REF] Hardy | A credibility approach to mortality risk[END_REF].

In order to assess the predictive power of our methodology, various other measures of risk and goodness-of-t should be taken into account. Especially, we should consider the age-structure's impact on the prices and reserves and potential benet of our model compared to the current market practice. There are also several piratical we do not address here which we openly acknowledge and leave for future research.

A Tests and quantities summarizing the deviation between the observations and the models for the year 2010

Tables 6 and7 present the tests and quantities summarizing the overall deviation between the observations and the credibility analysis for the male population obtained by the Hardy-Panjer,

Poisson-Gamma and the Makeham credibility approaches with the two baselines mortality considered for the year 2010.

B Tests and quantities summarizing the deviation between the observations and the models for the year 2011

Tables 8 and9 present the tests and quantities summarizing the overall deviation between the observations and the credibility analysis for the male population obtained by the Hardy-Panjer,

Poisson-Gamma and the Makeham credibility approaches with the two baselines mortality considered for the year 2011.

C tted probabilities of death in the log scale for the year 2010 E Fitted number of deaths for the year 2010

Figure 5 displays the tted number of deaths for the male population for the year 2010.

F Fitted number of deaths for the year 2010

Figure 6 displays the tted number of deaths for the male population for the year 2010.

G Standardized residuals for the year 2010

Figure 7 displays the standardized residuals for the male population for the year 2010.

H Standardized residuals for the year 2011

Figure 8 displays the standardized residuals for the male population for the year 2011. 
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  the Hardy and Panjer (1998) and the Poisson-Gamma credibility approaches are using the Bühlmann-Straub set-up, see Subsection 3.3. Again, the key determinants of the credibility estimator (3.5) are the structure parameters, i.e. the variance part of the credibility premium E σ 2 Θ i denoted by σ 2 and the uctuation part V µ Θ i denoted by τ 2 .4.1 The Hardy-Panjer Approach. As in general we have no knowledge or, at least, no exact knowledge of the parametric distributions for the number of deaths or of the structure distribution, we need estimators for the two components of the credibility estimator (3.5), i.e.

Figure 1 :

 1 Figure 1: Distribution of age groups in portfolios 3 (left panel) and 8 (right panel), male population.

  drastically, compared to the Hardy-Panjer and Poisson-Gamma model in terms of having the minimum χ 2 and MAPE values. The Makeham credibility model leads to the lowest number of standardized residuals lower than 2 and 3. It exhibits as well the highest p-value for the likelihood ratio test.Even when we considering a global indicator of the quality of the t such as the SMR which does not take the age structure into account, the Makeham credibility model seems to perform better than the Hardy-Panjer and Poisson-Gamma approaches. The statistic ξ SMR of the SMR test is the smaller 8 times over 14 for the year 2010, see Tables6 and 7in Appendix A, and 6 times over 12 for the year 2011, see Tables8 and 9in Appendix B. number of deaths, having a SMR lower than 1 for 9 portfolios over 14 in 2010 and for 8 portfolios over 12 in 2011.In the following, these quantitative diagnostics are supplemented by a range of visual comparisons. Besides the tests and quantities, the comparison involves graphical analysis. It consists of representing graphically the tted values against the observations for the years 2010 and 2011.

  (b) Fitted number of deaths. (c) Standardized residuals.

Figure 2 :

 2 Figure 2: Fitted values against the observations for portfolio 1 for the year 2010, male population.

  Figure 7 and 8 in Appendix G and H for all the portfolios and for the years 2010 and 2011 respectively. The standardized residuals, obtained by the Hardy-Panjer and Poisson-Gamma models, present a high curvature for most of the portfolios in Figure 7 and 8. It indicates a clear lack of t. These models overestimate the number of deaths for the age band 30, 60 et underestimate them for the age band 60, 95 , as observed in the plots of the ts previously. Conversely, no strong patterns appear in the standardized residuals retrieved for the Makeham credibility model. The smooth curves over the standardized residuals is meanly at, meaning that no systematic reproducible lack of t has been detected and that the Makeham credibility model captures adequately the variability of the data.

Figure 3

 3 Figure3displays the tted probabilities of death in the log scale for the male population for the year 2010.

Figure 3 :Figure 6 :

 36 Figure 3: Fitted probability of death, log scale, for the year 2010, male population

Table 1 :

 1 the period 2007-2060, provided by the French National Oce for Statistics, INSEE, see[START_REF] Blanpain | Projections de populations 2007-2060 pour la France métropolitaine: méthode et principaux résultats[END_REF]. These projections are based on assumptions concerning fertility, mortality and migrations. We choose the baseline scenario among a total of 27 scenarios. The baseline Observed characteristics of portfolios population.

		Period of observation	Mean age Average	Mean age
		Beginning	End	In	Out	exposure	at death
		1/1/07	12/31/11	36.96	39.74	2.77	68.78
		1/1/07	12/31/11	69.3	73.35	4.05	80.34
		1/1/07	12/31/10	40.16	43.1	2.94	71.77
		1/1/07	12/31/11	37.5	41.13	3.63	54.08
		1/1/07	12/31/11	36.9	39.1	2.2	59.31
		1/1/07	12/31/10	48.5	52.11	3.62	82.34
		1/1/07	12/31/11	66.65	71.29	4.64	73.68
		1/1/07	4/13/11	67.51	71.38	3.86	80.72
		1/1/07	6/30/11	45.97	49.6	3.62	73.17
	10	1/1/07	12/31/11	62.97	67.64	4.67	79.77
	11	1/1/07	12/31/11	38.89	42	3.11	56.44
	12	1/1/07	12/31/11	37.05	39.2	2.15	57.41
	13	1/1/07	12/31/11	43.01	46.89	3.88	71.03
	14	1/1/07	12/31/11	50.12	54.16	4.04	72.37

scenario is based on the assumption that until 2060, the total fertility rate is remaining at a very high level (1.95). The decrease in sex and age-specic mortality rates is greater for men over 85 years old. The baseline assumption on migration consists in projecting a constant annual net-migration balance of 100, 000 inhabitants. The second external reference table, denoted IA2013, is a market table constructed for the French insurance market provided by Institute des Actuaires, see

[START_REF] Tomas | Construction et validation des références de mortalité de place[END_REF]

. It is worth to mention that this table is derived on mortality trends originating from the INSEE table and covers the period 2007-2060.

Following, assumption (i) in Subsection 2.3, the baseline mortality q b

x,t is described by the Makeham model in (2.3). Table

2

presents the estimated parameters for each of the baselines considered.

Table 2 :

 2 Estimated parameters of the Makeham model (2.3) for the baselines of mortality

	considered, male population.			
		INSEE		IA2013	
		20072009 20072010 20072009 20072010
	A b T	4.2835e -03 4.2787e -03 2.1577e -04 2.4355e -04
	B b T	7.9564e -07 7.7199e -07 4.0863e -06 3.9935e -06
	C b T	1.1484	1.1487	1.1211	1.1213
	5.3 Adjustment of the Makeham model. Following assumptions (ii) in Subsection 2.3, we
	t the Makeham model (2.3) for the baselines of mortality considered so as to estimate B b t for
	each calendar year while the parameters		

Table 3 :

 3 Estimated

			INSEE		IA2013
		20072009 20072010 20072009 20072010
	A b T	4.2835e -03 4.2787e -03 2.1577e -04 2.4355e -04
	B b 2007	8.0826e -07 7.9035e -07 4.1740e -06 4.1204e -04
	B b 2008	7.9554e -07 7.7790e -07 4.0843e -06 4.0319e -06
	B b 2009	7.8318e -07 7.658e -07 4.0009e -06 3.9496e -06
	B b 2010	-	7.5406e -07	-	3.8729e -06
	C b T	1.1484	1.1487	1.1211	1.1213
	percentage error (MAPE) applied by Felipe et al.		

parameters of the Makeham model (2.3) for each year and baselines of mortality considered, male population.

Table 4 :

 4 Estimates of the structure parameters, male population. Gamma and the Makeham credibility approaches with the two baselines mortality considered for the year 2010. Tables 6, 7 and 8, 9 in Appendix A and B display the results for all the portfolios and for the years 2010 and 2011 respectively.

		Hardy-Panjer	Poisson-Gamma Makeham-Credibility
		INSEE	IA2013	INSEE	IA2013	INSEE	IA2103
	2007-09	µ 0 3.5521 σ 2 44.4032 92.1668 16.3290 τ 2 6.8368 44.0092	1 1 10.7485	1 1 367.5029	1 4.0552e-04 0.1935	1 2.3198e-03 3.5960e-02
	2007-10	µ 0 3.6495 σ 2 65.9649 116.0159 15.7865 τ 2 7.0772 43.4966	1 1 10.9684	1 1 338.4440	1 5.1034e-04 0.2217	1 2.6285e-03 5.0281e-02
	Hardy-Panjer, Poisson-				

Table 5 :

 5 Tests and quantities summarizing the deviation between the observations and the models for portfolio 1, calendar year 2010, male population.

				INSEE			IA2103	
			Hardy-Panjer	Poisson-Gamma	Makeham-Credibility	Hardy-Panjer	Poisson-Gamma	Makeham-Credibility
	Standardized	> 2	60	60	35	46	46	15
	residuals	> 3	48	48	28	32	32	5
	χ 2		5481.86	5542.82	3569.97	1705.25	1747.25	208.81
	MAPE (%)	233.22	230.94	373.89	117.01	115.42	42.35
	Likelihood	ξ LR	946.98	947.72	443.16	463.48	468.46	88.03
	ratio test	p-value	0	0	0	0	0	0.0364
		SMR	1.1792	1.1919	0.5265	1.7629	1.7957	1.0532
	SMR test	ξ SMR	4.0379	4.2939	12.1893	13.0352	13.4202	1.2845
		p-value	0	0	0	0	0	0.0995

Figure 4: Fitted probability of death, log scale, for the year 2011, male population

Figure 8: Standardized residuals, calendar year 2011, male population
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