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Abstract

The present article illustrates a credibility approach to mortality. Interest from life
insurers to assess their portfolios' mortality risk has considerably increased. The new reg-
ulation and norms, Solvency II, shed light on the need of life tables that best re�ect the
experience of insured portfolios in order to quantify reliably the underlying mortality risk.
In this context and following the work of Bühlmann and Gisler (2005) and Hardy and
Panjer (1998), we propose a credibility approach which consists on reviewing, as new obser-
vations arrive, the assumption on the mortality curve. Unlike the methodology considered
in Hardy and Panjer (1998) that consists on updating the aggregate deaths we have chosen
to add an age structure on these deaths. Formally, we use a Makeham graduation model.
Such an adjustment allows to add a structure in the mortality pattern which is useful
when portfolios are of limited size so as to ensure a good representation over the entire age
bands considered. We investigate the divergences in the mortality forecasts generated by
the classical credibility approaches of mortality including Hardy and Panjer (1998) and the
Poisson-Gamma model on portfolios originating from various French insurance companies.
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1 Introduction

Recently, interest from life insurers to assess their experienced mortality risk has considerably

increased. The new regulation and norms, Solvency II, shed light on the need of life tables that

best re�ect the experience of insured portfolios so as to reliably quantify the underlying mortality

risk. Insurers, in France for example, are used to rely on regulatory life tables for pricing

purposes, which are sometimes too conservative. In general, ill-suited mortality assumptions

and life tables, especially being too conservative, lead to two e�ects:

(i) Increase of Best Estimate technical provisions (and thus decrease Basic Own-Funds);

(ii) Increase of the base �gure used for calculating the capital charge for mortality risk (15 %

increase scenario of the conditional death rates under the Solvency II framework).

Therefore, the question of which mortality table can be considered for pricing and reserving

purposes is of substantial importance. A �rst attempt, to handle this issue, is to use the available

data at the portfolio level and build a speci�c mortality table. However, practitioners may face

technical di�culties related to the size of the portfolio and the heterogeneity of the guarantees

(for the same underlying risk). For instance, an insurer may detain a fairly big portfolio but

with insureds holding di�erent policies: pure endowment contracts, unit-linked contracts with

minimum death guarantees, loan insurance and so on. In such a case, it is di�cult to build

mortality tables only based on the sole experience of each policy. Especially since it may induce

signi�cant impacts on the technical reserves if the table has to be updated more frequently over

time. In this paper, we consider an insurer with exposures to di�erent policies and aiming at

establishing an experience-based mortality table for each policy.

In the academic literature, various methodologies have been proposed to built and graduate

mortality rates at the insured portfolio level. They are usually divided into non-parametric and

parametric techniques. The latter are very useful in practice especially when there is su�cient

data, see Forfar et al. (1988) for a comprehensive introduction to the use of parametric models

for graduation. These approaches �t the parametric structure to the mortality of interest over

a given period. The graduated mortality is then used to project future liabilities related to

the underlying population. By doing so, the evolution of the �ow of data related to latest

available information is not taken into account. This should be, for example, used to update

the graduated mortality. However, if one decides to re-calibrate the parametric model each

year, the forecasts are likely to be unstable. This is mainly due to the instability of parameters

estimation due to the lack of su�cient data.

In this context and following the work of Bühlmann and Gisler (2005) and Hardy and Panjer

(1998), we propose a credibility approach which consists on reviewing, as new observations

arrive, the parameters of a Makeham �t. The framework considered in Hardy and Panjer (1998)

focuses on the update of the aggregate deaths recorded over the whole portfolio. However, such

an approach may be not e�ective in situations where the insurer liability is highly dependent

on the age structure of the underlying portfolio. Thus, using an adjustment makes possible to

add a structure in the mortality pattern which is useful when portfolios are of limited size so

as to ensure a good representation over the entire age-band considered. Note that, adding an

age structure is also bene�cial given the heterogeneity observed in the cost of the guarantees

according to the age. To recap, as we can see in Section 5, the proposed adjustment approach

is intended to enhance the predictive ability of the credibility-based revisions at the age-level

and not on the aggregate portfolio level.

The remainder of the paper is organized as follows. Section 2 has still an introductory
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purpose. It speci�es the notation, assumptions and the Makeham settings used in the follow-

ing. Section 3 introduces the Makeham credibility approach and assess the estimation of the

credibility model. Section 4 describes the classical credibility approaches of mortality including

Hardy and Panjer (1998) and the Poisson-Gamma model. Section 5 presents an application

with experience data originating from French insurance companies. Finally, some remarks in

Section 6 conclude the paper.

2 A Credibility Model for Makeham's Law

2.1 Data Structure and Notation. We suppose that we have at our disposal age-speci�c

mortality statistics originating from n portfolios. For each portfolio i ∈ {1, · · · , n}, we observe
the deaths of exposures over a period Ti. Denote the number of individuals at attained age x

during calendar year t = 1, · · · , Ti by Lix,t and Di
x,t represents the number of deaths recorded.

We also introduce the following notation,

Di
x,• =

Ti∑
t=1

Di
x,t, Lix,• =

Ti∑
t=1

Lix,t, and Di
•,t =

x∑
x=x

Di
x,t, Li•,t =

x∑
x=x

Lix,t,

which refer respectively to the aggregate deaths and individuals over the age-band {x, x +

1, . . . , x} and calendar years 1 to Ti for each portfolio i. Henceforth, the �•� indexation refers

to the summation over the index of interest. For example, D•
x,• refers to the aggregate deaths

over the period [1, Ti] and over the n portfolios, i.e. D•
x,• =

∑n
i=1

∑Ti
t=1D

i
x,t.

2.2 Mortality Law. We consider the (�rst) Makeham law of mortality, which generalizes

the Gompertz law. Omitting the time dependency, Makeham (1867) assumes that the force of

mortality ϕix at attained age x during calendar year t has the following form:

ϕx = A+B × Cx, (2.1)

with A,B and C are some constants. These parameters capture the essential properties of the

progression of mortality. For instance, the dominant e�ect, i.e. the aging e�ect, over the age

is captured by the multiplicative component factor B×Cx. The non-age dependent parameter

A can be interpreted as the non-senescent mortality, for instance, due to accidents. Both of

these capture the exponential increase in the forces of mortality observed for adult mortality,

see Bongaarts (2005) for more details.

Various modi�cation of the above law have been proposed, especially, to encounter for the

time dependency of the mortality, see for e.g. Key�tz (1981) among others. Indeed, as soon

as age-speci�c mortality patterns over time are concerned, the time series records of the latter

show a discernible downward trend with minor �uctuations around. In order to correct this

de�ciency in the model (2.1), we suppose that the time trend is incorporated in the parameter

Bi denoted henceforth Bi
t. Therefore, the force of mortality ϕix,t for portfolio i writes now as

the following expression

ϕix,t = Ai +Bi
t(C

i)x. (2.2)

3



This model should capture the behavior of the probability of death over years through the

time-dependent parameter Bi
t. This also make possible the prediction of future mortality, i.e.

for t = T +1, T +2, . . ., through the study of the time series Bi
t for t = 1, . . . , T . When it comes

to small portfolios, the model in (2.2) is not easy to implement. Indeed, as discussed later in

this paper, the temporal behavior the factor Bi cannot be accurately extracted. Nevertheless,

one can use the estimated values of Bi
t even over the few periods to predict the future behavior

of Bi.

Note that in order to estimate the parameters of the model (2.2), given the growth of the forces

of mortality with the age, we must have a constant C greater than 1 and a positive B. Then,

qix,t = 1− exp

(
−
∫ x+1

x
ϕy,t dy

)
= 1− exp

(
−
∫ x+1

x
Ai +Bi

t × (Ci)y dy

)
= 1− exp(−Ai) exp

(
−

Bi
t

lnCi
(Ci)x(Ci − 1)

)
, (2.3)

where qix,t denotes the one-year probability of death at attained age x during calendar year t for

portfolio i. Consistent estimates Âi, B̂i
t and Ĉ

i of the parameters are obtained by minimizing

the following weighted distance:

x∑
x=x

Lix,t

qix,t(1− qix,t)
(qix,t − q̂ix,t)2,

with q̂ix,t = Di
x,t/L

i
x,t is the crude mortality rates.

2.3 Di�erential Mortality Law. It is common in modeling speci�c portfolio's mortality to

consider an adjustment with regard to a baseline mortality. Generally, this implicitly assumes

that both populations share common features up to a random e�ect. Relational models stip-

ulate a deterministic relationship in the form qix = f(qbx) links the two mortalities, where qbx
refers to the baseline mortality. The function f : [0, 1] → [0, 1] is a known and deterministic

function, see Delwarde et al. (2004) for more details. A simple example would suggest that the

death rate is common for all companies. Speci�cally, qix = qbx for any i ∈ {1, · · · , n}. However,
such an assumption does not appreciate the speci�c characteristic of each portfolio's portfolio.

In other words, portfolios having lives in poorer or better conditions than the baseline mortality

do not behave in a similar fashion than the baseline mortality. This implies that one should

encounter for di�erential mortality that arises due to portfolio speci�c features, e.g. particular

socioeconomic groups involved, average income level, etc. However, when it comes to the study

of the mortality at a single portfolio level, some speci�c issues arise:

(i) Size of populations: Insured population are generally of small size, so none or very few

deaths are observable at some ages. This may not only bias the estimation of the force of

mortality but also lead to a mis-estimation of the parameters in (2.3). This may cause high

�uctuations for qix,t and consequently for Ai, Bi
t and C

i.

(ii) Length of historical data: Available age-speci�c mortality statistics lacks of deepness. This

makes di�cult to isolate a possible time trend as it may be captured by Bi
t. The latter may be

�uctuating due to the small size of the dataset as noted before.

(iii) Scale of available data: Insured portfolios show a typical behavior compared to a national

mortality. The mortality of insured population is signi�cantly lower than the national popula-
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tion from which it is drawn. This could make the use of a baseline mortality based on national

demographic statistics as a substitute useless as it may not have the same characteristics of the

initial population.

All these characteristics make forecasting of future mortality evolution problematic. In

order to overcome these issues when implementing and �tting the model (2.3) for each portfolio

i ∈ {1, . . . , n} we will make the following assumptions:

(i) The baseline mortality qbx,t is described by the Makeham model in (2.3).

(ii) The age e�ect is similar on the n portfolios and companies speci�c model is assumed to

share the same parameters Ai and Ci. Those are set equal to the baseline ones, i.e. Ai = Ab

and Ci = Cb for any i ∈ {1, · · · , n}.
(iii) The time-dependent parameter Bi

t is �tted at each period. This is given by the following

formula:

Bi
t =

Di
•,t −AbLi•,t∑x
x=x(Cb)xLix,t

.

The assumptions (i) and (ii) allows to overcome potential estimation bias of the parameters Ai

and Ci. Indeed, basing the estimation on a large population allows to avoid erroneous inferences

of the parameters. Also, if the portfolio i is a subset of the baseline population composed of the

aggregated portfolios, we may think that both the non-senescent factor Ai and the slope Ci are

equivalent and thus normalized with the baseline mortality. Empirical evidence of a normalized

slope can be found in Thatcher (1999). It is shown that relative rate of increase is the same at

all ages and is a shared feature with over subset populations, see also the empirical study of Zhu

and Li (2013). As for the non-senescent parameter, the assumption is relevant to the extent

that this e�ect is generally of small impact and sometimes ignored (especially for industrialized

countries), see Gavrilova and Gavrilov (2011). The unique parameter that captures the speci�c

mortality at the portfolio level is Bi
t, which would a priori not be the same over companies due

to the heterogeneity of the underlying populations as explained above. This can be regarded as

an unobservable random factor and similar to the so-called frailty factor. Such a methodology

is widely understood in the literature as well as in life insurance practice. Assumption (iii) gives

an estimate of the time-dependent parameter. By time-dependent we only track the �uctuation

of Bi
t over time that might be caused by the small size and length of data. Thus our main aim

is to sequentially adjust the estimation of Bi
t over time in view of the �ow of information at our

disposal.

3 Credibility of the Makeham Mortality

3.1 Next Period Prediction. In the following, we are interested in the behavior, over time,

of the random variable

Xi
t =

Bi
t

Bb
t

, (3.1)

and speci�cally on its next period prediction Xi
T+1 merging information from other portfolios

j = 1, · · · , n with j 6= i. Speci�cally, suppose that we are at the end of the year T , i.e. at

time T + 1, and we want predict the next period deaths Di
x,T+1 in the portfolio (equivalently

the probability of death qix,T+1). Naturally, we can assume that this ratio is constant over time

and thus invoke a widespread practice that applies a single factor of reduction/increase to the

baseline mortality. On the other hand, one could propose a dynamic model on the same line as
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Plat (2009). The latter proposes a modeling framework of the relative ratio of an experienced

mortality (death rates) to a baseline and consider that this can be di�used using either an au-

toregressive model or a decomposition similar to the one introduced by Lee and Carter (1992).

Other methodologies have been also proposed, see Ngai and Sherris (2011) and Hyndman et al.

(2013) among others. However, random e�ects that constitute the decomposition of the ex-

perienced mortality have to be projected using their temporal and statistical features. In our

case, we are not only interested in handling populations of small size but also with potentially

limited historic period of observation. Therefore, such a methodology would typically not be

useful in our setting as it requires a long experience.

Note that the behavior of Xi
t is broadly related to the so-called basis risk. This refers to the fact

that the evolution of the policyholders mortality is usually di�erent from that of the national

population (baseline), due to some selection e�ects. This selection e�ect has di�erent impacts

on di�erent insurance companies portfolios, as mortality improvements and accelerations are

very heterogeneous in the insurance industry, see Barrieu et al. (2012).

3.2 Heterogeneity and Makeham's Law Adjustment. As noted above, we are interested

in the accurate adjustment of the portfolio-dependent parameter in (2.3), i.e. Bi
t. Given the

speci�c parameterization of the problem, one may think of the n portfolios as a subset of the

reference population and thus each population is characterized by a risk pro�le Θi. In addition,

it is bene�cial to borrowing information across the di�erent portfolios to enhance the knowledge

and estimation of the mortality at the single portfolio level. Furthermore, these subpopulations

may, for example, share a common mortality feature, while showing some speci�city in their

mortality pro�le. This can be seen as a random variable e�ect or heterogeneity characterizing

the speci�c pro�le of each portfolio, for i = 1, · · · , n. Therefore, we implicitly assume that each

portfolio is endowed by a risk pro�le θi which is a realization of a random variable Θ.

In view of the various stylized facts presented above and in order to predict Di
x,T+1, for each

age x, we focus on the projection of Xi
T+1. Therefore, we suppose that this relative trend level

of portfolio i with respect to the baseline mortality (trend) is characterized by the risk pro�le

θi which is a realization of Θi. In other words, Xi
t is viewed as a function of a random element

Θi representing the unobserved characteristics of the portfolio mortality trend (with respect to

the baseline). By doing so, we implicitly take into account the heterogeneity of the portfolio i's

portfolio mortality pro�le. It thus remains to predict Xi
T+1 taking into account this random het-

erogeneity. By doing so, we naturally invoke the use of a credibility approach to estimate Xi
T+1.

3.3 Credibility Based Adjustment. As noted above, the objective is to estimate the

next period projection of the relative ratio for each portfolio i. More precisely, in view the

available data up to time Ti, i.e. X
i
t , for t = 1, · · · , Ti, one aims to �nd the best estimate of

E[Xi
Ti+1|Θi] = µ(Θi), which is unknown. Let µ̂(Θi) be this estimation. For this purpose and

using the usual credibility setting, we shall make the following hypotheses:

(H1) Conditionally on Θi, the random variables Xi
t , for t ∈ {1, . . . , Ti}, are independent with

mean and variance given as follows

E
[
Xi
t |Θi

]
= µ

(
Θi

)
and Var

[
Xi
t |Θi

]
=
σ2
(
Θi

)
ωit

,
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for some functions µ
(
Θi

)
and σ2

(
Θi

)
and where

ωit =

∑x
x=x(Cb)x Lix,t∑n

i=1

∑x
x=x(Cb)x Lix,t

,

measures the weight given to the period t experience from the portfolio i.

(H2) The pairs
(
Θi, X

i
t

)
,
(
Θk, X

k
l

)
, k 6= i are independent and identically distributed.

The �rst assumption (H1) implies that for each risk pro�le i (portfolio), the true relative ratio

µ
(
Θi

)
(conditionally on the knowledge of the risk pro�le Θi) does not change over time and its

variance given Θi, Var
[
Xi
t |Θi

]
changes in proportion to the relative size of the portfolio ωit.

The latter expresses di�erent concerns outlined earlier. Speci�cally, it links the variability of the

estimation of the parameter Bi
t to the size of the underlying population: very small portfolios

are subject to larger variability on the estimation of Bi
t and vice versa.

The second assumption (H2) means that the risk pro�les are independent. The succes-

sive realizations of the relative ratio Xi
t for any portfolio are independent of each other except

through the risk parameter Θi. Moreover, using the random variable Xi
t instead of Bi

t permits

to avoid data adjustment for Intuitively, assumption (H2) implicitly suggests that portfolios are

comparable as they random sub-groups of a reference (national) population, but not entirely

similar which induces the conditional independence.

In view of these assumptions, the following results are straightforward:

(i) The expected prediction ofXi
T+1 unconditionally on the risk pro�le Θi is given by E

[
Xi
T+1

]
=

E
[
X̂T+1(Θi)

]
= 1. In other words, in the absence of any information on the heterogeneity level

on the parameter Bi
t, the best next-period prediction of the latter is the reference one, i.e.

E
[
Bi
t

]
= Bb

t .

(ii) Using the law of total variance, the dependence structure of portfolio i associated risk factor

over time, is, for l, t ∈ {1, . . . , T},

Cov
(
Xi
l , X

i
t

)
= Cov

(
E
[
Xi
l |Θi

]
,E
[
Xi
t |Θi

])
+E

[
Cov

(
Xi
l , X

i
t |Θi

)]
= Var

[
µ
(
Θi

)]
+ E

[
Cov

(
Xi
l , X

i
t |Θi

)]
=


τ2 if l 6= t

τ2 +
σ2

ωit
if l = t,

(3.2)

where Var
[
µ
(
Θi

)]
= Var

[
Θi

]
:= τ2, while E

[
σ2
(
Θi

)]
= E

[
Θi

]
:= σ2.

3.4 Credibility Estimator. Following the Bühlmann-Straub credibility approach, the aim is

to �nd the best estimate of the actual to expected mortality ratio E
[
Xi
Ti+1 |Θi

]
= µ

(
Θi

)
which

is linear in the observations. For each portfolio, due to the assumption (H2), µ̂(Θi) depends

only on the observations and the linear credibility estimator is of the form

µ̂
(
Θi

)
= âi0 +

Ti∑
t=1

âitX
i
t , (3.3)

where the coe�cients âit, for t = 0, · · · , Ti, are those minimizing the mean squared errors crite-
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rion (
âit
)
t=0,··· ,Ti

= argmin
(ait)(t=0,··· ,Ti)

{
E
[(
µ̂
(
Θi

)
− ai0 −

Ti∑
t=1

aitX
i
t

)2 ]}
.

In view of Equation 3.2, taking the derivatives of the above criterion with respect to the ai,t's

and equating to zero gives,

âi0 = 1−
τ2 ωi•

σ2 + τ2 ωi•
and âit =

τ2 ωit
σ2 + τ2 ωi•

, with ωi• =

Ti∑
t=1

ωit . (3.4)

Then, substituting Equation 3.4 into (3.3), leads to the following the Bühlmann-Straub credi-

bility estimator of Xi
Ti+1

X̂i
Ti+1(Θi) = αiXi

• + (1− αi), with αi = ωi•τ
2/(ωi•τ

2 + σ2), (3.5)

where Xi
• = (

∑Ti
t=1 ω

i
tX

i
t)/ω

i
•. Note that the ratio σ2/τ2 represents the credibility coe�cient.

The parameter αi is called the credibility factor or credibility weight for portfolio i and takes

values in [0, 1]. For each portfolio i, note that the larger the volume of historical data, the larger

αi will be, see Equation 3.5.

3.5 Estimators of the Structure Parameters. As the risk parameters, Θi, for i ∈
{1, . . . , n}, are assumed to be identically distributed, their moments are identical. Therefore

τ2 and σ2 are the same for all portfolios and measure the residual heterogeneity of the risk

pro�les and the pure randomness respectively. These parameters are the key determinants of

the credibility estimator, i.e. Equation 3.5. In the following, special attention is addressed to

the estimation of these quantities. Recall the de�nition of the structure parameters,

σ2 = E
[
σ2
(
Θi

)]
= ωit E

[
Var

[
Xi
t |Θi

]]
, and τ2 = Var

[
E[Xi

t |Θi

]]
.

Then, it is reasonable to propose the estimators σ̂2 and ̂̂τ2 in the same vein as Bühlmann and

Gisler (2005) based on the observations Xi
t :

σ̂2 =
1

n

n∑
i=1

s2i , with s2i =
1

Ti − 1

Ti∑
t=1

ωit
(
Xi
t −Xi

•
)2
, (3.6)

and ̂̂τ2 =
ω•
•

(ω•
•)

2 −
∑n

i=1(ω
i
•)

2

{
n∑
i=1

ωi•
(
Xi

• −X•
•
)2 − (n− 1)σ̂2

}
,

with X•
• =

1

ω•
•

n∑
i=1

ωi•X
i
• and ω•

• =
n∑
i=1

ωi•.

These estimators are unbiased and consistent, see Bühlmann and Gisler (2005) for more details.

Note that ̂̂τ2 can be negative. This would mean that there would be no di�erence between the

risks. In this case, τ̂2 is set to 0. Hence we use as estimator τ̂2 = max
(̂̂τ2, 0).

3.6 Empirical Credibility Estimator. The empirical credibility estimator is obtained from

the credibility formula (3.3) by replacing the structural parameters σ2 and τ2 by their estimators
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derived in Subsection 3.5. Hence, we have
̂̂
XiTi+1 = α̂iXi

• + (1− α̂i),

α̂i =
τ̂2ωi•

σ̂2 + τ̂2ωi•
.

(3.7)

It follows from Equation 3.5, that the mortality time varying coe�cient is successively

updated as follows

B̂i
Ti+1 = B̂b

T+1

(
1 + α̂i (Xi

• − 1)
)
, (3.8)

and similarly, the forces of mortality and the probabilities of death are given respectively by

ϕ̂ix,Ti+1 =
{
α̂i
(
1−Xi

•
)}
Âb +

{
α̂i
(
Xi

• − 1
)

+ 1
}
ϕ̂bx,T+1,

and q̂ix,Ti+1 = q̂bx,T+1

(
1− q̂bx,T+1

exp(−Âb)

) 1

α̂i(Xi
• − 1)

. (3.9)

4 Classical Credibility Approaches to Mortality

Next, we wish to compare our model to the Hardy and Panjer (1998) and Poisson-Gamma

credibility analysis to mortality. The actual to expected mortality ratio is the key observation

that is the focus of the two following approaches. Speci�cally, the a priori expected number of

deaths for portfolio i in calendar year t in the age-band
[
x , x

]
is denoted by

ωit = E
[
Di

•,t
]

=
x∑

x=x

q bx,t L
i
x,t .

The actual to expected mortality ratios denoted by Xi
t are computed for each calendar year t

in aggregate for each portfolio i,

Xi
t =

Di
•,t

E
[
Di

•,t
] =

Di
•,t

ωit
.

Both the Hardy and Panjer (1998) and the Poisson-Gamma credibility approaches are using

the Bühlmann-Straub set-up, see Subsection 3.3. Again, the key determinants of the credibility

estimator (3.5) are the structure parameters, i.e. the variance part of the credibility premium

E
[
σ2
(
Θi

)]
denoted by σ2 and the �uctuation part V

[
µ
(
Θi

)]
denoted by τ2.

4.1 The Hardy-Panjer Approach. As in general we have no knowledge or, at least, no

exact knowledge of the parametric distributions for the number of deaths or of the structure

distribution, we need estimators for the two components of the credibility estimator (3.5), i.e.

estimators for τ2 and σ2. The Hardy and Panjer (1998) credibility approach to mortality

estimates the structure parameters from the aggregated data using the estimators derived in

9



Centeno (1989). They estimate E
[
σ2
(
Θi

)]
using the following estimator, denoted by σ̂20:

σ̂20 =
1∑n
i=1Ci

n∑
i=1

Ci s
2
i , where Ci =

1

1 + 2
Ti−1 φ

with φ =
E
[
σ4
(
Θi

)]
V
[
σ2
(
Θi

)].
Again, as the risk parameters,

{
Θi

}n
i=1

, are assumed to be identically distributed, the factors

E
[
σ4
(
Θi

)]
and V

[
σ2
(
Θi

)]
are independent of the portfolio. Hence, the only portfolio dependent

variable in Ci is Ti, the number of years data available for the portfolio.

Both methods give the same result. In addition, the latter approach, derived from Centeno

(1989), allows to obtain a credibility estimator for the variance part of the credibility premium

which has the form: σ̃i
2 = Ci s

2
i + (1− Ci) σ̂20.

The estimate of V
[
µ
(
Θi

)]
denoted by τ̂2 is

τ̂2 =
ω•
•W − σ̂2

ω•
• Ω

, where Ω =
1(∑n

i=1 Ti
)
− 1

n∑
i=1

ωi•
ω•
•

(
1−

ωi•
ω•
•

)
,

and W =
1(∑n

i=1 Ti
)
− 1

n∑
i=1

Ti∑
t=1

ωit
ω•
•

(
Xi
t −X•

•
)2
,with ω•

• =
n∑
i=1

ωi• , and X•
• =

1

ω•
•

n∑
i=1

ωi•X
i
• .

Then, the estimate of E
[
σ4
(
Θi

)]
denoted by σ̂4 is

σ̂4 =
1∑n

i=1

(
Ti + 1

) n∑
i=1

(
Ti − 1

)(
s2i
)2
,

and the estimate of V
[
σ2
(
Θi

)]
denoted by υ̂σ2 is

υ̂σ2 =
1

R

(
n∑
i=1

(
Ti − 1

)(
s2i − β2

)2 − 2 σ̂4(n− 1)

)
,

where R =
n∑
i=1

(Ti − 1)−
∑n

i=1(Ti − 1)2∑n
i=1(Ti − 1)

, and β2 =
1

n

n∑
i=1

s2i .

4.2 The Poisson-Gamma Approach. A priori, we could assume that E
[
Θi

]
= 1 so that

the baseline mortality produces the a priori expected number of deaths,

E
[
Di

•,t
]

= E
[
ωit Θi

]
= ωit .

We suppose here that the parametric distribution for the number of deaths Di
•,t is Poisson

conditional to the relative risk level Θi, so that

E
[
Di

•,t |Θi

]
= V

[
Di

•,t |Θi

]
= ωit Θi .

Then, under assumption H1, Subsection 3.3, the conditional mean and variance of the actual

to expected mortality ratios become:

E
[
Xi
t |Θi

]
= µ

(
Θi

)
= Θi and V

[
Xi
t |Θi

]
=
σ2
(
Θi

)
ωit

=
Θi

ωit
,
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and the p.d.e with respect to ai,0 and ai,t, Equation 3.4 are:

ai,0 = 1−
τ2 ωi•

1 + τ2 ωi•
and ai,t =

τ2 ωit
1 + τ2 ωi•

, since σ2 = E
[
Θi

]
= 1.

Then the linear credibility estimator is given by

µ̂
(
Θi

)
= X̂i

Ti+1 =
1

1 + τ2 ωi•
+

τ2 ωi•
1 + τ2 ωi•

1

ωi•

Ti∑
t=1

ωi,tXi,t . (4.1)

And, the expected number of deaths for portfolio i for next year Ti + 1 is

ωiTi+1 X̂
i
Ti+1 = ωiTi+1

1 + τ2Di
•,•

1 + τ2 ωi•
.

Then, we need to obtain the structure parameter τ2 = V
[
Θi

]
. As the distribution of the total

number of deaths in portfolio i is Di
•,• ∼ MP

(
ωi•Θi

)
and using the variance decomposition

principle,

V
[
Di

•,•
]

= V
[
E
[
Di

•,• |Θi

]]
+ E

[
V
[
Di

•,• |Θi

]]
= V

[
ωi•Θi

]
+ E

[
ωi•Θi

]
= τ2 (ωi•)

2 + ωi• .

And,
∑n

i=1V
[
Di

•,•
]

= ω2
∑n

i=1(ω
i
•)

2 +
∑n

i=1 ω
i
• , leads to τ

2 =
∑n

i=1

(
V
[
Di

•
]
−ωi•

)
/
∑n

i=1(δ
i
•)

2 .

Thus, the estimator of τ2 writes

τ̂2 =

∑n
i=1

((
Di

•,• − ωi•
)2 −Di

•,•
)∑n

i=1(ω
i
•)

2
.

5 Numerical Analysis

5.1 Data Quantitative Analysis. The data come from studies conducted by Institut des

Actuaires. These studies include in total 14 portfolio covering the period 2007-2011 with each

companies contributing data for at least 4 of a possible 5 years. Table 1 presents the observed

characteristics of the male population of the portfolios. For this dataset, we are considering

respectively Ti = 3 and Ti = 4 for all companies. The remaining years serve to test the predictive

feature of the model through an in-sample analysis. The age band for all companies ranges from

30 to 95 years old. Figure 1 shows the age distribution of two portfolios. It graphically depicts

the heterogeneity observed between the portfolios with insureds holding di�erent policies.

5.2 The Baselines Mortality. We consider two prospective tables as baselines for our

credibility models. One is the national demographic projections for the French population over

the period 2007-2060, provided by the French National O�ce for Statistics, INSEE, see Blanpain

and Chardon (2010). These projections are based on assumptions concerning fertility, mortality

and migrations. We choose the baseline scenario among a total of 27 scenarios. The baseline

scenario is based on the assumption that until 2060, the total fertility rate is remaining at a very

high level (1.95). The decrease in sex and age-speci�c mortality rates is greater for men over

85 years old. The baseline assumption on migration consists in projecting a constant annual

net-migration balance of 100, 000 inhabitants. The second external reference table, denoted

11



Table 1: Observed characteristics of portfolios population.

Period of observation Mean age Average

exposure

Mean age

at death
Beginning End In Out

1 1/1/07 12/31/11 36.96 39.74 2.77 68.78
2 1/1/07 12/31/11 69.3 73.35 4.05 80.34
3 1/1/07 12/31/10 40.16 43.1 2.94 71.77
4 1/1/07 12/31/11 37.5 41.13 3.63 54.08
5 1/1/07 12/31/11 36.9 39.1 2.2 59.31
6 1/1/07 12/31/10 48.5 52.11 3.62 82.34
7 1/1/07 12/31/11 66.65 71.29 4.64 73.68
8 1/1/07 4/13/11 67.51 71.38 3.86 80.72
9 1/1/07 6/30/11 45.97 49.6 3.62 73.17
10 1/1/07 12/31/11 62.97 67.64 4.67 79.77
11 1/1/07 12/31/11 38.89 42 3.11 56.44
12 1/1/07 12/31/11 37.05 39.2 2.15 57.41
13 1/1/07 12/31/11 43.01 46.89 3.88 71.03
14 1/1/07 12/31/11 50.12 54.16 4.04 72.37

IA2013, is a market table constructed for the French insurance market provided by Institute

des Actuaires, see Tomas and Planchet (2013). It is worth to mention that this table is derived

on mortality trends originating from the INSEE table and covers the period 2007-2060.

Following, assumption (i) in Subsection 2.3, the baseline mortality qbx,t is described by the

Makeham model in (2.3). Table 2 presents the estimated parameters for each of the baselines

considered.

Table 2: Estimated parameters of the Makeham model (2.3) for the baselines of mortality

considered, male population.

INSEE IA2013

2007�2009 2007�2010 2007�2009 2007�2010

Âb
T 4.2835e− 03 4.2787e− 03 2.1577e− 04 2.4355e− 04

B̂b
T 7.9564e− 07 7.7199e− 07 4.0863e− 06 3.9935e− 06

Ĉb
T 1.1484 1.1487 1.1211 1.1213

5.3 Adjustment of the Makeham model. Following assumptions (ii) in Subsection 2.3, we

�t the Makeham model (2.3) for the baselines of mortality considered so as to estimate Bb
t for

each calendar year while the parameters Âb
t = Âb

T and Ĉb
t = Ĉb

T remain �xed. Table 3 presents

the estimated parameters for each year and baselines considered.

5.4 Proximity Between the Observations and the Model. We assess the overall de-

viation with the observed mortality by comparing criteria measuring the distance between the

observations and the models with the χ2 applied by Forfar et al. (1988), the mean average
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Figure 1: Distribution of age groups in portfolios 3 (left panel) and 8 (right panel), male

population.

Table 3: Estimated parameters of the Makeham model (2.3) for each year and baselines of

mortality considered, male population.

INSEE IA2013

2007�2009 2007�2010 2007�2009 2007�2010

Âb
T 4.2835e− 03 4.2787e− 03 2.1577e− 04 2.4355e− 04

B̂b
2007 8.0826e− 07 7.9035e− 07 4.1740e− 06 4.1204e− 04

B̂b
2008 7.9554e− 07 7.7790e− 07 4.0843e− 06 4.0319e− 06

B̂b
2009 7.8318e− 07 7.658e− 07 4.0009e− 06 3.9496e− 06

B̂b
2010 − 7.5406e− 07 − 3.8729e− 06

Ĉb
T 1.1484 1.1487 1.1211 1.1213

percentage error (MAPE) applied by Felipe et al. (2002) as well as the standardized mortality

ratio (SMR) and the number of standardized residuals larger then 2 and 3, see Tomas and

Planchet (2014). In addition, we �nd useful to use the SMR test proposed by Liddell (1984)

and the likelihood ratio test. The tests and quantities summarizing the proximity between the

observations and the model are described in the following. The χ2 allows to measure the quality
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of the �t of the model. It writes,

χ2 =
∑
(x,t)

(
Dx,t − Lx,t q̂x(t)

)2
Lx,t q̂x(t)

(
1− q̂x(t)

).
The MAPE is the average of the absolute values of the deviations from the observations,

MAPE =

∑
(x,t)

∣∣(Dx,t/Lx,t − q̂x(t)
)
/
(
Dx,t/Lx,t

)∣∣∑
(x,t)Dx,t

× 100.

We can also determine if the �t corresponds to the underlying mortality law (null hypothesis

H0) with the likelihood ratio test. The statistic, ξLR, writes

ξLR =
∑
(x,t)

(
Dx,t ln

(
Dx,t

Lx,t q̂x(t)

)
+
(
Lx,t −Dx,t

)
ln

(
Lx,t −Dx,t

Lx,t − Lx,t q̂x(t)

)
.

)
.

If H0 is true, this statistic follows a χ2 law with a number of degrees of freedom equal to

the number of observations n: ξLR ∼ χ2(n). Hence, the null hypothesis H0 is rejected if

ξLR > χ2
1−α(n), where χ2

1−α(n) is the (1− α) quantile of the χ2 distribution with n degrees of

freedom. The p-value is the lowest value of the type I error (α) for which we reject the test. We

will privilege the model having the p-value = P
[
χ2
1−α(n) > ξLR

]
= 1− Fχ2(n)(ξ

LR) closest to 1.

The SMR is computed as the ratio between the observed and �tted number of deaths:

SMR =

∑
(x,t)Dx,t∑

(x,t) Lx,t q̂x(t)
.

Hence, if SMR > 1, the �tted deaths are under-estimated and vice-versa if SMR < 1. Note

that we can consider the SMR as a global criterion which does not take the age structure into

account, compared to the chi2 and MAPE for instance. We can also apply a test to determine

if the SMR is signi�catively di�erent from 1. Liddell (1984) proposes to compute the statistic,

ξSMR =

{
3×D

1
2

(
1− (9D)−1 − (D/E)

1
3

)
If SMR > 1,

3×D∗ 1
2

(
(D∗/E)

1
3 + (9D∗)−1 − 1

)
If SMR < 1,

where D =
∑

(x,t)Dx,t, D
∗ =

∑
(x,t)Dx,t + 1 and E =

∑
(x,t) Lx,t q̂x(t). If the SMR is not

signi�catively di�erent from 1 (null hypothesis H0), this statistic follows a standard Normal

law, ξSMR ∼ N(0, 1). Thus, the null hypothesis H0 is rejected if ξSMR > N1−α(0, 1), where

N1−α(0, 1) is the (1− α) quantile of the standard Normal distribution. The p-value is given by

p-value = 1− FN(0,1)(ξ
SMR).

5.5 In-Sample Numerical Analysis. We �tted the approaches over a history covering 3 and

4 years (2007-2009 and 2007-2010 respectively) and compared the overall deviation between the

observations and the models (for the year 2010 and 2011 respectively). Table 4 displays the

estimates of the structure parameters for the three approaches.

Table 5 presents the tests and quantities summarizing the overall deviation between the

observations and the credibility analysis for the male population of portfolio 1 obtained by the
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Table 4: Estimates of the structure parameters, male population.

Hardy-Panjer Poisson-Gamma Makeham-Credibility

INSEE IA2013 INSEE IA2013 INSEE IA2103

2
0
0
7
-0
9 µ̂0 3.5521 16.3290 1 1 1 1

σ̂2 44.4032 92.1668 1 1 4.0552e-04 2.3198e-03

τ̂2 6.8368 44.0092 10.7485 367.5029 0.1935 3.5960e-02

2
0
0
7
-1
0 µ̂0 3.6495 15.7865 1 1 1 1

σ̂2 65.9649 116.0159 1 1 5.1034e-04 2.6285e-03

τ̂2 7.0772 43.4966 10.9684 338.4440 0.2217 5.0281e-02

Hardy-Panjer, Poisson-Gamma and the Makeham credibility approaches with the two baselines

mortality considered for the year 2010. Tables 6, 7 and 8, 9 in Appendix A and B display the

results for all the portfolios and for the years 2010 and 2011 respectively.

Table 5: Tests and quantities summarizing the deviation between the observations and the

models for portfolio 1, calendar year 2010, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

Standardized > 2 60 60 35 46 46 15
residuals > 3 48 48 28 32 32 5

χ2 5481.86 5542.82 3569.97 1705.25 1747.25 208.81
MAPE (%) 233.22 230.94 373.89 117.01 115.42 42.35

Likelihood ξLR 946.98 947.72 443.16 463.48 468.46 88.03
ratio test p-value 0 0 0 0 0 0.0364

SMR 1.1792 1.1919 0.5265 1.7629 1.7957 1.0532

SMR test ξSMR 4.0379 4.2939 12.1893 13.0352 13.4202 1.2845
p-value 0 0 0 0 0 0.0995

The Hardy-Panjer and Poisson-Gamma approaches produce relatively similar graduations.

However, we notice some di�erences with the Makeham credibility model which displays more

favorable results whatever the baseline mortality considered for the two periods �tted.

It is also apparent that using the market baseline mortality IA2013 produces better results than

the national demographic projections originating from INSEE, see Subsection 5.2. It illustrates

the importance of using an adequate baseline mortality when adjusting the models.

When looking at criteria and quantities which take the age structure of the error into account,

the Makeham credibility approach is a bene�t. The quality of the �t increases, sometimes

drastically, compared to the Hardy-Panjer and Poisson-Gamma model in terms of having the

minimum χ2 and MAPE values. The Makeham credibility model leads to the lowest number

of standardized residuals lower than 2 and 3. It exhibits as well the highest p-value for the

likelihood ratio test.

Even when we considering a global indicator of the quality of the �t such as the SMR which

does not take the age structure into account, the Makeham credibility model seems to perform

better than the Hardy-Panjer and Poisson-Gamma approaches. The statistic ξSMR of the SMR

test is the smaller 8 times over 14 for the year 2010, see Tables 6 and 7 in Appendix A, and 6

times over 12 for the year 2011, see Tables 8 and 9 in Appendix B.
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We also notice that the the Makeham credibility model has tendency to over-estimate the total

number of deaths, having a SMR lower than 1 for 9 portfolios over 14 in 2010 and for 8 portfolios

over 12 in 2011.

In the following, these quantitative diagnostics are supplemented by a range of visual com-

parisons. Besides the tests and quantities, the comparison involves graphical analysis. It consists

of representing graphically the �tted values against the observations for the years 2010 and 2011.

For clarity, the graphical comparisons only consider the market baseline mortality IA2013 as it

leads to better results than using the national demographic projections.

(a) Fitted probabilities of death in the log scale.

(b) Fitted number of deaths.

(c) Standardized residuals.

Figure 2: Fitted values against the observations for portfolio 1 for the year 2010, male popu-

lation.
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Figure 2a displays the the �tted probabilities of death in the log scale for portfolio 1 for the

year 2010. Figure 3 and 4 in Appendix C and D display the comparisons for all the portfolios and

for the years 2010 and 2011 respectively. It gives us the opportunity to visualize the similarities

and di�erences between the �ts obtained by the approaches. It is again apparent that the

Hardy-Panjer and Poisson-Gamma models lead to similar results. In addition, we observe that

these approaches have a tendency to strongly overestimate the probabilities of death for the age

band
[
30, 60

]
and reciprocally underestimate them for the age band

[
60, 95

]
. This is explained

by the fact that the age structure is not taken in account by the Hardy-Panjer and Poisson-

Gamma approaches, conversely to the Makeham credibility model. We can visualize this lack

of �t in the plots of the �tted number of deaths, Figure 2b for portfolio 1 and Figure 5 and 6

for all portfolios in Appendix E and F.

In conjunction with looking to the plots of the �ts, we should study the residuals plots.

Such residual plots provide a powerful diagnostic that nicely complements the analysis. The

diagnostic plots can show lack of �t locally and we have the opportunity to judge the lack of �t

based on our knowledge on the data and of the performance of the models. We superimposed a

smooth curve on the standardized residuals. This smooth helps search for clusters of residuals

that may indicate a lack of �t. The plots of the standardized residuals, for the male population,

are display in Figure 2c for portfolio 1 and Figure 7 and 8 in Appendix G and H for all the

portfolios and for the years 2010 and 2011 respectively.

The standardized residuals, obtained by the Hardy-Panjer and Poisson-Gamma models, present

a high curvature for most of the portfolios in Figure 7 and 8. It indicates a clear lack of �t.

These models overestimate the number of deaths for the age band
[
30, 60

]
et underestimate

them for the age band
[
60, 95

]
, as observed in the plots of the �ts previously. Conversely,

no strong patterns appear in the standardized residuals retrieved for the Makeham credibility

model. The smooth curves over the standardized residuals is meanly �at, meaning that no

systematic reproducible lack of �t has been detected and that the Makeham credibility model

captures adequately the variability of the data.

6 Concluding Remarks

We considered the periodic adjustment of a mortality graduated curve using a Makeham para-

metric model. This relies on the revision of a single parameter the two remaining been �xed.

The framework considered here is closely related to the one introduced in Hardy and Panjer

(1998). The main di�erence is the age-structure included through the parametric Makeham

model. By doing so, we showed that adding an age structure enhances the predictive ability of

the death forecast especially when we consider age-sensitive proxies. If one is only interested in

predicting deaths at the aggregate portfolio level our methodology yields to the same forecast

as in the Hardy and Panjer (1998) framework. Moreover, we should note that in our method-

ology especially using the ratio of the considered Makeham parameters allows to overcome the

de-trending step recommended in Hardy and Panjer (1998).

In order to assess the predictive power of our methodology, various other measures of risk and

goodness-of-�t should be taken into account. Especially, we should consider the age-structure's

impact on the prices and reserves and potential bene�t of our model compared to the current

market practice. There are also several piratical we do not address here which we openly

acknowledge and leave for future research.
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Appendix

A Tests and quantities summarizing the deviation between the

observations and the models for the year 2010

Tables 6 and 7 present the tests and quantities summarizing the overall deviation between the

observations and the credibility analysis for the male population obtained by the Hardy-Panjer,

Poisson-Gamma and the Makeham credibility approaches with the two baselines mortality con-

sidered for the year 2010.

B Tests and quantities summarizing the deviation between the

observations and the models for the year 2011

Tables 8 and 9 present the tests and quantities summarizing the overall deviation between the

observations and the credibility analysis for the male population obtained by the Hardy-Panjer,

Poisson-Gamma and the Makeham credibility approaches with the two baselines mortality con-

sidered for the year 2011.

C �tted probabilities of death in the log scale for the year 2010

Figure 3 displays the �tted probabilities of death in the log scale for the male population for

the year 2010.

D �tted probabilities of death in the log scale for the year 2011

Figure 4 displays the �tted probabilities of death in the log scale for the male population for

the year 2011.

E Fitted number of deaths for the year 2010

Figure 5 displays the �tted number of deaths for the male population for the year 2010.

F Fitted number of deaths for the year 2010

Figure 6 displays the �tted number of deaths for the male population for the year 2010.

G Standardized residuals for the year 2010

Figure 7 displays the standardized residuals for the male population for the year 2010.

H Standardized residuals for the year 2011

Figure 8 displays the standardized residuals for the male population for the year 2011.
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Table 6: Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2010, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
r
tf
o
li
o
1

Standardized > 2 60 60 35 46 46 15
residuals > 3 48 48 28 32 32 5

χ2 5481.86 5542.82 3569.97 1705.25 1747.25 208.81
MAPE (%) 233.22 230.94 373.89 117.01 115.42 42.35

Likelihood ξLR 946.98 947.72 443.16 463.48 468.46 88.03
ratio test p-value 0 0 0 0 0 0.0364

SMR 1.1792 1.1919 0.5265 1.7629 1.7957 1.0532

SMR test ξSMR 4.0379 4.2939 12.1893 13.0352 13.4202 1.2845
p-value 0 0 0 0 0 0.0995

P
o
r
tf
o
li
o
2

Standardized > 2 9 11 0 1 1 0
residuals > 3 2 1 0 0 0 0

χ2 102.84 101.50 29.62 41.54 40.41 30.75
MAPE (%) 108.16 116.37 48.80 47.18 48.09 54.70

Likelihood ξLR 90.3 94.99 33.8 36.43 36.77 33.35
ratio test p-value 3e-04 1e-04 0.9517 0.908 0.901 0.9573

SMR 0.6421 0.6014 0.8764 1.0149 0.9868 0.8567

SMR test ξSMR 3.6844 4.2907 0.9805 0.074 0.0207 1.1681
p-value 1e-04 0 0.1634 0.4705 0.4918 0.1214

P
o
r
tf
o
li
o
3

Standardized > 2 34 32 11 7 7 4
residuals > 3 9 9 5 0 0 0

χ2 416.19 420.04 161.66 110.28 110.89 64.16
MAPE (%) 156.33 154.14 76.78 64.99 64.67 45.48

Likelihood ξLR 239.44 236.76 115.84 91.13 90.85 38.51
ratio test p-value 0 0 1e-04 0.0219 0.023 0.9973

SMR 0.5361 0.5451 0.8955 0.8989 0.9052 1.1212

SMR test ξSMR 7.0465 6.8379 1.0892 1.049 0.9746 1.1174
p-value 0 0 0.138 0.1471 0.1649 0.1319

P
o
r
tf
o
li
o
4

Standardized > 2 20 19 15 8 5 2
residuals > 3 2 1 3 0 0 0

χ2 183.96 181.13 199.86 83.98 83.32 41.51
MAPE (%) 201.49 196.70 189.51 92.75 90.01 44.33

Likelihood ξLR 212.87 208 174.37 101.22 98.75 36.28
ratio test p-value 0 0 0 0 1e-04 0.9406

SMR 0.3590 0.3665 0.4332 0.6161 0.6326 1.0677

SMR test ξSMR 11.537 11.2597 8.408 4.9251 4.6315 0.5798
p-value 0 0 0 0 0 0.2810

P
o
r
tf
o
li
o
5

Standardized > 2 8 9 8 8 10 13
residuals > 3 8 8 7 8 8 6

χ2 368.00 470.94 205.33 259.26 366.90 209.05
MAPE (%) 72.14 78.00 67.45 79.85 85.30 82.04

Likelihood ξLR 63.85 63.4 59.53 52.94 55.85 43.15
ratio test p-value 0.1069 0.1141 0.1930 0.3992 0.2977 0.7746

SMR 1.4167 1.7941 1.2442 2.1557 2.9553 3.1797

SMR test ξSMR 1.6446 2.6956 1.0308 3.4572 4.6617 4.9234
p-value 0.05 0.0035 0.1513 3e-04 0 0

P
o
r
tf
o
li
o
6

Standardized > 2 62 62 56 50 50 24
residuals > 3 61 61 50 44 44 7

χ2 7615.50 7615.40 1538.42 1364.75 1364.60 256.21
MAPE (%) 2558.24 2558.59 652.41 631.01 631.13 145.45

Likelihood ξLR 7417.14 7417.88 1707.66 1575.04 1575.17 272.40
ratio test p-value 0 0 0 0 0 0

SMR 0.5444 0.5443 0.9802 0.9337 0.9335 0.9829

SMR test ξSMR 42.5496 42.56 1.2532 4.3697 4.3813 1.0796
p-value 0 0 0.1051 0 0 0.1402

P
o
r
tf
o
li
o
7

Standardized > 2 51 51 5 16 16 4
residuals > 3 44 44 0 1 1 1

χ2 1501.03 1504.85 114.94 163.58 164.90 77.81
MAPE (%) 515.81 516.42 72.78 96.70 96.99 29.18

Likelihood ξLR 1417.16 1420.27 145.97 201.82 202.79 60.31
ratio test p-value 0 0 0 0 0 0.6743

SMR 0.5941 0.5934 0.909 0.8941 0.8923 0.9264

SMR test ξSMR 33.38 33.4583 5.6836 6.688 6.8078 4.5385
p-value 0 0 0 0 0 0
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Table 7: Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2010, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
r
tf
o
li
o
8

Standardized > 2 62 62 5 26 25 4
residuals > 3 59 59 1 6 6 0

χ2 2962.00 2967.84 115.90 274.12 275.25 85.69
MAPE (%) 837.99 839.75 67.40 116.81 117.16 23.93

Likelihood ξLR 2455.66 2462.18 130.73 247.92 248.89 55.14
ratio test p-value 0 0 0 0 0 0.8273

SMR 0.5638 0.5627 0.9673 0.8972 0.8953 0.9811

SMR test ξSMR 37.8094 37.9526 1.9899 6.6063 6.7345 1.1323
p-value 0 0 0.0233 0 0 0.1287

P
o
r
tf
o
li
o
9

Standardized > 2 63 63 40 45 45 12
residuals > 3 59 59 30 38 38 3

χ2 5759.31 5759.28 591.79 741.90 742.08 147.99
MAPE (%) 754.36 754.31 192.26 198.83 198.97 22.01

Likelihood ξLR 3443.71 3443.52 427.46 502.06 502.38 77.09
ratio test p-value 0 0 0 0 0 0.1653

SMR 0.5262 0.5262 0.9084 0.8627 0.8622 0.9078

SMR test ξSMR 41.6671 41.6629 5.6716 8.7994 8.8355 5.7137
p-value 0 0 0 0 0 0

P
o
r
tf
o
li
o
1
0

Standardized > 2 48 48 1 6 7 3
residuals > 3 33 33 0 1 1 1

χ2 669.50 672.46 80.63 121.74 122.90 86.65
MAPE (%) 504.88 509.44 75.75 110.69 112.55 55.72

Likelihood ξLR 631.46 636.74 82.38 114.75 116.28 48.65
ratio test p-value 0 0 0.0839 2e-04 1e-04 0.9461

SMR 0.5336 0.5292 0.8434 0.8352 0.8263 0.91

SMR test ξSMR 16.4396 16.6765 4.1025 4.344 4.6133 2.2303
p-value 0 0 0 0 0 0.0129

P
o
r
tf
o
li
o
1
1

Standardized > 2 43 43 23 33 33 2
residuals > 3 37 37 20 17 17 1

χ2 1387.49 1391.13 695.98 380.60 383.26 74.55
MAPE (%) 257.02 255.43 464.55 125.94 124.91 46.19

Likelihood ξLR 429.18 426.67 338.9 161.53 161.07 39.42
ratio test p-value 0 0 0 0 0 0.9949

SMR 0.5373 0.5407 0.4887 0.9009 0.9094 1.092

SMR test ξSMR 14.8749 14.7085 14.254 2.2628 2.0519 1.8578
p-value 0 0 0 0.0118 0.0201 0.0316

P
o
r
tf
o
li
o
1
2

Standardized > 2 33 33 25 17 18 4
residuals > 3 17 17 20 3 3 0

χ2 588.18 592.25 449.62 161.43 164.16 91.65
MAPE (%) 241.27 236.71 514.74 111.99 108.62 89.85

Likelihood ξLR 274.67 270.12 329.89 122.89 120.3 96.49
ratio test p-value 0 0 0 0 1e-04 0.0085

SMR 0.4877 0.4971 0.3291 0.7957 0.8243 0.7125

SMR test ξSMR 10.8436 10.5217 15.3598 3.1391 2.6305 4.7701
p-value 0 0 0 8e-04 0.0043 0

P
o
r
tf
o
li
o
1
3

Standardized > 2 55 55 41 27 27 19
residuals > 3 44 44 30 16 16 11

χ2 2162.97 2162.79 761.52 331.68 331.72 252.49
MAPE (%) 478.97 478.32 200.96 136.82 136.60 46.85

Likelihood ξLR 1360.75 1359.18 469.14 241.26 241.02 136.5
ratio test p-value 0 0 0 0 0 0

SMR 0.5378 0.5385 0.9215 0.8966 0.8979 0.8966

SMR test ξSMR 24.9715 24.9134 2.9868 4.0137 3.9601 4.0113
p-value 0 0 0.0014 0 0 0

P
o
r
tf
o
li
o
1
4

Standardized > 2 50 50 23 23 23 12
residuals > 3 38 38 7 5 5 1

χ2 970.86 970.89 268.98 239.70 239.35 119.91
MAPE (%) 492.88 492.65 153.55 170.57 171.60 57.14

Likelihood ξLR 742.64 742.36 200.35 207.33 208.11 69.04
ratio test p-value 0 0 0 0 0 0.3750

SMR 0.5329 0.5331 0.9491 0.8529 0.848 1.0419

SMR test ξSMR 15.6678 15.6546 1.1518 3.6326 3.7699 0.8978
p-value 0 0 0.1247 1e-04 1e-04 0.1847
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Table 8: Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2011, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
r
tf
o
li
o
1

Standardized > 2 58 57 56 48 48 13
residuals > 3 52 52 48 35 35 5

χ2 5574.22 5621.44 3126.56 1901.24 1928.68 259.40
MAPE (%) 201.74 200.25 178.37 102.66 102.00 32.87

Likelihood ξLR 1027.03 1027.4 806.13 524.68 528.16 106.43
ratio test p-value 0 0 0 0 0 0.0012

SMR 1.1124 1.1216 1.2011 1.7371 1.7557 1.1256

SMR test ξSMR 2.935 3.1588 4.9944 14.192 14.441 3.2557
p-value 0.0017 8e-04 0 0 0 6e-04

P
o
r
tf
o
li
o
2

Standardized > 2 4 4 0 3 2 1
residuals > 3 2 1 0 0 0 0

χ2 77.89 78.43 29.07 34.89 33.64 30.94
MAPE (%) 114.12 124.28 52.48 48.03 49.12 53.99

Likelihood ξLR 66.67 71.07 29.92 28.72 28.99 28.16
ratio test p-value 0.0385 0.0169 0.9811 0.9877 0.9864 0.9901

SMR 0.6545 0.6097 0.8668 1.0371 1.0016 0.905

SMR test ξSMR 3.7113 4.3984 1.1388 0.2609 0.0268 0.7649
p-value 1e-04 0 0.1274 0.3971 0.5107 0.2222

P
o
r
tf
o
li
o
4

Standardized > 2 20 20 15 13 12 6
residuals > 3 4 4 3 4 4 1

χ2 250.57 250.57 1026.72 130.12 132.89 79.00
MAPE (%) 202.16 196.53 226.84 95.39 92.49 44.88

Likelihood ξLR 173.25 168.79 172.37 90.66 89.04 51.08
ratio test p-value 0 0 0 7e-04 0.0011 0.51

SMR 0.4852 0.498 0.5443 0.826 0.8534 1.4047

SMR test ξSMR 8.9106 8.5491 6.3742 2.1049 1.7255 3.4889
p-value 0 0 0 0.0177 0.0422 2e-04

P
o
r
tf
o
li
o
5

Standardized > 2 8 8 8 10 12 17
residuals > 3 8 8 6 8 8 12

χ2 706.87 851.26 262.78 473.68 573.94 348.18
MAPE (%) 77.15 80.93 77.56 85.66 88.04 90.42

Likelihood ξLR 64.56 65.02 52.53 56.7 58.91 50.61
ratio test p-value 0.1133 0.1061 0.4534 0.3041 0.2374 0.5288

SMR 1.714 2.0544 1.8163 2.857 3.4243 5.0206

SMR test ξSMR 2.4494 3.1986 2.6942 4.4512 5.0828 6.2982
p-value 0.0072 7e-04 0.0035 0 0 0

P
o
r
tf
o
li
o
7

Standardized > 2 55 55 15 21 21 11
residuals > 3 45 45 8 3 3 9

χ2 1593.26 1597.79 236.83 221.64 223.56 195.00
MAPE (%) 620.28 621.10 95.95 135.39 135.71 37.25

Likelihood ξLR 1448.73 1452.33 201.91 227.8 229.08 118.01
ratio test p-value 0 0 0 0 0 1e-04

SMR 0.5775 0.5768 0.811 0.8455 0.844 0.8229

SMR test ξSMR 35.3923 35.4792 2.74 10.1297 10.2409 11.8209
p-value 0 0 0 0 0 0

P
o
r
tf
o
li
o
8

Standardized > 2 65 65 37 50 50 29
residuals > 3 63 63 29 29 29 29

χ2 4987.77 5002.11 2485.39 2575.63 2583.90 2414.25
MAPE (%) 788.87 790.77 292.03 323.78 324.61 263.21

Likelihood ξLR 4970.14 4984.29 1891.04 2059.63 2066.49 1765.46
ratio test p-value 0 0 0 0 0 0

SMR 0.1483 0.148 0.2404 0.2315 0.2311 0.2431

SMR test ξSMR 82.2167 82.3412 56.2334 58.1115 58.2101 55.6816
p-value 0 0 0 0 0 0

P
o
r
tf
o
li
o
9

Standardized > 2 59 59 64 59 59 44
residuals > 3 54 54 62 55 55 36

χ2 4718.93 4718.46 1511.79 1572.53 1573.97 1502.87
MAPE (%) 1124.24 1124.13 349.82 368.08 368.29 125.64

Likelihood ξLR 4311.65 4311.18 1207.84 1283.35 1284.47 985.20
ratio test p-value 0 0 0 0 0 0

SMR 0.2613 0.2613 0.4243 0.4232 0.423 0.4185

SMR test ξSMR 70.5073 70.5015 41.3364 41.481 41.5056 42.0967
p-value 0 0 0 0 0 0
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Table 9: Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2011, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
r
tf
o
li
o
1
0

Standardized > 2 50 50 3 5 5 5
residuals > 3 34 33 1 1 1 1

χ2 635.65 638.50 74.42 115.82 116.47 97.88
MAPE (%) 408.56 412.51 51.54 89.68 91.03 46.14

Likelihood ξLR 613.89 619.28 73.18 112.54 113.73 47.99
ratio test p-value 0 0 0.2542 3e-04 2e-04 0.9535

SMR 0.5666 0.5617 0.9229 0.8708 0.8623 0.9596

SMR test ξSMR 15.1709 15.4268 1.9491 3.4132 3.6619 0.9826
p-value 0 0 0.0256 3e-04 1e-04 0.1629

P
o
r
tf
o
li
o
1
1

Standardized > 2 43 43 24 35 35 4
residuals > 3 41 41 22 17 19 0

χ2 1379.61 1382.88 926.73 415.32 417.53 76.48
MAPE (%) 299.83 297.80 555.88 152.87 151.69 46.97

Likelihood ξLR 511.89 508.51 429.79 214.06 213.07 52.92
ratio test p-value 0 0 0 0 0 0.8779

SMR 0.4927 0.4961 0.4443 0.8291 0.8369 1.0183

SMR test ξSMR 16.7405 16.5554 15.6387 4.0301 3.8212 0.3648
p-value 0 0 0 0 1e-04 0.3576

P
o
r
tf
o
li
o
1
2

Standardized > 2 35 35 21 10 11 4
residuals > 3 16 15 16 1 1 0

χ2 470.25 471.58 263.73 130.05 129.23 90.74
MAPE (%) 231.00 226.18 470.92 110.54 107.22 95.27

Likelihood ξLR 317.04 310.88 337.99 144.41 140.05 114.53
ratio test p-value 0 0 0 0 0 2e-04

SMR 0.3668 0.3745 0.2039 0.5981 0.6188 0.5426

SMR test ξSMR 12.9497 12.6324 17.505 6.0626 5.624 7.3459
p-value 0 1e-04 0 0 0 0

P
o
r
tf
o
li
o
1
3

Standardized > 2 56 56 39 28 28 23
residuals > 3 49 50 29 19 19 10

χ2 2058.43 2057.75 678.98 351.56 351.36 263.55
MAPE (%) 589.24 588.36 245.40 180.91 180.61 54.62

Likelihood ξLR 1316.24 1314.45 414.88 237.69 237.35 141.71
ratio test p-value 0 0 0 0 0 0

SMR 0.5092 0.5099 0.8679 0.8392 0.8404 0.8316

SMR test ξSMR 27.2355 27.1712 5.2064 6.4792 6.4261 6.8303
p-value 0 0 0 0 0 0

P
o
r
tf
o
li
o
1
4

Standardized > 2 48 48 21 24 24 7
residuals > 3 36 36 5 5 6 0

χ2 862.31 862.27 248.72 227.86 227.95 85.92
MAPE (%) 445.95 445.66 135.88 159.74 160.60 53.53

Likelihood ξLR 709.24 708.85 186.3 204.38 205.17 57.2
ratio test p-value 0 0 0 0 0 0.7717

SMR .5019 0.5022 0.9239 0.7916 0.7879 0.9385

SMR test ξSMR 16.5241 16.5063 1.6821 5.1598 5.2678 1.3381
p-value 0 0 0.0463 0 0 0.0904
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Figure 3: Fitted probability of death, log scale, for the year 2010, male population
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Figure 4: Fitted probability of death, log scale, for the year 2011, male population
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Figure 5: Fitted number of deaths for the year 2010, male population
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Figure 6: Fitted number of deaths for the year 2011, male population
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Figure 7: Standardized residuals, calendar year 2010, male population
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Figure 8: Standardized residuals, calendar year 2011, male population
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