N

N

An Adaptable Framework to Deploy Complex
Applications onto Multi-cloud Platforms
Linh Manh Pham, Alain Tchana, Didier Donsez, Vincent Zurczak, Pierre-Yves
Gibello, Noel de Palma

» To cite this version:

Linh Manh Pham, Alain Tchana, Didier Donsez, Vincent Zurczak, Pierre-Yves Gibello, et al.. An
Adaptable Framework to Deploy Complex Applications onto Multi-cloud Platforms. Computing &
Communication Technologies - Research, Innovation, and Vision for the Future (RIVF), 2015 IEEE
RIVF International Conference on, Jan 2015, Can Tho, Vietnam. 10.1109/RIVF.2015.7049894 . hal-
01232615

HAL Id: hal-01232615
https://hal.science/hal-01232615
Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01232615
https://hal.archives-ouvertes.fr

An Adaptable Framework to Deploy Complex
Applications onto Multi-cloud Platforms

Linh Manh Pham!, Alain Tchana2, Didier Donsez!, Vincent Zurczak?®, Pierre-Yves Gibello?, Noel de Palma'
1University of Joseph Fourier, Grenoble, France. E-mail: first.last@imag.fr
2University of Toulouse, Toulouse, France. E-mail: first.last@enseeiht.fr
3Linagora, Grenoble, France. E-mail: (vincent.zurczak, pygibello)@linagora.com

Abstract—Cloud computing is nowadays a popular technology
for hosting IT services. However, deploying and reconfiguring
complex applications involving multiple software components,
which are distributed on many virtual machines running on single
or multi-cloud platforms, is error-prone and time-consuming
for human administrators. Existing deployment frameworks are
most of the time either dedicated to a unique type of applica-
tion (e.g. JEE applications) or address a single cloud platform
(e.g. Amazon EC2). This paper presents a novel distributed
application management framework for multi-cloud platforms.
It provides a Domain Specific Language (DSL) which allows to
describe applications and their execution environments (cloud
platforms) in a hierarchical way in order to provide a fine-grained
management. This framework implements an asynchronous and
parallel deployment protocol which accelerates and make resilient
the deployment process. A prototype has been developed to
serve conducting intensive experiments with different type of
applications (e.g. OSGi application and ubiquitous big data
analytics for IoT) over disparate cloud models (e.g. private,
hybrid, and multi-cloud), which validate the genericity of the
framework. These experiments also demonstrate its efficiency
comparing to existing frameworks such as Cloudify.

Keywords—Middleware/business logic, Software Engineering/-
Management

I. INTRODUCTION

For many decades now, we are seeing the continuous
growth of the complexity of applications, due to the de-
velopment of new technologies on the one hand, and the
emergence of new needs on the other hand. An application
does not address a single problem but several. This growth of
their complexity implies the same phenomenon regarding their
execution environment on organization of physical machines or
devices. For instance, this has brought forward a change from
centralized to distributed and heterogeneous place of execution.
All of this makes human administration very difficult because
they are errors prone, slow to respond (e.g. fault solving),
and highly costly (e.g. wages). In the early 2000s, IBM [1]
proposed to automate their administration throughout the use
of what we called Autonomic Computing Systems (ACS for
short). This practice consists in transferring human adminis-
tration knowledge and behaviors to computing systems. This
can be done in two ways, either by introducing autonomic
behaviors into applications components at its implementation
time (e.g. [9]) or by building a computing system (different
to the application we want to administrate) which will make
the application autonomous [4]. In this paper we consider the
second way. As summarized by [1], administration tasks can

be divided into the following categories: (un)installation and
reconfiguration. The former includes the initialized provision-
ing of the execution environment, the installation of artifacts
from repositories, the configuration of the application, its
start-up as well as stopping and releasing allocated resources
when needed. About reconfiguration tasks, they are performed
at runtime in order to reconfigure the application when a
particular situation is detected (e.g. fault). ACSs have proved
their usefulness and now the major part of research in this
topic focuses on reconfigurations tasks [2].

However, recent years have seen the development of a new
technology called Cloud computing which is a challenging
domain for existing ACSs, as it introduces an intermediate
level of administration for virtual machines (VMs). Moreover,
it sometimes requires the utilization of several clouds at once
(hybrid and multi-cloud). To make matter worse, clouds API
are not standardized, which results to non interoperable clouds.
For example, running an enterprise financial/bank application
within the Cloud generally requires two clouds: a private
cloud (e.g. vSphere or OpenStack) located in the company
to run business-critical part and a public cloud (e.g. EC2 or
Azure) to run non-critical part. Note that in some situations,
the latter part can move from one cloud to another for price
and competitiveness reasons.

In this context, existing ACSs [3], [6] are inappropriate for
several reasons. (1) Existing ACSs only consider one level of
deployment/execution: an application runs within a physical
machine, whereas in the subject of the Cloud, the application
runs within a VM or a container, which in turn runs on a
physical machine. (2) The target execution environment is not
static in the context of the Cloud, an application does not stay
within the same cloud during its overall lifetime. (3) Existing
ACSs are built to administrate both application and execution
environment while in the context of cloud, administration is
ensured by two actors: the deployer administrates its applica-
tion while the cloud provider administrates VMs and physical
machines. Although generic ACSs [4] for grids and clusters
of machines exist, their enhancement for clouds requires a
high expertise for the deployer. Concerning cloud solutions,
they [14], [15], [16] are either proprietary, devote to a specific
application, or target a static cloud.

This paper addresses these problems by proposing a generic
(administrate any kind of applications), extensible, multi-cloud
(target several clouds at once), scalable, and fine-grained re-
configurable deployment framework. The key ideas behind the
framework are the following: (1) It is the composition of a ACS

light-weight kernel which implements basic administration
mechanisms; (2) a set of reusable components which are
easily improvable by any deployer; and (3) a hierarchical DSL
(Domain Specific Language) for a fine-grained expression of
applications and execution environments. To keep the thing
simple, we focus on a subset of administration stacks: initial
installation (including provisioning, configuration, start-up,
software deployment, stopping and uninstallation), dynamic
installation at runtime, and incrementally partial or full ap-
plication installation. In summary, we make the following
contributions in this paper: (1) introduce a generic, improvable,
and scalable deployment framework for multi-cloud applica-
tions. The prototype of this system is open source' and is
actually in use by several enterprises [32]; (2) perform several
experiments which validate all the properties of the proposed
framework. We deploy a web application onto a hybrid cloud
(a private VMware vSphere hosting center combined with
Amazon EC2 [33] and Azure [34] clouds). We also deploy an
application utilizing for Home Automation (OpenHAB [35])
on embedded board, EC2 and Azure clouds; (3) propose a
hierarchical DSL which allows fine-grained administration.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents architecture
of our deployment system. The evaluation and results are
presented in Section IV. Lastly, Section V concludes the paper.

II. RELATED WORK

A lot of research works [7] have been devoted to the
automation of the administration of distributed applications
in cluster or grid environments. Some of them [3], [6] have
focused on the installation phase. [5] presents a survey of
software installation until 2007. Since the introduction of the
Cloud computing technology, most research in the domain of
autonomic computing for grid systems have been refocused.
This section presents what is done for Cloud platforms.

As for grid systems, a number of research in the context
of Cloud computing are dedicated either to a single cloud
platform or a single type of applications. [8], [12] present a set
of deployment frameworks in order to provide scalable testing
solutions based on the Cloud. [10] focuses on fault tolerance
on machine, VM and software component at runtime. Like our
work, it relies on a publish/subscribe mechanism to coordinate
the state of deployed components. This approach also allows
to paralyze the deployment and facilitates fault detection. [9]
is comparable to [4] which provides a very low level API
to the deployer for its improvement. [25] presents Engage, a
deployment framework which is very close to [26], it allows
the user to only express a partial installation specification and
it generates the full one. In contrast, our system provides a
comparable feature since it is able to deploy a stack of software
from a partial specification. [11] motivates the use of Model
Driven Engineering as we do in our framework to build a
useful multi-cloud platform. Therefore, it introduces CloudML
which can be seen as a sub-part of our DSL. [13] focus on
the migration of enterprise applications to hybrid cloud while
considering enterprises constraints such as price, location, etc.

Very few solutions are close to our approach. Most of
them are proprietaries and do not provide detailed documen-

Thttp://roboconf.net/

tation about their internal functioning. Cloudify [14] statically
provides the possibility to use a number of cloud platforms.
Unfortunately, it does not allow to deploy an application
within different cloud platforms at the same time. Indeed, it is
not able to exchange dependency information or components
activation state across different clouds at runtime. Therefore, a
deployment which requires participation of a private cloud (e.g.
financial applications) is not possible with Cloudify. Regarding
the description of applications and execution environment,
Cloudify proposes a quite simple approach like other solutions.
It does not consider the possible hierarchy of an application.
RightScale [15] is another proprietary and commercial solution
for deploying applications on the cloud. It proposes a set of
applications templates (e.g. JEE) which can be improved by
the deployer. Therefore, it does not allow the integration of
new templates. No DSL is provided to the deployer as well.
Scalr and EnStratus [16], [22] provide solutions in the same
vein as RightScale.

In summary, all these solutions are not able to address the
challenging we presented for many reasons. (1) They do not
provide a hierarchical language which allows user to express
the application in a stack way. They are limited to three levels
of description: physical machine, VM and software. Therefore,
a fine-grained installation mechanism is not allowed. (2) Most
of these solutions are not improvable. They address either a
well-known application or cloud platform. Few of them which
are adaptable require a high expertise for the deployer though.
In addition, they are not able to target at the same time more
several cloud platforms, especially at runtime. Our framework
exhibited in next part overcomes these two problems.

III. A GENERIC MULTI-CLOUD DEPLOYMENT
FRAMEWORK

A. Overview

This part dictates our solution which is a deployment
framework for multi-cloud, but not only. It allows to describe
distributed applications and handle deployment automatically
of the entire application or a part of it. The objective of this
framework is to be improvable with a micro kernel which
is the core of the whole system. This kernel implements all
necessary mechanism to plug new behaviours for addressing
new applications and new execution environment. Moreover, it
supports scaling and dynamic (re)configuration natively. This
provides a lot of flexibility and allows elastic deployments. The
framework architecture is made up of several modules, which
is simplified in Fig. 1 and explained more detail as follows.
(1) The Deployment Manager (or DM) is an application in
charge of managing VM and the agents (see below). It acts as
an interface to the set of VMs or devices. It is also in charge
of instantiating VMs in the IaaS and physical machines such
as embedded boards; (2) The Agent is a software component
that must be deployed on every VM and device on which we
want to deploy or control something. Agents consume plug-ins
to delegate the manipulation of Software instances. The plug-
ins can be either life cycle management plug-ins that support
disparate implementation languages or frameworks such as
Bash, Puppet [23], Chef [24] OSGi [20], etc. or federated
PaaS plug-ins such as Heroku [17] or CloudBees [18] drivers.
The plug-ins can be flexibly plugged into the DM’s kernel or
agent. To not reinvent the wheel, it reuses existing and robust

Virtual Machine

Virtual Machine

Artifacts
Repo

Plug-ins

Plug-ins

Scripts
Repo

Paas Federation

%\) R
Console E

S Instance
§% T DSL || Kernel Manager

Console A

/ T Plug-in
g API

Console e e,
laas Coordination
RAe""L 1aas laas
P Provider Provider

Fig. 1: Simplified architecture of the novel framework.

Deployment Manager

Messaging
Server

Middleware Abstraction

Messaging |4

Interface laaS Abstraction

solutions such as Vagrant [28] or Docker [27]. The agents
communicate with each other through an asynchronous mes-
saging server; (3) The SoftwarelnstanceManager is devel-
oped as a plug-in to generate software life-cycle management
on different software platform and monitor software instances
themselves; (4) The Messaging Server is the key component
acting as distributed registry of import/export variables that
enable communications between the DM and the agents. It
includes the message definitions, the interface to interact with
a given messaging server (currently RabbitMQ [19]) and their
implementations. The DM and the agents always communicate
asynchronously through this server; (5) The Artifact and VM
Image repositories are responsible for distribution software
packages (i.e. artifact) and VM’s image, respectively. Artifact
repositories can be managed locally or retrieved from public
repositories such as Maven center or NPM. Image repository
is a database to map each required VM image of each IaaS
to corresponding infrastructure components. The required VM
image can be an image available in the VM image marketplace
provided by IaaS or a pre-built image created manually or
automatically (e.g. using Docker or Vagrant); (6) Eventually,
an admin console is required to control the DM. A shell-based
console has been developed to interact with the DM through
REST. It contains utilities to transform Java beans into JSON.

The framework is a distributed technology, based on
AMQP [21] and REST/JSON. It is both IaaS and PaaS-
agnostic. Many well-known laaS are advocated including
OpenStack, Amazon Web Services, Microsoft Windows Azure,
VMware vSphere, as well as a ”local” deployment plug-in for
on-premise hosts. In the PaaS aspect, not only potential type
of applications are tensely brought up to the Cloud such as
OSGi or Internet of Things (i.e. IoT) [29] but also state-of-
the-art PaaS are purposefully encompassed such as Heroku,
Google App Engine and CloudBees. Its architecture allows to

satisfy most of state-of-the-art requirements of a modern multi-
cloud PaaS such as dynamic dependency resolution, concurrent
deployment, genericity, multi-cloud distributed deployment,
middleware-orientation, modularity, extensibility, portability,
scalability and reusable/configurable deployment plan.

B. A Hierarchical Architecture with DSL

The aforementioned framework is designed to see a dis-
tributed application as a set of ”components”, and as a group of
“instances” of these components. Let us take as an example the
three-tier distributed application ”Apache-Tomcat-MySQL”.
”Apache” is a component, while an install of Apache on a
particular machine is an instance. Another install of Apache
on another machine is another instance. Besides, our system is
built to see distributed application as a group of components
that each one exchanges a group of simple data between each
other. Data can be either strings or more complex objects.
Components of a distributed application are composed of
variables as for example the IP address or the port used. Parts
of those variables may be needed by other components of
the application, they are named “exported vars”, while vars
coming from other components of the application are named
“imported vars”. Moreover, definition of a component can be
inherited by definition of another according to object-oriented
design. It inherits all import/export vars and default values. For
instance, Tomcat component can inherit properties of a generic
”Application Server” component.

Now that we have a far view of an application, let us
explain more precisely what are its components. In the above
example, Apache in this case simply imports variables coming
from Tomcat: IP and port of the application server. As we
said earlier, we define elements (component and instance) as
having a set of exported and imported variables. In this case of
Apache there are only imported variables. A sample of Apache
component under the framework’s language could be find in
Fig. 2a left.

This portion is made up of several regions. alias: A
component declaration. It is mandatory and provides a human-
readable name. installer: A component property. It is manda-
tory and designates the plug-in that will handle the life cycle
of component instances. In this example, we are using puppet
implementation. imports: lists the variables this components
needs to be resolved before starting. Variable names are
separated by commas. They are also prefixed by the component
that exports them. As an example, if Tomcat exports the ip
variable, then a depending component will import Tomcat.ip.
On the other hand, MySQL does not import data from other
components, it is the only one exporting data which are its IP
and port. The definition of MySQL is found at in Fig. 2a right.

Here has a minor different from the exports which lists the
variables this component makes visible to other components.
The "ip” is a special variable name whose value will be set by
the agents at runtime. All the other variables should specify
a default value. In terms of model and configuration files, the
framework has the following concepts: (1) The application
descriptor contains meta-information of the application such
as name, version qualifier and description; (2) The graph is in
fact a set of connected components. It defines Software com-
ponents which go from the (virtual) machine, cloud platform to

()

Apache Load Balancer
Apache {
alias: Apache Load Balancer;
installer: puppet;
imports: Tomcat.portAJP,
Tomcat.ip;

})
(b)

MySQL database
MySQL {
alias: MySQL;
installer: bash;
exports: ip,
port = 3306;

Tomcat app srv
Tomcat {
alias: Tomcat;
installer: puppet;
exports: ip,
portAJP = 8009;
children: Rubis;

RUBiS Application
Rubis {
alias: RUBiS war;
installer: java-servlet;
imports: MySQL.port,
MySQL.1ip;

} }

Fig. 2: Examples of component of (a-left) Apache; (a-right)
MySQL; (b-left) Tomcat; (b-right) Rubis.

the application package. The graph defines both containment
and runtime relations. Two kinds of relations are defined as
follows: (a) Containment means a component can be deployed
over another one. As an example, a Tomcat server can be
deployed over a VM. Or a web application (WAR) can be
deployed over a Tomcat server (see Fig. 2b); (b) Runtime
relations refer to components that work together. For instance,
a web application needs a database. More specifically, it needs
the IP address and the port of the database. Generally, this
information is hard-coded whereas our system can instead
resolve them at runtime and update components through the
configuration or management APIs (e.g. JMX, REST). As
an example, Apache, Tomcat and MySQL can be deployed
simultaneously. Tomcat will be deployed but will not be
able to start until it knows where is the database. Once
the database is deployed and started, the system will update
Tomcat configuration so that it knows where is MySQL. This
is what dependency resolution at runtime makes possible; (3)
If the graph defines relations between components, instances
represent concrete components. Like a Java class, a component
is only a definition. It needs to be instantiated to be used.
Predefined instances aim at gaining some time when one wants
to deploy application parts. As an example, the deployer could
have defined a Tomcat component in the graph, and have
two instances, one deployed on machine A, and another on
machine B and other two on machine C. These would be
four instances of the same component. The rules that apply
to them are deduced from the graph, but they have their own
configuration. An application is designed to see as hierarchy of
components. The main motivation of hierarchy is to keep track
of where instances are implemented in the system. It helps
to make right decisions in dynamic deployment. A natural
example of parent/children relationship of components of an
OSGi application is depicted in Fig. 3.

There is a new important field: children which lists the
components that can be instantiated and deployed over this
component. In the example above, it means we can deploy
Karaf over a VM instance. In turn, Joram and JNDI can be
deployed over instances of Karaf.

While the hierarchical model resolves the containment rela-
tions (i.e. vertical relationship) among components at different
layers and the export/import variables model is responsible
for solving the runtime relations (i.e. horizontal relationship)

Joram: OSGi Application Srv
Joram {
alias: Joram OSGi;
installer: osgi-bundle;
exports: portJR = 16001;
imports: Karaf.agentID,
Karaf.ip;

An Azure VM

VM_AZURE {
alias: VM Azure;
installer: iaas;
children: Karaf;

}

Karaf: OSGi Framework

Karaf {
alias: Karaf;
installer: bash;
exports: ip, agentID = 1;
children: Joram, JNDI;

}

}

JNDI: OSGi naming service

JNDI {
alias: JNDI OSGi;
installer: osgi-bundle;
exports: portJNDI = 16401;
imports: Karaf.agentID,

Karaf.ip;

}

Fig. 3: Example of components of an OSGi application.

:Virtual Machine

IP, Port IP, Port
:Apache - -= :MySQL
- 1

——> Containment
- — = Runtime

:RUBIS WAR

Fig. 4: Mlustration of relationships among components.

amongst components at the same tier, a bi-color Graph put ev-
erything together using the DSL. What is modelled in the graph
is really a user choice. Various granularity can be described. It
can goes very deeply in the structure of application or bundle
components together such as associating a given WAR with an
application server. Multi-IaaS is supported by defining several
root components. Each one will be associated with various
properties (e.g. IaaS provider, VM type). In fact, the deployer
can define a single graph, or a collection of graphs. The interest
of having several graphs is to define virtual appliances.

C. Deployment Process

1) Initial Deployment Process: We use three-tier example
to understand the way our framework works. As mentioned,
dependencies between components is presented in Fig. 4. The
goal is to deploy Apache, MySQL, Tomcat, Rubis instances on
separate VMs that similar to Fig. 5b. The target software on
Tomcat named RUBiS [36] which is a JEE application based
on servlets, which implements an auction web site modelled
on eBay. RUBIS defines interactions such as registering new
users, browsing, buying or selling items. The updating the
configuration files is performed as soon as dependencies can
be resolved (e.g. when it is aware of the MySQL IP/port,
this information will be sent to the Rubis nodes, so they can
update its configuration and start). The application components
(MySQL, Tomcat, Apache, Rubis) are defined as Fig. 5a. The
VMs from disparate Cloud providers are supposed to support
the deployment of either Apache, Tomcat, MySQL or Rubis
components and each component is described in terms of
imports/exports. With this description, the system knows when
a deployed component can be started. It is when all its imports
are resolved.

2) Redeployment Process: It often happens when every-
thing is running, we need to create a new instance to adapt to
changes from environment. It means the running system needs

()

An Azure VM
VM_AZURE {
alias: VM on Azure;
installer: iaas;
children: Tomcat,
Apache, MySQL;
}
An EC2 VM
VM_EC2 {
alias: VM on EC2;
installer: iaas;
children: Tomcat,
Apache, MySQL;
}
A VMware VM
VM_VMWARE {
alias: VM on VMware;
installer: iaas;
children: Tomcat,
Apache, MySQL;
}
MySQL
MySQL {
alias: MySQL;
installer: puppet;

exports: ip, port = 3306;
}
Tomcat is container of Rubis
Tomcat {
alias: Tomcat;
installer: puppet;
exports: ip,
portAJP = 8009;
children: Rubis
}
Apache Load Balancer
Apache {
alias: Apache Load Balancer;
installer: puppet;
imports: Tomcat.portAJP,
Tomcat.ip;
}
RUBiS Application
Rubis {
alias: RUBiS war;
installer: java-servlet;
imports: MySQL.port,
MySQL.ip;

(b)

A VM Azure with Apache
instanceof VM_AZURE ({
name: vm-azure-apache;
instanceof Apache ({
name: apache;
}
}
A VM EC2 with Tomcat
instanceof VM_EC2 {
name: vm-ec2-tomcat-1;
instanceof Tomcat {
name: tomcat-1;
instanceof Rubis {
name: rubis-1;

}

A VM VMware with Tomcat
instanceof VM_VMWARE {
name: vm-vmware-tomcat-2;
instanceof Tomcat {
name: tomcat-2;
instanceof Rubis {
name: rubis-2;
}
}
}
A VM VMware with MySQL
instanceof VM_VMWARE {
name: vm-vmware-mysql;
instanceof MySQL {
name: mysql;

} }
} }

Fig. 5: (a) Example of a DSL Graph of components; (b)
Example of a DSL Graph of instances.

to indicate the software component to instantiate, devise a
name and define where it should go. In this particular example,
we create a new Tomcat instance. Given our configuration
files, it can merely go under a VM one. We can either reuse
an existing instance or create another VM instance. In this
scenario, we will take the second option. We only add instances
in the model. They are not started, and not even deployed.
We ask the DM to deploy and start all of them. First, the
DM creates the new VM. Once it is up, the DM sends the
deployment command to the agent inside this VM and a new
Tomcat instance is deployed over the virtual machine. The
agents then publishes the exports (i.e. a new Tomcat instance
with a port and IP address). Since the Apache load balancer
imports such components, it is notified a new Tomcat arrived.
The agent associated with the Apache VM invokes a plug-in to
update the configuration files of the Apache server. Therefore,
the load balancer is now aware of two Tomcat servers. If
configured in round-robin, it will invoke alternatively every
Tomcat server when it receives a request. It is worth noting that
real magic here is the asynchronous exchange of dependencies
between software instances whereas the deployment and life
cycle actions are delegated to plug-ins.

IV. EXPERIMENTAL EVALUATION

To validate the soundness of the architecture, we conducted
a number of experiments with scenarios selected from practical
use cases.

A. Experiment 1

The first type of experiments demonstrates the advantage
of hierarchical structure which is aforementioned. For this
experiment, EC2 was the target cloud.

1) Scenario and Requirements: We performed this exper-
iment with an OSGi application. Regularly, an OSGi ap-
plication consists of one or several OSGi containers (e.g.
Karaf, Felix, Equinox) providing runtime environment and
management platform for OSGi bundles such as Joram, JNDI.
We used two instances of EC2 m3.medium, each hosts 2
instances of Karaf. Each Karaf inside a VM is customized to
choose either Felix or Equinox as underlying OSGi framework
and hosts an instance of Joram (an OSGi JMS-supported
server), or an instance OSGi JNDI or a JMS OSGi client
(publisher/subscriber). Deployment of Joram, JNDI and OSGi
JMS clients is handled by the “osgi-bundle” installer, specific
to this type of application. We chose Cloudify as comparative
objective because it also offers scripting language that can be
used to express the structure of a distributed application. Our
platform sees hierarchy of this application as depicted in Fig. 6
top, whereas Fig. 6 bottom shows flat structure of the same
application in Cloudify.

2) Results: With its hierarchical DSL and its extensibility,
users only have to write one deployment plan for EC2, one for
Karaf OSGi container and reuse one plan for multiple OSGI
bundles (Joram, JNDI, subscriber, publisher). With Cloudify,
6 deployment plans are needed, each one for each compo-
nent (EC2, Karaf, Joram, JNDI, Subscriber, Publisher). Thus
Cloudify users have to write twice more deployment plans.

B. Experiment 2

The second type of experiments gives some evidence
for the correctness of the multi-cloud deployment feature.
We compare deployment time of a Storm [30] cluster (an
Event Stream Processing (ESP) application) on a multi-cloud
platforms using our framework on the one hand and a manual
configuration following installation guide from original owner
on the other hand. Storm is a part of a global solution for
Ubilitycs [31] (ubiquitous big data analytics for IoT). Storm
consists of Zookeeper cluster, Nimbus server, Storm supervi-
sors and requires installation of JZMQ, ZeroMQ and Python.
The experiment was conducted in a multi-cloud environment
combining two public clouds (EC2 and Azure) and a private
Cloud (VMware vSphere). Three IaaS plug-ins for these clouds
have been developed to provide coordination among the three
laaS providers. Each plug-in implementation always imple-
ments an interface of the framework’s plug-in API. The LOCs
(lines-of-code) for the EC2 plug-in is 202, 393 for Azure,
and 157 for VMware vSphere. Zookeeper cluster was installed
on EC2, Nimbus server on Azure and Storm supervisors on
our VMware vSphere data-center to take advantage of our
computing strength. In this experiment, the time for installing
Storm manually is compared with the time to automate its
installation using our solution. The online installation guide
of Storm is 8 pages long containing many external links
to resource document of relevant dependencies. One of the

authors who had no knowledge about and attempted to install
Storm previously tried to do manual installations. It took him
about 6 hours the first time, 3 hours and 30 minutes the second
time, and up to 1 hour from the third one. Actions eating effort
time were reading imprecise instructions, resolving environ-
ment issues, seeking/downloading the required dependencies
and debugging problems.On the novel framework side, time
mainly devotes for writing deployment plan of Zookeeper,
Nimbus, Supervisors, JZMQ, ZeroMQ and Python. About 120
LOC have been written for scripts of all Storm’s components.
After installation, Storm can be managed (deploy, start, stop,
undeploy, update) by our platform and automatically connect to
other applications. The total development time for automation
of Storm was about 2 hours 55 minutes. This time was divided
into 30 minutes for component type’s design, 70 minutes for
writing scripts and 75 minutes for debugging and testing. If the
required packages are downloaded from the Internet, install of
Storm needs 20 minutes and around 7 minutes if the packages
are retrieved from a local repository. The automation of the
Storm installation empowers Storm developers deploy their
existing applications on multi-cloud with slight changes and
no need to understand details of the middleware. It warrants
a repeatable procedure and can be used as a part of larger
deployments (e.g. Ubilytics).

V. CONCLUSION

The novel distributed framework we propose in this paper
is a generic (administrate any kind of application), extensible,
multi-cloud, scalable, and fine-grained reconfigurable deploy-
ment framework. It is based on a lightweight kernel which
implements basic administration mechanisms. Its simplicity
(regarding its implementation) combined with its component
based approach ease its improvement by any deployer. More
important, it provides a hierarchical DSL (Domain Specific
Language) for a fine-grained expression of applications and
execution environments. This allows it to achieve fine-grained
level of administration (physical machine, VM, software within
VM, other stack inside software). Our experiments about
OSGi, Storm cluster validate all the framework’s features
on hybrid cloud. In addition, it outperforms most popular
deployment frameworks offering DSL like Cloudify in terms of
reusability. A further enhancement would be the implementa-
tion of a way to facilitate the integration of more sophisticated
reconfiguration policies (e.g. for scalability, fault tolerance).

ACKNOWLEDGMENT
The work reported in this paper benefited from the advocate
of the French National Research Agency through projects Ctrl-
Green (ANR-11-INFR-0012).

REFERENCES

[1] Jeffrey O. Kephart and David M. Chess, ‘The vision of autonomic
computing,” Computer 36(1) 2003.

[2] Jeffrey O. Kephart, ‘Autonomic Computing: The First Decade,” keynote
ICAC 2011.

[3] Kyle Oppenheim and Patrick McCormick, ‘Deployme: Tellme’s Package
Management and Deployment System,” LISA 2000.

[4] Alain Tchana, Suzy Temate, et al. “TUNeEngine: An Adaptable Auto-
nomic Administration System,” SCSE 2013.

[S] Dearle A., ‘Software Deployment, Past, Present and Future,” FOSE 2007.
[6] Hyun Jung La and Soo Dong Kim, ‘Dynamic Architecture for Au-
tonomously Managing Service-Based Applications,” SCC 2012.

[7] Eric Yuan, Naeem Esfahani, and Sam Malek, ‘A Systematic Survey of
Self-Protecting Software Systems,” TAAS 2014.

Roboconf

Application

1
VM-EC2-2

Karaf-
Equinox

r
VM-EC2-1

Karaf-
Equinox

| | | |
IMS IMs
l JEEI \ l {LIEl | l Publisher | l Subscriber |

Cloudify JMS JMS
Application Karaf Joram INDI Publisher Subscriber
hosted at a

VM
| |

Fig. 6: OSGi use case: Novel framework’s hierarchical view
vs. Cloudify flat view.

Karaf-Felix Karaf-Felix

[8] Flexiscale, ‘http://www.flexiscale.com,” visited on August 2014.

[9] Fawaz Paraiso, Nicolas Haderer, et al. ‘Federated Multi-Cloud PaaS
Infrastructure,” CLOUD 2012.

[10] Deepal Jayasinghe, et al. ‘AESON: A Model-Driven and Fault Tolerant
Composite Deployment Runtime for IaaS Clouds,” SCC 2013.

[11] Nicolas Ferry, et al. “Towards model-driven provisioning, deployment,
monitoring, and adaptation of multi-cloud systems,” CLOUD 2013.

[12] Tao Zou, Ronan Le Bras et al. ‘ClouDiA: A Deployment Advisor for
Public Clouds,” VLDB Endowmen 6(2) 2012.

[13] Mohammad Hajjat, et al. ‘Cloudward Bound: Planning for Beneficial
Migration of Enterprise Applications to the Cloud,” SIGCOMM 2010.

[14] ‘http://www.cloudifysource.org,” visited on August 2014.

[15] RightScale, ‘www.rightscale.com,” visited on August 2014.

[16] Scalr, ‘http://www.scalr.com,” visited on August 2014.

[17] Heroku, ‘https://www.heroku.com/,” visited on August 2014.

[18] CloudBees, ‘http://www.cloudbees.com/,” visited on August 2014.
[19] RabbitMQ, ‘https://www.rabbitmq.com/,” visited on August 2014.
[20] OSGI, ‘http://www.osgi.org/Main/HomePage,” visited on August 2014.
[21] AMQP, ‘http://www.amgp.org/,” visited on August 2014.

[22] EnStratus, ‘http://www.enstratius.com,” visited on August 2014.
[23] Puppet, ‘http://puppetlabs.com,” visited on August 2014.

[24] Chef, ‘http://www.getchef.com/chet,” visited on August 2014.

[25] Jeffrey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali, ‘En-
gage: a deployment management system,” PLDI 2012.

[26] Broto L., Hagimont D., Stolf P, De Palma N., and Temate S., ‘Auto-
nomic management policy specification in Tune,” SAC 2008.

[27] Docker, ‘https://www.docker.io,” visited on August 2014.

[28] Vagrant, ‘http://docs.vagrantup.com/v2/multi-machine/index.html,” vis-
ited on August 2014.

[29] Jayavardhana Gubbi, et al. ’Internet of Things (IoT): A vision, archi-
tectural elements, and future directions,” 29(7) FGCS 2013.

[30] Storm, ‘http://storm-project.net,” visited on August 2014.

[31] Niklas Elmqvist, Pourang Irani, *Ubiquitous Analytics: Interacting with
Big Data Anywhere, Anytime,” vol.46, no.4, pp.86,89, Computer 2013.

[32] Linagora, ‘http://www.linagora.com,” visited on August 2014.

[33] Amazon EC2, ‘http://aws.amazon.com/ec2,” visited on August 2014.
[34] Microsoft Azure, ‘http://windowsazure.com,” visited on August 2014.
[35] OpenHAB, ‘http://www.openhab.org,” visited on August 2014.

[36] RUBIS, ‘http://rubis.ow2.org,” visited on August 2014.

