
HAL Id: hal-01232512
https://hal.science/hal-01232512v1

Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Real-Time Scheduling Algorithms with
Cache Effects

Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche, Silvano
Dal Zilio

To cite this version:
Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche, Silvano Dal Zilio. Simulation of
Real-Time Scheduling Algorithms with Cache Effects. 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, Jul 2015, Lund, Sweden. 6p. �hal-01232512�

https://hal.science/hal-01232512v1
https://hal.archives-ouvertes.fr


Simulation of Real-Time Scheduling Algorithms
with Cache Effects

Maxime Chéramy∗, Pierre-Emmanuel Hladik∗, Anne-Marie Déplanche† and Silvano Dal Zilio∗
∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
†IRCCyN UMR CNRS 6597, (Institut de Recherche en Communications et Cybernétique de Nantes), ECN,

1 rue de la Noe, BP92101, F-44321 Nantes cedex 3, France

Abstract—This article presents an extension of the simulator
SimSo in order to integrate cache effects in the evaluation of
real-time schedulers. A short presentation is done to expose the
sources that give rise to temporal overheads in a real-time system
and how to model and compute them in a scheduling simulation.
We also present the benchmarks we used to validate these models
and the tools to collect input data required for the simulation. A
short example shows how the integration of cache models within
the simulation opens new experimental perspectives.

I. INTRODUCTION

The current trend in the embedded real-time systems is
towards the use of multicore/multiprocessor architectures that
offer enhanced computational capabilities compared to tradi-
tional single core ones. However, dealing with the concurrency
of processing resources caused by parallel execution of pro-
grams in such platforms has led to new challenges. Conse-
quently, since 2000, a plethora of papers have been published
in the area of real-time multiprocessor scheduling giving rise
to the design of numerous novel scheduling algorithms.

These scheduling algorithms were introduced together with
analyses of their behavioral properties and schedulability capa-
bilities. Such evaluations are conducted either in a mathemati-
cal way (by establishing and proving theorems) or empirically
(by measuring some metrics on schedules of randomly gen-
erated tasksets). They aim at defining conditions guaranteeing
schedulability, the percentage of schedulable tasksets, the num-
ber of task preemptions/migrations, the number of scheduling
points, the algorithmic complexity, and so forth. Subsequently
such results are used to compare the effectiveness of multipro-
cessor scheduling algorithms. However, such evaluations are
commonly conducted on simple models, in particular for the
hardware platform and operating system, that, at worst ignore
or, at best take into account very approximately the actual
overheads caused by operating system level mechanisms. Such
overheads result in increased execution times for real-time
tasks, thereby not only causing increased task response times
but also influencing subsequent scheduling decisions in a
correlated way. When analyzing scheduling algorithms, it is
essential to be able to take them into account as precisely as
possible so as to get valid results on their performance.

Our research work deals with the experimental study and
evaluation of real-time multiprocessor scheduling algorithms.
To this end, we have developed an open source software
simulation tool called SimSo (“SImulation of Multiprocessor
Scheduling with Overheads”), that is able to simulate the

execution of tasks on a multiprocessor system according to the
decisions of the scheduler. A cycle-accurate simulator or a real
multiprocessor platform would give very precise measurements
but it would also require to develop the scheduler in a low-level
language, integrate it into an operating system and use concrete
tasks. In contrast, SimSo is a simulator that is able to simulate
a real-time system and to compute various metrics to be
analyzed. But, neither a real implementation of the tasks nor an
operating system are required, and extensive experiments can
be easily conducted. Moreover, SimSo integrates behavioral
models of hardware and software elements that impact the
timing performances. As a consequence, it is able to take into
account some of the overheads caused by the system level
mechanisms such as: the computation of scheduling decisions,
the operations of task context saving/loading, and the memory
cache management. Such experimental simulations with SimSo
enable to produce empirically results (rather than worst-case
ones) and thus to bring out behavioral trends of scheduling
algorithms.

The aim of this paper is to present how we have extended
the models used to simulate the timing behavior of the tasks
while taking into consideration the operating system and the
hardware architecture. A particular attention will be given to
memory cache effects. Indeed, additional information is re-
quired to estimate as accurately as possible and to include those
overheads in our simulation approach. With this intention, we
use models that come from the performance community to
calculate cache miss rates and to estimate job execution times.
However, the design of SimSo allows to integrate other models.

This paper is organized as follows. First, we present the
main sources of temporal overheads to consider in a real-time
scheduling simulation. In Section III, a short introduction to
SimSo is done and the cache model and evaluation computa-
tional process are introduced. Section IV gives information on
benchmarks and tools used to populate input data for the cache
model. In Section V a short example illustrates the usage of
SimSo to study the effect of caches as a function of offset
and partitioning choices. Finally, in Section VI we give our
conclusion.

II. TEMPORAL OVERHEADS

Hereafter we examine major sources of overheads that
may have an impact on the timing application behavior. Our
objective was to integrate these aspects in our evaluations using
simulation.



A. Scheduling overhead

The scheduler is in charge of allocating sufficient pro-
cessing capacity to the tasks in order to meet all the timing
constraints regarding their execution. For this, it has to solve
two problems: i) an allocation problem, i.e. on which processor
a task should execute1; ii) a priority problem, i.e. when and in
what order it should execute each task. When considering on-
line scheduling, such problems are solved by executing the
scheduling algorithm at run-time. Whatever its type (parti-
tioned, global, or hybrid, and time-triggered, or event-driven),
the operations of the scheduler induce a run-time overhead that
depends on the complexity of its decision rules for selecting the
next tasks to execute. Depending on their implementation (on a
dedicated processor, or distributed on the processors) and how
kernel data structures are shared with possible contentions, the
overhead may be incurred on one or more processors.

B. Context switching overhead

Each time a task begins or completes, is preempted or
resumed, or carries on its execution on another processor, the
context of the task must be saved or restored. In practice, the
time penalty associated to a context switch is dependent of
the hardware (processor registers, pipelines, memory mapping,
etc.) and the operating system (update of internal states).

C. Cache overhead

Modern multiprocessor platforms usually use a hierarchical
memory architecture with small and fast memories called
caches, placed near the processors to alleviate the latencies of
the slow central memory. In practice, the memory architecture
may be composed of several levels of caches, from the level 1
cache (L1, the nearest memory from the processor) to levels 2
(L2) or 3 (L3).Their goal is to improve the overall performance
by keeping in a fast memory the data that have a good chance
of being reused. However, when multiple tasks execute and
share the same caches (either concurrently or alternatively),
the number of cache misses can increase and as a consequence
also increase the computation time of the tasks. The situations
we look at hereafter, aim at illustrating such phenomena.

Let us consider a task τa running on a processor πj and
another task τb that preempts τa. After the completion of τb,
τa can be resumed on πj . However, because τb executed on
πj , the instructions and data of τb can replace those of τa in
the L1 cache. After the resumption, the task τa must wait for
its instructions and data to be looked for in higher levels of
caches or even in the central memory. The execution of τa is
therefore delayed by the resulting cache misses that would not
have occurred if the data had remained in the cache. A similar
issue happens when a task migrates from one processor to
another.

Moreover cache thrashing may take place with caches
shared between processors. Thrashing occurs when the amount
of cache desired by the tasks simultaneously executed exceeds
the cache size. As a result, those tasks experience high cache
miss rates since their instructions and data are frequently
evicted from the cache before they can be reused. This, in
turn, results in a severe degradation in task execution times.

1Note that some scheduling algorithms can change, at runtime, the processor
that runs a task.

III. SIMULATION OF THE CACHE EFFECTS

The consideration of these overheads could supplement the
evaluation of real-time scheduling algorithms. Therefore, we
have integrated them in our simulation tool named SimSo [1].
The processing time taken by the scheduler and task context
switching operations can be quite easily included in the
simulation by adding (constant or state-dependent) temporal
penalties to the handling of some specific simulation events
(scheduler call, task start/resume, task completion/preemption).
On the other hand, it is much more difficult to tackle the
issue of cache related overheads. As mentioned above, they are
strongly dependent of the data and instruction access patterns
of the tasks. Thus they made us extend the inputs of SimSo
and design cache models able to predict an estimation of the
number of cache misses.

A. Execution Time Model in SimSo

SimSo is a simulator that allows to study real-time schedul-
ing algorithms [1]. The purpose of the tool is not to simulate
the real behavior of a specific system, but to evaluate empiri-
cally the behavior of the scheduling algorithms. More than 25
scheduling algorithms have been implemented so far.

In our previous work [1], we have shown that its design
allows to simulate some temporal overheads: overheads related
to the scheduling method, context save/load operations and
the timer routines. In the simulation, these overheads do not
increase the computation time of the jobs but keep the involved
processor busy. Note that they can be configured by the user
easily.

However, it is also possible to integrate some overheads in
the simulation by affecting the simulated computation time of
the jobs dynamically. SimSo offers the possibility to select
the model used to determine the computation time of the
jobs. More precisely, the models must be implemented in
the simulation through the Execution Time Model (ETM)
mechanism (Figure 1). The ETM is a single object that only
interacts with the jobs in order to keep its independence from
the rest of the simulation and to remain easily exchangeable by
another one. Every time the state of a job changes, the ETM is
informed so as to be able to determine the computation time
of the job. The ETM provides to the jobs a lower bound of
the remaining execution time. Once this time is equal to zero,
the job ends.

Such an Execution Time Model has been implemented in
order to simulate the cache effects. The following sections
describe the additional data that were added to characterize
the systems and the models that are implemented.

Fig. 1. Interface of the execution time model.



B. Additional characteristics

In order to compute execution time with cache, new task
characteristics must be added to the classic task model. These
characteristics (see Table I) come from the scientific domain
of the hardware performance evaluation. Due to a lack of
space, only the characteristics useful for the selected models
are presented below. However, other metrics exist such as the
Working Set Size [2] or the reuse distance [3].

TABLE I. ADDITIONAL TASK PROPERTIES

base cpi mean number of cycles per instruction
without considering memory access latency

n total number of instructions to execute for each job
API mean number of accesses to the memory per instruction
sdp stack distance profile (see section III-C)
CRPD fixed cache-related preemption delay
CRMD fixed cache-related migration delay

These data are setup by the experimenter and can be either
generated from real programs or artificially generated. It is
important to remember that this will only help to build a
memory behavior profile, but it cannot be used to reproduce
the behavior of a specific program.

For each processor, a list of caches is provided. These
caches are inclusive and can be shared among several pro-
cessors. Table II sums up the characteristics of each cache.

TABLE II. CACHE PROPERTIES

name name used in the cache hierarchy
SLx size of the cache Lx expressed in cache lines
access time time to reach this cache from the processor in cycles

C. Estimation of the cache effect

The penalties and the cache misses depend on the hypoth-
esis on the architecture such as inclusivity, separate data and
instruction caches, etc. Here, we assume that: the replacement
policy is LRU; the caches are inclusive and hierarchical; the
effects of the coherence protocol are negligible2; and only
data caches are considered, the instruction cache is supposed
modeled in the base cpi.

To update the progress of a job of a task τ , the ETM of
SimSo evaluates the number of instructions nτ executed by τ
between two consecutive events of the simulator with

nτ =
∆

cpiτ
(1)

where ∆ is the elapsed time between the two events and cpiτ
the estimated average number of cycles needed to execute an
instruction (CPI) of the task τ during this interval.

As the execution progress of a task is dependent of the
cache consumption, the cpiτ of a task τ is evaluated by
considering the cache miss rates on each cache level and the
penalties associated with a cache miss.

Under our cache hypotheses, the cpiτ can be computed
with

cpiτ = base cpiτ +APIτPτ (2)

2The effects of coherence protocol increase with the number of cores,
therefore, our model is limited to four cores.

where Pτ is the mean penalty associated to a cache miss. Pτ
is defined by

Pτ = mp0 +

L∑
x=1

mrτ,LxmpLx (3)

where mpLx is the penalty of a miss on the cache level Lx,
i.e. the difference between the time to access the cache level
L(x + 1) and the time to access the level Lx, mp0 is the
penalty of any memory access, and mrτ,Lx is the miss rate of
τ for the cache level Lx.

An easy way to evaluate the miss rate of a task under LRU
policy is to use the stack distance profiles (SDP), noted sdpτ
for the task τ . An SDP is the distribution of the number of
unique cache lines accessed between two consecutive accesses
to a same line [4]. An illustration of this distance is provided by
Figure 2. Such metric can be captured for both fully-associative
and N-way caches [5], [6]. For the LRU policy, the miss rate
for a task τ in isolation is

mrτ,Lx = 1 −
SLx−1∑
i=0

sdp(i) (4)

A B C B B E D A D E C

4

1 0 1
2

4

t

Fig. 2. Memory accesses sequence. A, B, C, D and E are cache lines and
numbers indicate the stack distances.

Many works propose a way to compute mrτ,Lx by con-
sidering the cache sharing between tasks on a multiprocessor
architecture [3], [5], [6], etc. In a previous work [7], we
have shown that the best compromise between computation
performance and precision to compute the miss rate under
cache sharing is given by the FOA algorithm [5]. This model
considers the effect of the cache sharing as if the task is in
isolation with a smaller cache size. This size is computed with
the cache access frequency of each task. For the task τ the
access frequency is

Afτ =
APIτ

cpi aloneτ
(5)

where cpi aloneτ is the CPI of τ executed in isolation (i.e.
without other tasks). This value is simply computed with (2),
(3) and (4). The virtual size of the cache for the task τ is given
by

Sτ,Lx = SLx
Afτ∑NLx
i=1 Afi

(6)

with NLx the number of concurrent tasks for the cache level
Lx. To compute the cache miss rate, the equation (4) is used
with the new estimated size Sτ,Lx instead of SLx. The Figure 3
represents the computation steps for the FOA algorithm.



FOA

API1
cpi alone1

API2
cpi alone2

S

Comp.
mr

Comp.
mr

S1

S2

SDP1

SDP2

Comp.
CPI

Comp.
CPI

mr1,L1

cpi1

mr2,L1

cpi2

base cpi1

mp0
mpL1

API1

API2

base cpi2

mp0
mpL1

Fig. 3. Computation of the cpi with FOA for two tasks sharing a cache L1.

D. Preemption and migration costs

Regarding the cost induced by a preemption3, several
experiments are presented in [7] and show that it is difficult
to predict it. Preemptive costs depend of the instant of the
preemption, the state of the caches, the duration of the preemp-
tion, etc. However, the overhead due to preemption is small
relatively to other durations. For all these reasons, we believe
that a fixed penalty Cache Related Preemption Delay (CRPD)
for each task is an acceptable alternative. The cost induced by
migrations is considered exactly in the same way by adding
a fixed penalty – Cache Related Migration Delay (CRMD) –
when a task migrates.

IV. TOOLS

Before implementing cache models in SimSo, our concern
was to evaluate their estimates on some effective task pro-
grams. We have thus collected a set of characteristics regarding
the memory behavior of some tasks [7]. These studies allowed
us to better understand the concept of SDP and to notice a large
variety of possible behaviors. To that end, we have used a
combination of several programs that comes from benchmarks
used for performance evaluation and embedded systems. We
had to develop some tools in order to measure the SDP.

In this part, we present the benchmarks we have used
and the tools we have set up. We will then discuss the
observed results and we will make some comments regarding
the difficulties to experiment systems with the consideration
of the caches.

A. Benchmarks

In order to conduct the experiments in [7], some pro-
grams were selected from the benchmarks MiBench [8] and
Mälardalen [9]. These programs are representative of the kind
of calculus used in embedded systems, contrary to those
from SPEC CPU, which are commonly used to evaluate the
performance of hardware architectures.

MiBench offers a large selection of concrete applications,
however, some of them could no longer be compiled with re-
cent compilers and some of them cannot run on the architecture

3Here, the cost of a preemption is the cost induced by the cache perturbation
and not the cost of a context switch.

simulator gem5 (see below). Moreover, some programs are too
long, or at the opposite, do not make enough memory accesses
to be interesting. With the aim of studying the cache effects,
a dozen of programs from MiBench were kept (see [7] p. 164
for a complete list).

Regarding the programs from the Mälardalen suite, their
main drawback is their very small computation time. Indeed,
these programs were developed so as to easily compare WCET
estimators. We have selected a dozen of them for which we
have increased the computation time (usually by increasing
the size of the input data). Note that some programs were
compiled with different optimization options in order to see
more profiles and to study this aspect on the SDP.

During our studies, we have run a lot of programs and
we have collected their characteristics (SDP, API, number
of instructions, base cpi). Among all the programs, we have
kept approximatively 30 programs that show various behaviors
when run alone or in concurrency. We now present how these
characteristics can be collected.

B. Collecting data

The collection of the metrics is heavily based on gem5 [10],
a low level architecture simulator. This tool was selected
because it is still actively developed and possesses a very
active community. The gem5 simulator is freely available and
is sponsored, amongst others, by AMD, ARM, Intel, IBM or
Sun. The use of an architecture simulator allows to control the
hardware specifications of the system (e.g. number of cores,
memory hierarchy and cache sizes).

To build the SDP, gem5 was modified in order to record
the memory accesses. The file that contains the journal is then
filtered to extract the sequence of the memory accesses made
by the program on the first cache level. A second program takes
as input this sequence and computes the SDP by simulating
an LRU cache with infinite size. All these steps are automated
by a Bash script (see Figure 4).

Program Execution
(gem5)

Log Filtering
(convert log.py)

SequenceSDP Calculus
(sdp.c)

SDP

Fig. 4. Steps to generate the SDP of a program.

The study of the SDP of the various programs has shown
a large variety of profiles. As an example, Figure 5 shows
two SDP we have collected from the programs Blowfish and
Say. The profile 5(b) is close to the usual assumption with a
geometric distribution, whilst 5(a) shows two clear steps. Due
to space reasons, we cannot expose here all the diversity of
observed SDP, but we insist on the fact that this variety implies
a large number of different behaviors. The main parameter to
take into consideration is the size of the caches. However,
when considering several programs running simultaneously or
alternatively (with preemptions), other parameters also matter,
such as the access frequency.



0 100 200 300 400 500

Stack Distance

10-5

10-4

10-3

10-2

10-1

100

Fr
é
q
u
e
n
ce

 (
lo

g
)

(a) Stack Distance Profile for Blowfish.

0 200 400 600 800 1000

Stack Distance

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
é
q
u
e
n
ce

 (
lo

g
)

(b) Stack Distance Profile for Say.

Fig. 5. Example of two Stack Distance Profiles.

Finally, the CPI is the number of cycles needed to execute
the program by gem5 divided by the number of instructions
executed, and the API is the number of memory accesses
divided by the number of instructions.

C. Generating artificial tasks

Some experiments evaluating the performance of sched-
ulers use generators in order to simulate the cache consump-
tion of the tasks. For instance, the evaluations conducted by
Calendrino on LITMUSRT are based on tasks that access the
elements of an array [11]. The way these tasks access the array
depends on the generator used. The first generator produces
tasks that access the data of the array sequentially while the
second generator produces tasks that access the data randomly.

We have reproduced these two generators and measured
the SDP of the tasks. The first generator (sequential) induces
more than 99% of the accesses done to a distance lower than 3.
Regarding the second generator (random), 90% of the accesses
are still done at a distance lower than 3 but the other accesses
are uniformly distributed between 3 and the size of the array.
We have also observed that the second generator refills the
cache faster.

For all these reasons, we would like to underline the fact
that it is difficult to evaluate a scheduling algorithm by taking
into account the caches because the behaviors can be very wide
and sensitive to the architecture characteristics. As a conse-
quence, it would be interesting to study the bias introduced by
the generators in the evaluations of some scheduling algorithms
and better define the benchmarks to use.

V. EXAMPLE

The integration of cache models within the simulation
opens new experimental perspectives. In this section, we
present a simple experimentation to demonstrate the possibility
to conduct new kinds of evaluation on scheduling algorithms.
More precisely, we study the impact on the partitioned EDF
scheduler of the first task activation dates and of the way the
tasks are allocated to the processors.

For this purpose, we have selected a set of 5 tasks for which
the memory behavior has been collected from the execution of
programs that come from the Mibench and Mälardalen bench-
mark suites. These tasks are periodic with implicit deadlines.
Their total utilization is 1.35 (see Table III).

TABLE III. TASK PROPERTIES

Name Period (ms) ET4 (ms) #Instructions API
Dijkstra-large 40 9 188 603 755 0.30
MATMULT-O2 30 10 47 922 711 0.37
COMPRESS-O2 20 5 46 771 323 0.28
Patricia 30 8 204 293 931 0.34
CNT-O2 10 3 143 775 036 0.08

The tasks run on two identical processors with a private
cache L1 for each processor and a shared cache L2. The size
of the L1 cache is 1Kio with an access time of 1 cycle, and
the size of the L2 cache is 16Kio with an access time of 10
cycles. The access time of the main memory is 130 cycles (see
Figure 6).

Memory

L2
120

L1 L1
9 9

C1 C2

1 1
10

130

Fig. 6. Architecture of the memory

There is a total of 16 possible allocations of the tasks to
the two processors with respect of the necessary and sufficient
EDF schedulability condition (

∑
ui ≤ 1 for each processor).

We focus on the way the use of the caches can be improved
in order to reduce in practice the computation time of the tasks.
For that, we consider two strategies. The first one consists in
grouping on the same processor some tasks (typically those
with a large cache occupancy) to avoid their simultaneous
execution (see Figure 7). The second strategy consists in
modifying the first activation dates of the tasks to take benefits
from the idle times of the processors (see Figure 8).

Both strategies help reducing the effective system utiliza-
tion5. The figure 9 shows the results for 3 different task
allocations and for each configuration, 10 000 systems where
generated with random activation dates.

4WCET without considering the cache related penalties.
5The effective system utilization is the average time spent running tasks

on the processors. It is similar to the utilization factor using the actual
computation times instead of the WCET.



t

P1 τ1

t

P2 τ2

(a) One task per processor.

t

P1 τ1

t

P2

τ2

(b) Tasks grouped on the same pro-
cessor.

Fig. 7. How to avoid cache sharing by grouping the tasks on the same
processor.

t

P1 τ1

t

P2 τ2

(a) Same activation date.

t

P1 τ1

t

P2 τ2

(b) Shifted activation date.

Fig. 8. How to reduce cache sharing by delaying task releases.

34 36 38 40 42 44

Effective (measured) system utilization (%)

0

100

200

300

400

500

600

700

800

900

O
cc

u
re

n
ce

s

{Dijkstra-large, COMPRESS-O2, CNT-O2} {MATMULT-O2, Patricia}

{Dijkstra-large, MATMULT-O2, CNT-O2} {COMPRESS-O2, Patricia}

{Dijkstra-large, CNT-O2} {MATMULT-O2, COMPRESS-O2, Patricia}

Fig. 9. Effective system utilization with various task to processor allocations
and with randomly generated activation dates (5 tasks and 2 processors).

These results show that some choices, often ignored, may
have some consequences on the task behaviours. SimSo, thanks
to the integration of cache models, allows to operate new
kinds of evaluations. This opens the possibility to compare
scheduling algorithms on different criteria, which could be
useful when they exhibit the same schedulability bounds.

VI. CONCLUSION

The purpose of the caches is to reduce the computation
time of the programs. However, unless the system uses a cache
partitioning mechanism, these caches are shared among the
tasks. As a consequence, the gains from using the caches can
be reduced when some tasks run in parallel or preempt each
other. It also means that the decisions made by a real-time
scheduler will have an impact on the actual computation time
of the jobs.

This paper focuses on the way the cache effects are
taken into consideration in the simulation to evaluate real-time
schedulers. In particular, we have shown that SimSo offers the
possibility to control the computation time of the jobs through
the Execution Time Model mechanism in accordance with the
cache model. Our goal was to reproduce, in the simulation, the

impact of the caches on the computation time of the jobs and
we decided to study these effects on the average case. However,
it should also be possible to develop a new ETM that considers
the impact of the caches in a worst-case manner.

In order to simulate the cache effects, we have studied the
existing cache models that intend to estimate the execution
time of the programs given the characteristics of the caches.
We have selected a set of programs in order to study these
models and we have decided to use the FOA model to
reproduce the cache sharing effects. Our studies have shown
that it was difficult to accurately estimate the cache related pre-
emption delays, therefore, we decided to use fixed preemption
and migration time penalties that increase the computation time
of the jobs during the simulation. We have also integrated in
the scheduling simulation some temporal overheads induced
by the scheduler and the context switching mechanism with
fixed time penalties.

Experiments to characterize the cache behaviors of a task
show that the cache consumption profile can be very varied
and needs dedicated tools and models to capture precisely their
effects. The choice of benchmarks or algorithms to generate
cache consumption can have a important bias on experimental
results and need special attention.

Finally, the experimental evaluations on schedulers with the
cache effects show that the simulation of the scheduling with
cache models opens new perspectives.

REFERENCES

[1] M. Chéramy, P.-E. Hladik, and A.-M. Déplanche, “SimSo: A simulation
tool to evaluate real-time multiprocessor scheduling algorithms,” in
Proceedings of the 5th WATERS, 2014.

[2] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache
model,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 2,
pp. 184–215, 1989.

[3] E. Berg and E. Hagersten, “Statcache: a probabilistic approach to
efficient and accurate data locality analysis,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2004.

[4] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evaluation techniques
for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2, 1970.

[5] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,” in Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture (HPCA), 2005.

[6] V. Babka, P. Libič, T. Martinec, and P. Tůma, “On the accuracy of
cache sharing models,” in Proceedings of the third joint WOSP/SIPEW
International Conference on Performance Engineering (ICPE), 2012.

[7] M. Chéramy, “Etude et évaluation de politiques d’ordonnancement
temps réel multiprocesseur,” Ph.D. dissertation, Université de Toulouse,
2014.

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the IEEE International Workshop
on Workload Characterization (WWC-4), 2001.

[9] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
wcet benchmarks - past, present and future,” in Proceedings of the 10th
International Workshop on Worst-Case Execution Time Analysis, 2010.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Computer Architecture News, 2011.

[11] J. M. Calandrino, “On the design and implementation of a cache-aware
soft real-time scheduler for multicore platforms,” Ph.D. dissertation,
Chapel Hill, NC, USA, 2009, aAI3366308.


