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SEMICLASSICAL ASYMPTOTICS BEYOND ALL ORDERS FOR
SIMPLE SCATTERING SYSTEMS *

ALAIN JOYET anp CHARLES-EDOUARD PFISTER}

Abstract. The semiclassical limit € — 0 of the scattering matrix S associated with the equation

u‘dt‘;gﬂ A()p(t) is considered. If A(z) is an analytic » X n matrix whose eigenvalues are real and

nondegenerate for all £ € R, the matrix § is computed asymptotically up to errors O(e""'z_1 ), &>
0. Moreover, for the case n = 2 and under further assumptions on the behavior of the analytic
continuations of the eigenvalues of A(z), the exponentially small off- d:agonal elements of 5 are given
by an asymptotic expression accurate up to relative errors Oe—" ) The adiabatic transition
probability for the time-dependent Schridinger equation, the semiclassical above barrier reflection
coefficient for the stationary Schrodinger equation, and the total variation of the adiabatic invariant
of a time-dependent classical oscillator are computed asymptotically to illustrate results.

Key words. singular perturbations, turning point theory, semiclassical, and adiabatic approx-
imafion, asymptotics of S-matrix

AMS subject classifications. 34E20, 34125, 81Q20

1. Introduction. Let us consider the following well-known equations. The first
one is the time-dependent Schrédinger equation for a two-level system

L1 | in 28 _ metyuty

t e R,y(t) € H = C2 and H(et) is a 2x 2 self-adjoint linear operator with two.distinct
real eigenvalues. The parameter ¢ is positive and small. The second equation is the
stationary one-dimensional Schrédinger equation

\ (1.2) —12 dw(”’)

+ V{)¥(z) = Ey(z)

z € R,¥(z) € C and V(z) is a bounded real-valued function. The real parameter E
is chosen in such a way that

(1.3) E > sup V(z).
zeR -

The third equation is the equation of motion of a classical oscillator whose frequency
varies with time

(1.4) #(t) = —w2(et)v(t), v(0) =wuo, o{0)=1,.

This equation is of the same type as (1.2) since we assume that the real-valued function
w(t) is bounded and such that

| P
(l 5) fw (#) >0.
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For the first two equations we are interested in the behavior of the solution for
t — +oo or £ — +oc, when the behavior for £ — —oco or & — —oo is fixed. Moreover
we want to analyze this scattering situation when ¢ tends to zero and k = 1 for
equation (1.1), the so-called adiabatic limit, or h tends to zero for equation (1.2),
the so-called semiclassical limit. For the initial value problem (1.4), we consider the
adiabatic invariant J defined as twice the ratio of the energy to the frequency

PO + W2 EHPEE
w(et)

(1.6) J(t,e) =

in the limit € — 0. More precisely, we are interested in its total variation during the
whole evolution

AJ(g) = J(+oo,€) — J{—o0,&).

In this respect, we consider (1.4) more as a scattering problem than as an initial value
problem. All three problems are very closely related. Let x = &t be a rescaled time
for equations (1.1) and (1.4). Then equation (1.1) becomes with wl(z) = P(t(z)) and
A=1 '

(1.7 : isé%f—) = H(z)p(z).

On the other hand, defining u(z) = v(t(z)) and

u(z)
(1.8) o(z) = ( PG ) ,
dz

equation (1.4) is equivalent to

(19) w268 (0 b)en eo=(0).

Similarly, with

()
(1.10) o) = |, dla)
dzx

and setting /i = ¢, equation-(1.2) becomes

 dp(z) 0 1
(1-11) g (E —V(z) 0) w(z)-
Thus the three equations (1.7), (1.9}, and (1.11) are particular cases of

d

(1.12) 228 _ 4(o)oa),

where A(z) is a linear operator on H = C? with two distinct real eigenvalues. Cur
purpose is to study a scattering problem for (1.12) in the “semiclassical” ]ir{nt g tends
to zero under the hypothesis that A(z) is analytic, has two distinct real eigenvalues
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for all z € R, and has well-defined limits when £ — =oo. It is natural to express the
solutions of (1.12) as linear combinations of eigenvectors of A(z):

2 = , ;
(1.13) ple) = Y es(e)e e N oy,

i=1

where A(z)yp;(x) = e;(z)p;(x). Our conditions on the behavior of A(xz) for large |z|
imply that '

(1.14) lim c,-(a:) = Cj(ﬂ:OO)

=00

exist, so that the following scattering problem is well defined:
Given ¢;j(—o0),j = 1,2 find ¢;j(400),5 = 1,2, i.e., find the matrix S defined by

- (262)= (3 &) (a62)

There is a “canonical” choice of eigenvectors of A(x) specified (up to a global factor)
by the condition

(1.16) B@2BE) _,

where Pj(z) is the eigenprojection corresponding to e;{z). Condition (1.16) has a
geometrical interpretation in terms of parallel transport which we give below. In
particular, it is immediate to verify that for A(z) given by (1.9) or by (1.11) with the
identification w?(z) = £ ~ V(z), the eigenvectors associated with e;(z) = (—1)iw(z),

. 1 1
(1.17) p1(z) = ( Vw(z) ), wa(z) = ( Vw(z) )
—y/w(x) ++/w(z)

satisfy (1.16), so that (1.13) gives the solutions of (1.9) and (1.11) as superpositions
of the two well-known Wentzel~Kramers—Brillouin (WKB) functions

(1.18) L NG Ly

When this choice of eigenvectors is made, a solution (z) of (1.12) characterized by
¢j(—o0) =1 and ex(—o0) = 0, k # j, satisfies

(1.19) sup [io(z) — e~/ o 5@V 0] = Ofe).
’ zER

Consequently,

(1.20) S=1+0().

The approximations (1.19) and (1.20) are true without assuming analyticity of A(x).
On the other hand, if analyticity holds, we can approximate the solutions of (1.12) and
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thus determine the matrix S up to error terms O{exp(—ke—1)),x > 0 (see Corollary
2.5),

(1.21) Skj = 85{€)0xj -+ O(exp(—re—1}},

where |s;(¢)| = O(1). These results are corollaries of the iterative scheme pr_es_ented in
§2, which will be used in §3. Actually they are derived for A(z) a n X n matrix whose
eigenvalues are assumed to be real and nondegenergte forany z € R. .

The asymptotic formulae (1.21) imply in pa.rtmt.llar tha?t tl}e nondiagonal terms
of S are O(exp(—xe~1)). These terms are important in apphca.t%o-ns because they are
related, for equation (1.1), to the probability of a quantum transition betv:veen the two
levels of the system or, in the case of equation (1.2), to the above barrier reflection
coefficient and, in the case of equation {1.4) to the quantity AJ(e). Under fur!:h?r
hypotheses on the analytic behavior of the eigenvalues of A(z) we show that it is
possible to find an asymptotic expression for S21 or 512 accurate up to exponentially
small relative corrections. The asymptotic formula is expressed by means of the com-
plex degeneracy points of the analytic continuations of eig.enva..lues e;{z). If there g:;
p contributing degeneracy points, the asymptotic expression reads (see Theorem 3.
and (2.43), (2.45)) :

P -
(122)  Su=Y e @ koot Lo Ol ), KT >0,
k=0

where 6*(k,¢) is-O(1) and Imy*(k,e) = -7+ Oe?),k =1, Y2 It should be noted
that the error term is smaller by an exponentially decreasu}g factor Fha.n the .leas‘t
significant term in the sum (1.22). This asymptotic fc‘trmula is proven in §3, wthI;lls
the main part of the paper. It is obtained by combining our 1-tera.t1ve schc-ame wit z;
method due to Fréman and Fréman [1]. We give in §4 e.xphcn: formulae in terms o
A(z) for the expressions 6*(k,¢) and v*(k, €} appearing in .(1.22). Tl}e conse}:)quences
of our asympfotic analysis of the matrix S for the apphf:atmns mf:n.tloned a1 Oveh?rﬁ
formulated in §4 as well. Finally, we give in ::ihe aippeﬁcyx ta}Es ex;)rl:::t example whic

i numerically to fit in the framework developed in P .

i} Sh%we:usucome baik to the choice of eigenvectors satisfying {1.16). Let M b.e some
manifold, which we suppose to be embedded in R9, and let P ‘F)e a-.smooth pro,iectm'n-
valued map, m — P{m), defined on M, P(m) being a projection (not.necessa.r;g(
orthogonal) of some given Hilbert space. The map P deﬁfles a bundle F with base M,
whose fiber over m’/ € M is the set of elements (m’,¢) with ¢ € P(m’)?:t. The bundle
F is embedded in the trivial bundle R? x H and has a natural con‘nectlon defined _by
P. Indeed, let f = (m, $) € F; any tangent vector vy at f can be viewed as a VGlO(.:lty
vector of a curve ¢(t) = (c1(t), c2()) with c2(t) = P(f:l(t))@(t) and c(0) = f, L‘iﬂ
vy = (¢1(0),€2(0))5. The vertical vectors at f are velocity vectors of curves g(t) (\g;)
c1{t) = m; since in this case c(t) € P(m)H for all ¢, they are of the form é t,hc: 0) ];[fl
with ¢2(0) € P(m)H. Conversely, since c2(t) = Pla (t))ca (), any vector :t fhe form
(0,2(0))s is vertical. Therefore, we have a decomposition of vy into a vertica et
(0, P(m)é2(0)) s and a horizontal vector (¢1(0), (1 — P(m))é2(0))s, henze 3 conn Thjs.
Let t ~» ~y(t) be a path in M and ¢(t) € P(y(2))H bc-:- a vector ﬁel' hm}g 'r‘.;al b
vector field is parallel if and only if the velocity vector (¥(t), qb(t;).,(;) is horizon I

i.e., if and only if P{~v(t))¢(t) = 0, which is precisely (1.16).

- t,];:ft;re ending tyhls intg;yo(d)gctgon let us make some very briejf comments on thefv:st
amount of literature devoted to the exponential decay of nondiagona! elements of the
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matrix S. We do not attempt at all to give an exhaustive account of it, but we want to
set our work in context relative to the main results. We quote these results according
to their content and not chronologically. The reader may find further references in the
books [2] and [3]. The intermediate result (1.21) is not new, see [2), [3] and references
therein, but we nevertheless obtain a new derivation of it in §2. For recent related
results see also [4]. The asymptotic expression (1.22) generalizes several rigorous
results which were obtained either in the case of equations (1.7) and {1.11) or in the

study of AJ(g). When one complex eigenvalue degeneracy only contributes, it has
been known since publication of the works [1], [5], [6] that

(1.23) S = e et L Og)elmrre?, Tmy <0

with § = #/2 for equation (1.11) and, providing A(z) is a real symmetric matrix,
for equation (1.7) as well. It was shown recently that when A(z) is a hermitian
matrix in (1.7), § can take any complex value [7], see also [8]. A corresponding
asymptotic expression for AJ(e) in this situation can be found in [9]-[11]. See also
[12] for more recent related results. The expression (1.23) was then generalized in
two ways for equations (1.7) and (1.11). First, when several eigenvalue degeneracy

points contribute to the asymptotics of S»1, it was proven using standard stretching
and matching techniques that [5], [13]

P
(1.24) Sa1 = Z e=if(k)g—ir(k)e™! 1 O(gw)elmre?,
k=0

where 0 < @ < 1 and Imy(k} = Imy < 0Vk. The leading term of (1.24) gives rise to
the so called “Stiickelberg oscillations” as € — 0, a phenomenon which is illustrated

numerically in [13]. Note also that the error term is O(e®) instead of Ofe), which

is a common drawback of the method employed to get (1.24). Then, higher-order

corrections to formula (1.23) were studied systematically in [14], [15] for equation
(1.11) and in [16] for equation (1.7):

(1.25) Sg1 = e~#0%(e)e=tv™(e)e ™" 1. O(gat)e-™" Yge N,7> 0,

where Imy4(e) = —7 + O(e?) and 84(g) = O(1). The iterative scheme of §2 was intro-
duced in {16] to derive this expression in the adiabatic context. Thus the asymptotic
expression (1.22) captures all the features of these previous results and it holds for
more general situations than those described by the particular matrices in (1.7) and

(1.11). Moreover, it yields an expression accurate up to exponentially small corrections
for the logarithm of Sa; since we can write for p=1

(1.26) In S5 = —319 — i8%(g) + O(e=="1).

2. Approximate solution. The results of this section will be used in §3. We
consider a slightly more general problem than in the introduction. Let H = Cr, with

the usual scalar preduct, and A(z),z € R, be a linear operator on H. We study the
equation (' = £)

el (z, z0) = A(Z)U(z, z0),
(2.1) U(zo, o) =1,
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under the condition that A(z) is analytic in z and for each z the spectrum of A(z)
consists of n distinet real eigenvalues e1(z) < --- < en(z), with corresponding eigen-
projections Py(x),..., Po(z). Note that the evolution U is not unitary in general.

In order to find an approximate solution of (2.1} we first consider another problem.
Let () be a solution of

(2.2) iey’(z) = A(z)p{=).
If Q(xo) is a projection such that Q(zo)¥(xe) = ¥(za), then for any Tz we have

a projection Q(z) such that Q(z)¥(z) = +¥(z). Indeed, if U(z,zo) is the solution of
(2.1) such that U(zp,z¢) = 1, we take

(2.3) Q(z) = Uz, 20)Q(z0)U (20, 2). .

The projection Q(z) is a solution of

(2.4) eQ'(z} = [A(z), Q(=)]

with the notation [A, B] = AB — BA. Let us suppose that at £p we have a complete
set of projections Q;(z0), i-e., Q;(z0)Qk(z0}) = Qx(20)6sx, 3 ; Q5(wo) = 1. Then the
Qj(z) form a complete set of projections as well and using the fact that for any
projection P(z) we have P(z)P!(z)P(z) = 0, it follows that

(2.5) Q)(z) = [Z Qo (@)@ (=), Q; (x)} :
Therefore we have for all j |
(26) {A(m) —iEZQin(I)Qm(m),Qj(w)] =0. .

We look for approximate solutions of this equation. Since [A(z), Pj(z)] = 0, the
eigenprojections P;(z) are approximate solutions of (2.6) up to an error term O(g).
Let

2.7 Ai(z) = Alz) — ieKo(z)
with
(2.8) Ko(z) = P}(z)P(s).

By perturbation theory, if € is small enough, A;(z) has n distinct eigenvalues e;,;(z)
with corresponding eigenprojections Py j{z},j = 1,...,n, such that e; ;{z) = e;j(z) +
O(e?), and P1 ;(z) = P;(z) + O(e). Indeed, e1 ;(z) = €;(z) — ic tr (P;(z)Ko(z)) +
O(e?) and P;(z)Ko(z)P;(z) = 0. The projections Py ;(z) are approximate solutions
of (2.6) up to an error term O{e2) since [A1(z), P1,;(x)] = 0. Let

2.9) Ki(2) = 3 PLn(@) Pim ()

950 ALAIN JOYE AND CHARLES-EDOUARD PFISTER

and ‘
(2.10) Az(z) := A(z) — e K; (z).

Again, for £ small enough, A(z) has n distinet eigenvalues eg ;(z) with corresponding
eigenprojections P ;(z). Since Ag(z) = Ai(z) + ie(Ko(z) — Ki{z)) and Ko(z) —
Ki{z) = O(¢), Ps,j(z) is an approximate solution of (2.6) up to an error term O{e3).
We can iterate this procedure. At the gth iteration we have approximate solutions
Py j(z), up to order term O(g9+1), which are eigenprojections of

(2.11) Ag(z) := A(z) — teKq-1(zx)
with
(2.12} Ko1(z) = ZP’—I,m(x)Pq—I:m(:E)'

We now construct approximate solutions for (2.1). Let Qm(z) be a complete
smooth family of projections of H, Qum(z)Qn(z) = 6mnQm(z) and 3, Qm(z) = 1.
We say that an evolution V{z,z'), (V{z',z") = 1,V(z2,21)V(z1,%0) = V(22,%0)),
follows the decomposition of H,

H=EP Qm(z)H
if for all z, 2’

{2.13) Onm(z)V (z,2") = V(z, 2 )Qm(z").

It is known (see [17] or [18]) that a smooth evolution with property (2.13) is the
solution of an equation of the type

(2.14) V’(:c, 3:0) = (B(.’B) + Z Q:—,—;(.’E)Qm(ﬂ!)) V(I, .’L‘o), V(:L'o, :l,‘o) =1,

where B(z) is such that
(2.15) [B(z),Qm(z)] =0 VYm.

Reciprocally, any smooth evolution satisfying (2.14) and (2.15) possesses the inter-
twining property (2.13). The idea is to construct approximate solutions of (2.1) by
choosing evolutions which follow the decomposition of H into

(2.16) - H=PPm(@)H.

Therefore we define Uy(z, zo) as the solution of
(2.17) eU§{z, x0) = (Aq(x) + ieKq(2))Uq(2z, zo), Ug(zo,z0) =1

The next lemma, which is actually Proposition 2.1 of [19], gives the main estimate
which we need to control the error term for the approximate solution Uy (z, o). This
lemma, is also used in §3.
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Foranyz€ Candr > 0let D(z;r) ={2" € C: |2’ —2z| <r} and 8D(zr) = {2/ €
C: |z’ — z| = 7}. Given z € C and r¢ > 0 let A(z) be analytic in D(z0;70) with a
spectrum consisting of n distinct eigenvalues e;(2) with corresponding eigenprojection
Pi(z) for all z € D(z0;70). We define Aq(z), Ky(2), Py,j(2), and eq,5(z) as above by
the iteration method based on {2.11) and (2.12). We set Rz, A) = (A(z) — A1)}~

LEMMA 2.1. Let 29 € C,mo > 0 and A(z) be defined on D{(zp;ro) with the above
properties. Let i > 0 and D; := D{e;j(z0); 2r1) be n disjoint discs in C,j =1,...,n,
such that for all z € D(z;70)

ej{z) € D(ej(z0);71)-

Let
a=a(z):=sup sup sup [R(z,A)|| <oo
3 A€8D; z€D(zgya)
and
b=>5b(z):= sup |Ko(2)|| < o0.
z&D(z0irp

Then there exist e* = e*(a,b) > 0 and ¢ = ¢(ro,71,0,b) < 0o such that
[[Kq(2) ~ Kq—1(2}|] < be2cig!

and
| Kq(2)|| <20

for all z € D(zp; 7o), all 0 < & < g%, and all g < q*(e) = [%], where [y] is'the integer
part of y end e is the basis of the neperian logarithm.

Remark. The proof of this lemma is given in [19] for the case P + P =1 in the
general situation where the spectrum of the (possibly unbounded) operator A(z) is
separated in two parts for any z € D(zq, ) and dim P; (2)H < oo. However, the proof
is the same for the case 2_1«,?:1 P; = 1,n > 2, apart from the obvious changes due to
the presence of more than two projectors.

COROLLARY 2.2. Let ‘the hypothesis of Lemma 2.1 be satisfied. Then for all
gsq*

eq.7(2) = e;(z) + O(be?).

Proof. Since P;j(z)Ko(z)P;(z) = 0 the statement is true for g = 1. For ¢ > 2 we
have

q—1 q

(218)  [[4q(2) — A(D S € Y 1Km(2) — Km-1(2)[ S &b Y ememml = O(e2b)
m=1 m=1

and therefore the statement follows from perturbation theory.' K|

We now apply Lemma 2.1 and Corollary 2.2 to control the norm of Uy(z, zo). It
is crucial that U, follows the decomposition of H into P, ,..; Pym(2)H.

COROLLARY 2.3. Let 1o > O be such that for each z € R the hypotheses of
Lemma 2.1 are satisfied on D{z;ro) with constents r1 and a independent of x and
with constants b{z) < b < 00. Then fore <e* and ¢ < g*

[eom}

Wataizol < e {0 (
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Proof. We introduce the evolution Wy(z, o),
FH

(2.19) Wile,30) = Ko(2)Wi(z,50),  Wa(z0,70) = 1.

/x m b(z') da ) .

Let us choose n eigenvectors g ;{0) of A¢(0) at = 0. The vectors

From Lemma 2.1 ﬁre have

(2.20) IWe(z,20)] < exp-(z

i

(2.21) ©q,i(®) = We(z,0)pq,5(0), i=1....,n

are eigenvectors of Ag{z) since W,(z,0) interpolates between FP,,,(0) and
FPym{z)¥Vm < n (see (2.13) and (2.14)) and by definition

(2.22) Py j(2)¢) ;(z) =0, ji=1,...,n.

Let us write Ug(z, zo) := Wy(x, 20)®4(x, 70). The unknown operator ®,(z, zo) is the
solution of

i€y (z, zo) = Wy(zo, z) Ag(z)We(z, 20)B4(z, o),
(2.23) B,4(z0,z0) = 1.

The operator W(zo, £)Aq{x)Wy(z,z0) has eigenvalues e, ;(z) with eigenvectors
@q,7(z0). Therefore

T

229 Bufeaolpnlon) = exp (~iet [ eas(@)ds) pusen)y  G=1,eooim

0

From Corollary 2.2 and the reality of e;(z),

(2.25) | |Im (/z: eq,i(2) dsc’) < O(e?) f: b{z’) dz'|,
hence
(2.26) [[Tg(z, zo)|| < exp {(2 + O(e)) f: b(z') dx! } . a

Note that in the above proof we have factorized the evolution U,(z,zp) as the
product )

(2.27) Uq(:c, zo0) = Wy(z, 20)P4(z, 20),

where @, only is singuler in the limit € — 0 and [|@4]] = O(2), [|[W,|| = O(1). Since in
our simple case ®, is known explicitly, the solution (z) of

iey! (z) = (Aq(z) + ie K, ()0 (z),
(2.28) Y(zo) = o
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can be written as
PY(z) = Uq(z, T0)$(0)
(220 = S casan)enp (=i et [ eas@) ) pasa),

2t 0

where the ¢q,;{Zo) are defined by the identity

(2.30) $o =Y cqj(To)pq,i(z0)-

izl
THEOREM 2.4. Letr > 0 and g > 0 and let A(x) be analyticin Uy = {z=z+iy:
z,4 € R, |y| < r}. Let the spectrum of A(x) consist of n real distinct eigenvalues
e;(z),j=1,...,n, such that forallz € R
lex(z) —ei(z)l 29,  k#5
Let

IKo()| = [|D_ Pi(a)Pi(z)

izl

be an integrable function of x which tends to zero as [z| — 0. Then there exist constants
e* > 0,0 < oo,k > 0 such that the above-constructed matriz Ugp (z, o) approrimates
the solution U{z,xzq) of the equation

iU’ (z,x0) = A(x)U(x,z0),
U(zo,z0) =1

in such a way that

sup ||U(z, o) — Ug (2, z0)|| € C’ exp(—£e—1).
T, opER

Remarks. i) Neither U nor Uy« are unitary in general; however, both their norms
are O(1) as ¢ — 0.

ii) Note that lim; ,4+.c A(r) need not exist, since we only require that
limg 400 Pj(z) = Pj(to0) exists. )

iif) The exponential decay rate is given by & = 1/ec (see (2.33)) where ¢ is defined
in Lemma 2.1. The decay rate obtained by this method is certainly not optimal but
has the merit, however, to be explicit and rather simple to determine. It should be
noted also that in the general case (i.e., n > 2), it is an open problem to determine
the optimal decay rate. ‘

iv) Similar results were also obtained by different methods: Nenciu [20] considered
and studied a formal series expansion in ¢ satisfying (2.4) and Martinez [21] and
Sjéstrand [22] used microlocal analysis techniques. In particular, the question raised
in the preceding remark is addressed in [21]. However, the estimates needed in §3 are
proved in {19] only. :

Proof. By standard arguments of perturbation theory we can verify the hypothesis
of Corollary 2.3 with b(z) integrable on R. (see, e.g., §2 of [23]). We recall that

Ece

(231) ¢*(e) = [i]
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as defined in Lemma 2.1. The operator R(z)} := Uy« (2o, 2)U(z, To) is a solution of

eR/(2) = Ugr (20, T)(~ Ag+ (2) — 1Ky (z) + A(2))Uqe (2, 20) R(z)
(2.32) = el (20, ) (K« -1(z) ~ Ko» (2)) Uy (%, T0) R(z).

From the integrability of b(x) and Lemma 2.1 we have

[ R(z) — 1] < C"(ce)" g*!
< C"(egg*)?
(2.33) < eC" exp(—re-1),

where Kk = E—lé Hence

U, 0} — Ug+ (2, o)l < |[Up (=, o) | B() — 1]
(2.34) < Clexp(—ke~1). O

We assume that the hypotheses of Theorem 2.4 are satisfied and we determine
the matrix S up to an error term O(e—+*<""). Since ||Ko(z)|| and thus || K,—1(z)|| tend
to zero at infinity in an integrable way (see Lemma 2.1 and Corollary 2.3),

(2.35) Lm [[4g(z) - Al)f =0 Vg<g*
and for all ¢ < ¢*, there exist W, (%00, 7o) such that

(2.36) Hm W (z, 20) = Wo(Fo0, zp).

x—too

Let us choose a point zo and a set of eigenvectors (o) of A(ze),j =1,...,n. Using
Wo(z, z0) we define a set of eigenvectors of A(z) for all z,

(2.37) v;(z) = Wolz, zo)p;(zo)-
Let 4 be a solution of
(2.38) iey'(x) = A(z)y(z)

and let vs write 9 as

(239) B(@) = Y eila)e o S ),

izl

Since [|Ko(z)|| is integrable, lim; .+ ¢;(z) exists (see, e.g., Lemma 3.2 below).
Let us now define a set of eigenvectors of Ag(zx) by choosing

(2.40) #5(—~00) = gge 3(~00) = p5(~00)
and setting

(2.41) 93 (@) = Wer (2, —00)p;j (—o0).
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We can also write 9(z) as (e = eg~.5)

) = * ) dz’
B(@) =Y ct@e S0 TN ria)
321
(2.42) _ Z 02,5 (:L')B—ile 'Lo ej(z") d:c'e—ils fto (ej (@')—e;s(a")} dz 50;5(33)-
21

From (2.39), (2.42), and lime— —co [| P+ () — Pj(z)]| = 0 we have

fm e e % b (ayi(a) = ¢j(—oo)pi(~o0)

T——00

_ e [T e ae’

(2.43) c;f(—OO)tpj(-éo)-

On the other hand, with the definitions Wy(Zoo, FFoo) = Wy(oo, z0} Wy (mo, Fo0),0 <
g < g*, we have .

'tp; (00) = Wer (00, —00)pj(—00)
= W (00, —00)Wo(—00, Zo)p; (o)
= Wgr (00, —00)Wo(—00, o0); (_+°°)
(2.44) = e pj(+00),

the last equality defining the factor e~ where B is in general complex. Thus,
similarly,

: OO we N ’ N
(2.45) e/ Lu (e ()es TN & i (o0} = ¢j(o0).
Let % be a solution of (2.38) characterized by ¢;(—00) = 1 and cx(—00) = .0 for
k s § which we decompose as in (2.42). From Theorem 2.4 and (2.29) an approximate
solution of ¥(z) is obtained by replacing ¢j(x) by ¢j(zo) in (2.42), and we have

(2.46) sug]c;f(:n) — &5{zo)| = O(e—rs™"), i=1,...,n
z€
Therefore
(2.47) cr(+00) = Ofe™*™"),  k#]
and
: o2 wp b ! ’ _
(2.48) ¢j(00) = e—i03 e—z/s f_m (e3(z")—e;(z')) dz + Oe—*e 1)_

The matrix S defined in the introduction is then given by the following corollary.
COROLLARY 2.5.

*

. +co » e ’ _
Skj = i85 o~ f_m (e} (=")—e;(=)) dz br; + Ofe=re M.

Remark. It should be recalled that we did not write explicitly the e-dependence
of e or Py« ;, but in Corollary 2.5 we have B} = B;(¢) and €}(z') = ej(z’,e).
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3. Asymptotics of the nondiagonal part of the matrix S.
3.1. Stokes lines.’ From now on, we deal with the case H = C2: we compute in
this section an asymptotic expression for S21, which, in the simplest case, reads

(3.1) Sy = e (@e—iv ()TN (1 4 OfeneY)).

The idea is to combine our iterative scheme (2711), (2.12) with an-analysis in the
complex plane by a method due to Fréman and Fréman [1]. To perform the analysis we
need some precise information about the analytic extension of A(z) into the complex
plane. In particular, we must control the Stokes lines of the problem (Condition II
below). Thus, in this subsection we introduce the notion of Stokes lines and give the
conditions needed to make use of the method of [1] in the next subsection.

Without restricting the generality we impose trA(z) = 0. Thus we have A(z)2 =
p(z)1, with this identity defining the function p(z). The eigenvalues of A(z) are then
e1(z) = —ea(z) and ez(x) = /p(z), with VI =1.

The corresponding eigenprojections are given by

1 A(z)

(3.2) Pi(z) = 5 (1 + ej(;c)) :
On R the eigenvalues are real and distinct and we suppose that there exists g > 0
with p(z) > g, forall z € R.

Let 2 be a domain of C, symmetric with respect to the real axis, containing
R, on which A has an analytic extension. Since p is real on R we have for any
z € ©,p(2) = p(z). The analysis of Sz; is done by working in the upper half-plane
only, whereas the analysis of S12 is performed in the lower half-plane, as we shall see
below. The eigenvalues and eigenprojections also have analytic extensions in £, but
it is clear that the zeros of p in {2 are singular points for these objects. Some of these
singularities play a dominant role in the determination of Sjx,j # k.

As in §2 we introduce new operators Ag(z) for all z € 2\ {2 : p(2') = 0} by the
iteration scheme (2.11) and (2.12). In our case we can write ~

Ko(z) = P{(2)P1(z) + P3(2) P2(2)

(3.3) = [PY(z), Pi(2)] = f(z)w(z), Az,

where / = £ and we compute for all g
Aq(2) = A(z) — ie[Py_y 1(2), Pg-1,1(2)]
(39) = 4) ~ s A (e), Aga ()]

Indeed, we have trd, (z) = 0, because the trace of a commutator is zero. Thus po(2)
is defined by AZ(z) = pg (2)1. Hence the eigenvalues e, ;j(z) = (—1)+/py(2) and
Py 1(z) is given by an expression similar to (3.2). Equation (3.4) clearly shows that
although the eigenvectors and eigenprojections are multivalued in Q when we perform
the analytic continuation, this is not the case for Ag(z). In the above construction we
must avoid the zeros of py(z) for ¢’ <g—1.

ConNDITION I. The set X = {z € Q: p(z) = 0} is a finite set. Let ro > 0 such
that D(zj;m2) N D{zk;r2) = & for all z; # z1 € X and let

(3.5) Q:Q\ U D(z;;72).

ZjGX
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There ezist constants g’ > 0 and C' < oo such that uniformly on Q
(3.6) ()29, IR <C.

Remark. As we shall see in Conditions II and III below, we must satisfy (3.6) on
a subset of {2 only.

Condition I allows us to verify the hypotheses of Lemma 2.1 umformly on €.

Moreover the operators A,(z) are holomorphic on {2, provided € is small enough.
Indeed for any € < e* and ¢ < ¢*

3.7) pq(z) = p(2) + O(be?).

(The proof is the same as that of Corollafy 2.2) We define eigenvectors of Ag=(2),z €
§2, by the method of §2. Let ¢}(0) be an eigenvector of A4« (0) for the eigenvalue
€5(0),7 = 1,2. Let Wi(z|a) be the analytic continuation of W,{z,0) along a path

in €}, starting at 0 and ending at z, where

Wi(z,0) = Ko (2)Wa(z,0), z€ER,
(3.8) W, (0,0) = 1.

The operator W, (z|e) is a (local) solution of
(3.9) Wi(z|a) = K¢ (2)Wi(2]e).

The main property of W, (z|a), which follows from (3.9) (see (2.13) and (2.14)), is
that the vectors

(3.10) ' oi(zlo) = Walzla)p3(0), j=1,2

are two eigenvectors of Ag«(2), which are obtained by analytical continuation of ¢7(0)
along o The vector p}(z|a) is an eigenvector for the eigenvalue e}(z|a), which is the
analytic continuation of €}(0) along a.

LEMMA 3.1. Let z; be a simple zero of p in Q and let n be a simple closed path
around D{z;;T2), counterclockwise oriented and encircling no other disc D{zx;r2) with

p(zx) = 0. Then for &£ small enough,

1) the fotal variation of the argument of py along 1 is 2, and

2) if n staris at z = 0, then there exist two complex numbers 0% ko d #k 4,k=12;
such that

W (0lm)pt (0) = ¢¥ig3(0),  i#k
and
e‘w;j eiB;k = -—1, j 75 k.
Proof. 1) Using (3.7), we can write

(3.11) pe (2) = p(2)g(2)
with |g(2) — 1] < 1 for all z € 5. Thus
_ 9@, 1 [z p'(z)
2m (z) T om pz (2) dz = 2m p(z) ek

dz — 1.

(3.12) =
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2) ©3(0) is an eigenvector of Aq+(0) for the eigenvalue €}(0). After analytical
continuation €3(0n) is an eigenvalue of Ag«(0) and by 1) it is equal to —ef(0) =
ex(0), k # j. Thus ©%(0ln) = W (0ln)}(0) is an eigenvector for the exgenvalue e;(0)
and therefore proportional to (p,c(O) Fma.lly, the last identity is a consequence of

det W,.(z|a) = 1 since trKy«(2) = 0

Let X be a simply connected domam in Q, which contains the real axis. In ¥ the
analytic continuations of e}(z) and ¢}(z) are path independent so that we write e3(2)
instead of e}(z}c) and so on. Let *qb(z) be a solution of

(3.13) ey (z) = A(2)¥(z2), ze L.
We decompose () along the eigenvectors of Ag-(z),
2 : z xS dz'
(3.14) $(z) = 3 et(2)e o SEIE ),
- §=1

and we derive a differential equation for the unknown coefficients c}(z) using the
identities

{(3.15) A(z) = Agp(2) + iK1 (2)
and '
(3.16) () = Ker ()02 (2).

By performing scalar producis with W‘l(z)Ttp;(O) j = 1,2, where § denotes the
adjoint, we get a set of linear equations to be solved for ¢}’ (z) Let R be the constant
matrix defined by

| _ ({@0)er(0) (@105
(3.17) = ((@(omo;(o» (<P§(0)I90’2'(0))) :

the elements of which, denoted by rjz, are O(1). We obtain finally

(318) &) = 37 explie= A (2ass{e} (2),
where ‘k_l

(3.19) 83 = [ (egle) - e
and

2

(3.20) aik(z) = =3 r(er QWi (2)(Ko (2) — Kor—1(2))Wil(2)p3(0))-
=1

We have a good control of a;ji(z) using Lemma 2.1 but the factor exp(ie=1A%,(2))
may cause trouble when we consider the limit ¢ — 0 because ImAJ, (z) 5 0. Smce
ej(2z) = e;{z) + O(e?b), we must actually control the factor exp(ze—lﬁ_,k(z) ), where

(3.21) M@ = [ es(#) - exte) 8.
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T~

FiG. 1. The level lines of ®(z) near zo.

- 3
] ] L X N ]
o ! 2L ot [N
R

FIG. 2. The Stokes lines of Condition I,

The function A;; is equal, up to a factor X2, to the function

(3.22) &(z) = fo ’ Vplz)dz,

which is naturally associated with the quadratic differential p(z)d?z.

DEFINITION. A Stokes line o is a curve in Q \ {z : p(z) = 0} such that

1) Im®(2) is a constant along o,

2) a is mazimal with property 1), and

3) one of the boundary points of & at least is a zero of p(z).

There are different terminologies in the literature. Sometimes our Stokes lines
are called antiStokes lines and vice versa (see below). A Stokes line is always a simple
curve and in our case it is contained either in the upper half-plane or in the lower
half-plane. Near & simple-zero zg of p(z) the level-lines of Im®(z) are homeomorphic
to the level-lines

(3.23) Imz3/2 = constant

around z = 0. For any simple zero 2z of p(z) there are exactly three Stokes lines which
have zp as boundary point. We call them the Stokes kines of zp (see Fig. 1).
ConpiTioN I1. A) There ezists in the upper half-plane a nonempty finite set of
simple zeros of p(z), {z1,...,2p} with the following properties (see Fig. 2):
1) There evists a Stokes line l;, parameterized by (ti, tit1), such that
limgoss, Li(2) = 2, limgs,,, L) = 2041, =1,...,p—1
‘2) There exists @ Stokes line lo, parameterized by (—oo, t1), such that
limg—.e, lo(t) = z1,iMss_ oo Relu(t) = =00, it —co Inllo(t) =a"
3) there erists a Stokes line lp, parameterized by (ip,00), such that
limye, Ip(t) = 2p, lime—o0 Relp(t) = oo, limtco Imi,(t) =at.
B) Along any vertical line Rez = x going from the real azis to lp or lp, Im®(2) is
strictly monotone, provided |z| is large enough.
Remark. Condition II describes the situation illustrated in Fig. 2.
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z aee @
| 23 zD

IR

-

O = D(zj,r) O =D(z],r2)

F1G. 3. The set &y of Condition III.

In our case, if Condition II is satisfied then an analogous condition holds in the
lower half-plane. It follows from Theorem 2.1 in {7] that the region A in the upper
half-plane between the real axis and the closure of the Stokes lines lo, . . ., I, is a simply
connected region in {2 which does not contain zeros of p in its interior. In [7], part B

of Condition IT follows from the existence of limiting matrices when ¢ tends to infinity.

As already noted, such limiting matrices are not supposed to exist here. Let r > 0
and let

(3.24) Lr={zeC|dist(z,A)<rand |z—z| 2ri=1,...,p}

ConpITION III. There exists r > ro, sufficiently small so that B, is a simply
connected region in Q containing the real aris and such that, for any zero zi,i =
1,...,Dp, each Stokes line of z; in the disc D(z;r) intersects the boundary of the disc
at a smgle point, D(z;,v) N D{z;,7) = @ (see Fig. 3).

The function

(3.25) b(z) == sup 1 Eo(z + ig)]|

=+zyESr

tends to zero at infinity and is integrable on R.
Remark. As we already mentioned, we need to verify Condition I on E only and
not on £ since we shall integrate the differential equation (3.18) along a path in Z,.

3.2. The Froman—Froman method. We suppose that Conditions I-1II are
satisfied and we study equation (3.18) on X,. The hypotheses of Lemma 2.1 are thus
verified uniformly on X, so that there exists a ¢* = ¢*(¢) independent of z € T,
provided ¢ is small enough. Let us rewrite equation (3.18) as a Volterra equation

z z .
(3.26) ¢;(z) = &5{20) + f anu{2)e(2)dz + f a12(z")ete ™ Blalz ) et(2) da’

zn Z0
and
(327) &(2) = &(z0) + f aga(2)ch(2") dz' + f az1(z')ee A et (1) dz'.
. Z0 7]

+ LemMa 3.2. If Conditions I-111 hold then limz_. 1o ¢5(z) = % (F00) exist and

lim sup e} (z + y) — cj{Fo0)] =
z—koo
=+w62r




SEMICLASSICAL ASYMPTOTICS FOR SCATTERING SYSTEMS 961

>

Fic. 4. The path of integration close to z;.

Proof. By Conditions I-1II we get from (3.20) and Liemma 2.1, as in §2,

- (3.28) sup |as(z +iy)| = b(z)O(e")
s+iyEsy
and for all z € &,
(3.29) A}’k(z) = Ajx(2) + O(e?).

Hence the limits limz—.+o0 ¢j(z)} exist on the real axis since Aj is real there. Then
for all z = z + iy on a vertical segment joining R and Iy or I, we can control
[ImA;i{z)|, provided |z| is large enough, using part B of Condition II. Indeed, for
such z,|ImA;x(z)] is bounded by twice the value of |Im®(z)| on the Stokes lines.
From these estimates and (3.28) we can easily deduce Lemma 3.2 using (3.26) and
@327. O .

Instead of integrating (3.18) along the real axis we integrate the equation along
the Stokes lines ly,..., 1L, as long as we are at a distance larger than r from a zero
of p. Otherwise we integrate the equation along the boundaries of the discs D(z;;r),
staying always in I, (see Fig. 4).

Let z and zo be two points of &, and let T(z, zg) be the matrix-solution of (3.18)
with T(zg, z0) = 1. We can find T'(2, zp) by integrating the equation along any path
in X, going from zp to z. However, because of the factors exp(ic—14;x(z)) we have a

good control of the equation only on particular paths. For instance, the Stokes lines

are “good” paths. The main work consists of controlling the equation along the parts
of the boundaries of the dises D(2;;7) when we pass from one Stokes line to the next.
LEMMA 3.3. Let z and 20 € X and let @ be a path, parameterized by [so, s1],
going from zy to z, and such that s — ImAia(a(s)) is nondecreasing on [so, s1). Then
1+0 8_"5_1) e—s"ImAiz(zn) O(e-—ne'l)
T(z,20) = | e ™2LE0(e*"") 1+ 0(e—x") ' .
+ O(e-zm—l)ee—I(ImA;z(z)-Imag,(zu)) :

Proof. We consider (3.26) and (3.27) along « with ¢}(20) = 1 and c§(z0) = 0 and

we introduce new variables

(3.30) Xi(s) =cila(s)),  Xals) = e Alal(Neg(afs)).
Writing bjx(s) = ajx(als)) d‘;‘(:) and A%, (s) = Ay (als)), we get
(3.31) Xi(s)=1+ /3 bi1(s) X1(s'} ds’ + /s by2(s") X2(s") ds’,

Xa(s) =/ bag(s')eie™  (Ala(e)=A52D) Xy (s) ds’
s0

8
(3.32) + [ ) O8N K (1) do
39
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In (3.32) s’ < s and A}, (s') = ~A%,(s"). Using (3.29) and the hypothesis on the path
we have :
|ei5”1{A;2(5)“A;2(3'))l

(3.33) = exp(—e~1(ImA12(s) ~ Im(A12(s"))) + O(e)) = O(exp(O(e))).

Let || X3l = supy, < o<s, 1Xi(8)|- We get from (3.31), (3.32), and (3.33), using (3.28),
. ‘

U Xl < 14+ O(e=") (1Xa )l + (1 X2,
(3.34) I1Xz2]l < Oe="")(IXall + 1 Xz1)),

so that for € small enough || X ||+ || X2|| < 2. Using this a priori estimate in (3.31) and
(3.32) we have

(3.35) sup |X1(s) — 1| = O(e—=="")
sp<sss;
and
(3.36) sup |Xa(s)| = O(e—=="").
spLssm

Equations {3.35) and (3.36) allow us to determine the first column of T'(z, z),

 (3.37) T(z,Z0)=( 1+ Ofe—*="") T12(z,zg)).

ee-llmz_\.;z(z)o(e-ne-l) Toa (2, 20)
Since |a31(z) + azz(z)| = O(e~*=""), we get from the Liouville formula

det T(z, z0) = exp(O(e—=""))
(3.38) =1 O(e—"‘e_l).

Moreover T-1(z, z) =IT(zu, z), hence

1 Taa(z,%)  —Tialz20)
(5:39) Tleo.2) = det T'(z, z0) (—12“:1(2720) Txiz(:z?; )

The reverse path a—1 from z to 2o is such that s — ImAg(@~1(s)) is nonincreasing
from 3 to so. If ¢f(z) = 0 and ¢5(z) = 1 then we can estimate ¢}(z0) and ¢}(zo) as
above, introducing new variables Ya(s) = c5(a—1(s)) and Yi(s) = eic "Ahla™ () x
¢i(a~1(s)). Thus we can estimate the second column of (3.39). The coefficient
T22(z,20) is estimated using det T(2, z0) = 1 + Oe~*s""). 0

A Stokes line is a good path because ImA (z) remains constant along this line.
The following corollary is thus immediate.

COROLLARY 3.4. If there is a Stokes line going from zy to 2, then

_ 140(eT) O e M mAn ()
T(2,20) = (O(e—m“l)ee"llm[&}z(z) 1+ O(e—xs-‘) ) .

We now come to the difficult part of the method. We must control the matrix
solution T(z, zo) along a portion of 8D(z;,r), which is not a good path in the sense
that ImAj2(z) is not monotone. We must establish two lemmas. The first lemma
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Fi1G. 5. The points (j,j =0,...,6 on the Stokes and antiStokes lines.

gives a monodromy matrix around the singularity z1 and is easily proven. The second
and main lemma is more difficult to establish.” Its proof is based on Lemmas 3.3 and
3.5 and on a clever use of elementary identities between the coefficients of products of
2 x 2 matrices and their inverses {1]. This method has a definite advantage over the
use of stretching and matching techniques to compute asymptotics in the sense that
it allows us to obtain better estimates on the remainders (see (1.19) in the introduc-
tion). However, it can only be used for simple zeros of the function p(z), whereas the
stretching and matching method works in more general situations [24}.

We consider now the neighborhood of a zero of p(z), say z1. Let 6 be the boundary
of the disc D(z1;7) counterclockwise oriented, going from (o to (s as in Fig. 5. On this
figure the solid lines are the Stokes lines of 2; and the dashed lines are the antiStokes
lines of 1, i.e., the lines along which ReA12(2) = ReAj2(z1). The arrows indicate the
directions in which ImAj2(z) is nondecreasing along the boundary of D(z1;7).

We compute the matrix T({e, (o) along 6.

LEMMA 3.5. :

'/sf el gz

0 83 n e 2921

. _ . ) I
(Cﬂa ) (61/5 fn €2 e~z 0 )

Proof. Let us consider 1(z) at z = (o, the solution of which we have obtained by
integration along the Stokes line Iy up to (p. We have

2 0 _«
(3.40) W) =3 exgo)e™ oo St (6o,

=1

where in (3.40) the integration from 0 to {p is along a as in Fig. 6 and, similarly,
(o) is the analytical continuation of }(0) along a.

We make the analytical continuation of (3.40) along & up to (s. Since (2} is
holomorphic at z1 we have 9({s) = ¥({o) and we can write

2 k) &* : *
(3.41) (o) = 3 ex(ore /e i (o),

=1

964 ALAIN JOYE AND CHARLES-EDQUARD PFISTER

Fic. 6. The paths o, &, and -
where now ©}((s) is the analytical continuation of ©}(0) along o and then along 6.

Bu?; this is the same as the analytical continuation of 3 (0) along 7 and then along o
as in Fig. 6. By Lemma 3.1 we therefore have

(3.42) ©%(Ce) = et (Co).

Similarly we have

(3.43) . /-e§+fe;f=fe§+fej;.
o & n o

Hence, by comparing (3.40) and (3.41),

' (3.44) G RS e = ot(q),  k#4 O

LEMMA 3.6. For ¢ small enough

—Kk/E —r/e) =" iImA12(lo
T(C2,60) = ( F+oles) Ofem=jemeintnle ))

e—i/ej; e;e“'iefz (1 + O(e—n/s)) 1+ O(e"ﬂ-/e)

Proof. The following computations will involve expressions such as e=1ImA%,((.)
for v =10,2,4,6. These expressions are almost equal. Indeed

(3.45) A% (2) = Ak (2) + O(e?)

and for this choice of (., we have

(3.46) ImA2{¢.) = ImAia(21), v=0,2,4,6
since these points are on the Stokes lines of z;. Hence, in particular,
(3.47) e mAL(G) = Ofete  ImAra(n)),  y=0,2,4,6.

Finally note that (see Fig. 6)

(3.48) fe’l' = fel + 0(e?) = A1a(z1) + O(e?).
L n
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Let us denote the coefficient jk of the matrix T({a,{s)} by t;x(c, 8) and consider
the identity :

(3.49) T(Gor1, &) = TlGv1, Gua2) TGtz G-

Using (3.38) again

(3.80)  detT((u,G) = 'tn(ﬂ, V)taa(p,v) — tia(p, v)tos (g, v) = 14 O(e==™")
and we obtain for » = 0,2, and 4

t11(v+1,v) _ tia(y+1,v+2)
t11(v+l,v+2) tll(V+1,V+2)

(3.51) tnnlv+2,0)= ta1(v + 2,v),

, tn(v+1,v+2) -1
=N T 7 T —xe
It-‘22(u + 21 V) tn (y + 1, V) ( + 0(3 ))
t12(b’ +4+ 1,1/)
=7 ¢ 2
(3.52) (v L) al(v+2,v), _
tiz(v +1,v) tiz{lv +1,v+2) -1
= - 14+ O(e—==
tz2(v+2,v) tulr+1,v+2) tn(y+1,v) (1+0(e )
, 2
(3.53) tio{v + 1, v)te(v + 1, v+ )tgl(y+2,y).

- t11 (U + 1, V)tu(v-l- v+ 2)

These identities express, in particular, the elements of the matrix T'((2, (o) as functions
of the element t21(2,0) and other matrix elements that we can control by means of
Lemma 3.3:

(3.54) £t11(2,0) =1+ O(e—"E-l) + O(e"‘e—l)E_Evllmam(z’-)tm (2,0),
(3.55) 122(2,0) = 1+ Oe=re™) + O(e—re" e~ Imbiasi)tyy (2, 0),
(3_56) t12(2, 0) = O(B—KE"I )e-—E—IImAIQ(zl) + (O(e—ne_l )e—g-llmA12(21))2t21(2, 0)_

We are thus led to the determination of t2;(2,0). Note that these estimates are
true for the elements of T'((s, (1) if we replace the arguments (2,0) by (6,4). Consider
now the identity

(357) T(C3? CZ)T(C2? CO)T(CU’ Cﬁ) = T(C3, C4)T(C4: Cﬁ)'

Using Lemma 3.1 and e = —e} to compute T'(¢o, (6) = T'({s, o)1, we obtain for the
coefficient 22 of (3.57)

*
€

g1 el ok 1 —
t21(3, 2)t11(2, 0)efize"” A 1t 100(3,2)t21(2, 0)eifize™” J,
(3.58) = £91(3, 4)t12(4, 6) + 22(3, 4)22(4, 6)

and for the coefficient 21 of {3.57)

4 - * 2. —1 *
i1 (3, 2)t12 (2, {])35951 ot 1 f,, €z +t22(3, 2)t22(2, O)eif);leze fn e}
(3.59) = t21(3,4)t11 (4, 6) + t22(3, 4ty (4, 6).
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Lemma 3.3, (3.39), anci: (3.47) yield

(3.60)  121(3,2) = —t21(2,3)(1 + O(e=~¢"")) = Ofe~==""Jer ' ImAn(21),
(3.61} 121(3,4) = —t21{4,3)(1 + O(e—"=")) = O(e~re")es~ ' ImAsa(z1),
(3.62)  222(3,4) = t11(4,3)(1 + Oe=—=¢"")) = 1+ O(e~x="1),
(3.63)  #22(3,2) =t11(2,3)(1 + O(e~"")) = 1+ O(e—*=""),

whereas from (3.?}9) and the remark following (3.56) we have
(3.64)  t12(4,6) = O(e—=c"Je—¢ 'Imbuz(m1) 4 (Ofe-re"" Jeme ™ ImAia(21))2¢y) (6, 4)
and
(3.65) t22(4,6) = 1+ O(e—*="") 4+ Ofe—re"" e~ " ImAsa(21) 4y, (6, 4).

Now we use (3.58) and the above results to get

t21(2,0)ef1a & et 2 14 O(e—#™") + Ofe~2xe " Ye—e~ mAn(a1}ty) (2, 0)
(3.66) + Ole—re e mba(=)ty, (6, 4).
Hence we see that we have to estimate £ (6,4} as well as determine t2;(2,0). This

is done by performing a similar computation: We estimate ¢11(4,6) as a function of
t21(6,4) as above and we consider equation (3.59). After multiplication by e~ x

1 *
€ .
» 2 and using

(3.67) Im/e§ = uIm/e*l',
7 n

we obtain another equation for £21(6,4) and #2;(2,0):

—ig"

- -1 ex _
— t21(6,4)e~%he I S Ofe~="")
(368) + 0(6—2&9"1 )e—s“IImAu (21)‘t21(6, 4) -+ O(e—ng—l)e_e—llm&.m (z;)t21(2’ 0)

Therefore, from (3.66) and (3.68) we deduce the a priori estimates

(3.69) e=¢” Tmlra(=) iy (2,0)] = O(1),

(3.70) . e mAw(an) |1y (6,4)] = 0(1),

which finally yield

(3.71) £21(2,0) = e~i0ae™* Syt (1+0(e-=). O

This lemma and Corollary 3.4 allow us to obtain an asymptotic expression for
In8s1 beyond all orders by integrating (3.18) from —co to +co along the paths de-
scribed above. Let us recall that we have

(3.72) ImAlz(zl) = ImAlz(z,-), i=1,... +D.
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Thus, along the Stokes lines we use the matrices given by Corollary 3.4 and which we
can write as

14 O(e—me"l 0(8_55_1 e—e_IImAu(zl)
(8.78) T :=T(z,20) = (O(e—ns“l)ee_llmA)zz(zﬂ 1+ )O(e-tcs"l) :

On the other hand, when we go from one Stokes line, l;—1, to the next one, l;, we use
the matrix given by Lemma 3.6:

14 Ofe—"") Ofe=e")eme ™ Imbales)
(3.74) Sj = —i/sf ) iow s -1 -1 !
e nj e-‘elzu)(l + O(e—*c"")) 1+ O(e=*"")

where fm_ et and 85,(j) are the quantities associated with the simple zero z; of p(z).

Therefore if we.start at —oo with the values ¢X(—co) = 1 and c5(0) = 0, then the
coefficients ¢}(+o00) and ¢§(+oo) are obtained by computing

(3.75) | (“ﬂm)) = T5,TSp1...5:T ((1)) ,

c5(00)

which proves the final theorem of this section, (restoring the & dependence):
THEOREM 3.7. Under Conditions 1-1II, the solution of (3.18) such that
¢i(—o0) =1 and cj(—o0) =0 is given at z = +oo by

ct(o0) =1+ O(e—*=="")

and
P . :
c;(oo) — Z e—t/E f’!k 81(2.5) dze-iefz(kae) + 0(g—xs—1)35_11m12(21),
k=1 ‘
where Im [ ej(z,e}dz = ImAi2(2z1) + O(e?) and 6%,(k,€) = O(1).
4. Applications. '
4.1. Explicit formulae. Let us start by deriving explicit formulae for the eigen-

vectors }(z) of Ag«(2) defined by (3.10). They will then allow us to give the precise
relation between the coefficients ¢;(z) defined by the expansion

2

(41) o) =Y i@ /e S gy(0)

=1

and the coefficients ¢}(z) defined by

' 2 2 xg J ’
(4.2) o2) = Y (e /el G o),
=1

Note that here we have chosen zp = 0. Consider the operator Ag+(2),z € X, where &
is a simply connected domain of 2. We can write

(43) Agr(2) = (sz* ((j)) —ﬁ;c(?l))
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with
(4.4) p0*(2) = pa(2) = au(2)ha(2) — (col2))2.
LEMMA 4.1. The eigenvectors of Ag(2) defined by (3.10) are given by
x;(2) (1)
pi(z) = —2——e~il-1You(z) P =
B T IR
where L
G.*!Z!
xj(z) = e

i
@@ @ (2)

n=} [ ) e a
2/ - Vs (u)ax(u)
foranyz € T\Y, and Y, = {z € B : a.(z) = 0}.
Remarks. i) Any traceless matrix can be written under the form given above;

the %emma actually requires the existence of distinct eigenvalues only. It is true in
particular for the operator A(z) written as in (4.3) without indices *.

ii) The vectors ¢(z) are actually analytic in the whole set ¥ si
W.(2) is analytic in 5 : set ¥ since the operator

Proof. A direct verification shows that the vectors X (2) are eigenvectors of Ay (z)
for the eigenvalues e}(z) = (—1)71/p«(2). We set the notation

(4.5) : Px(2) = Vpul2)

and we introduce the eigenprojectors (see (3.2))

(1) /Y2 ;e

end

v) du

14 (-1pe@y2(2)

(4.6) Pq*,j (z) = P?’(z) = _]: + ( 1)3 P*(Z) ( l)J P+ (Z)
E 2 (_,1)ij(3_) 1= (<1); ica(z)
p*(Z) . p*(Z)

The vectors ¢%(2) must satisfy P*(2)p*(2) =0 (see (2.22
ing the o ent‘;, ] 5 (@)} (2) (see {2.22)). We compute, drop-

WE )
(4-7) ) x;’ = 2 [ P

O [E () st Lol
2 Vo \a VPl 2 (pes)32

(4.8) Pyt = i(_l)j Cali — Chllx *
7 XJ 2 D XJ .

and

Conseguently, the vectors
oW1 72) [T tenal=cla/pial) dz

4.9 * *
“9) ¥ T (=oo)] X
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normalized to 1 at 2 = —co, satisfy condition (2.22). 0

CoOROLLARY 4.2. Let 2z, € X and let ny, be a counterclockwise-griented loop based
at the origin which encircles the disc D(zx,T) only and passes through no point of Y.
Then the quantity e3%12(%) defined in Lemma 3.1 is given by

”Xl(_oo)” _"/2f (caa,—c,au/y/Pra.) dz e—2iou (0}
Ix3(—o0)°

where n} € Z depends on a. and 7. __
Proof. It is always possible to choose a loop 7, as described. By Lemma 3.1 we
have

(4.10) v px{0]7k) = €1/ px(0)

and

£i0a(k) — —jgimny

(4.11) ax(0|ni) = €27k a, (0)

with nf € Z since a.(2) is single valued in £. As a consequence

(4.12) x5(0lnk) = —ie™mkx3(0).
Finally,
1 Callh — Chlln
= — —_——dz + 0. (0
(4‘13) 0'*(0|77k) 9 '/T;k Jp—*ai— Z *( )
so that
(4.14)

HXI( 00)“ _"/2." (eva,—clas/y/Pras) dz e—2i.(0)
Ixs(—oo)l®

Consider now the two decompositions (4.1) and (4.2). The relation between the
coefficients associated with the choice of eigenvectors made in Lemma 4.1 is given by
the following corollary.

CoROLLARY 4.3. The coefficients c(£o0) and cj(£co) defined by (4.1), (4.2),
and Lemma 4.1 are such that

©3(0lne) = 3 (0)(—d)e¥ms T m—— o

¢j(—00) = ¢i(—oo)e™/* fo @it as

63(4-00) = ¢¥(-00)e—H-1F (o Croo)—olooh)g=He [} () —est=) &2
3

Jori=1,2.
Proof. We write the operator A under the form
_(ie(s)  al2)
{4.15) A(z) = ( b(z) —ic(z)) )

where we can assume, without loss of generality, that

(4.16) EEI:II:IOQ a(z) = a{too) # 0.
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Indeed, we can always perform a change of orthonormal basis which amounts to replac-
ing A(z) by S-1A(2)S, Where S is a constant unitary matrix. Since the gap condition
holds at 0o, A(£o0) # 0. Thus, we can bring nonzero elements in the upper right
corner of the matrices §~1A(+00)S by taking for S a rotation matrix in the plane of
suitable angle. The corresponding eigenvectors ;(z) are given by the expressions of
Lemma 4.1, where the indices x are dropped. Because the operators A{z) and Ay (z)

coincide at |z| = co, we have
\

(4.17) \ X; (o) = x;j(F00)

and

(418) #5(=00) = p(—c0).

Hence

(4.15')) v} (+00) = ;(+oo)e—il-1)’ (o.(+oo)fa(+oo)) = e p; (400),

so that formulae (2.43) and (2.45) apply. a

4.2. Invariants. Let us consider now the following three classes of operators
A(z):

1)

(4.20) Az)= A(z)i, =zeR,

where t denotes the adjoint.
2)

(4.21) Alz) = (ig((_:)) _";Si)) . a(2),bz),c(z) ER, zER.
3)

(4.22) Alz) =1 (;((z)) —i!c(?az)) , alz)B)dz)eR, zeR.

Note in particular that the operator H(z) in equation (1.7) belongs to the first
class whereas the operators in equations (1.9) and (1.11) belong to the second class.
For these classes of operators there exist expressions involving the coefficients ci{zx)
and cj(x) which are constant for all z € R.

LEMMA 4.4. If A(z) belongs to cless 1, 2, or 3, then the operators A,(z) con-
structed by means of the iterative scheme (2.11), (2. 12) belong to the same class, for
any ¢ < q*-

The proof of this lemma is obtained by a straightforward induction and will
therefore be omitted.

LEMMA 4.5. i) If A(z) belongs to class 1, then

ler(@)2 + [e2(z) 12 = [e}(z) 2+ |e5(z)2 =1, =z€R,

where I is constant.
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i} If A(z) belongs to class 2 or 3, then
le1(@)? = le2(2)? = |} (@) — lg@)P =1, z€R,

where I is constant.

Proof The first assertion is a direct consequence of the fact _ﬁl?at Ulz, zo),
W (z, o), and Wys(x,20) are unitary if A(z) and Ag(x) are self-adjoint. Assume
now that A(z) belongs,to the second class and let

1 0
(4.23) G= (0 __1) .
If (x) is solution of equation (1.12), |
(4.24) ‘ iep(z) = Alz)e(z),

then Go(z) is another solution of this equation. Indeed, G? =1 so that we can write

(4.25) ieGp(a) = —Giep(a) = —GA(z)GGy(z)

and we compute

(4.26) “GA(Z)G=A(x), <R

Therefore, as trA(z} = 0, the following determinant is constant for any real z:
(4.27) det({ip(z), Go(z)) = c'onsta.nt.

Observe that the eigenvectors constructed in Lemma 4.1 Vsatisf_v the identity
(4.28) Goile) =pi(z), i#k

since o(z) is real and |x;(z)|| is independent of j = 1,2 for real a(x), b(z), and c(z).
Then we obtain from the reality of e;(z) and ei1(z) = —ez2(z) that

dr’
(4.29) Gola) = a@e o =2 4o(2) + Gle —ife fg a1V d (g,
It remains to use the multilinearity of the determinant to get

(4.30) det(ip(z), Go(z)) = (le1(z)[2 — |ea(z)[2) det (i1 (x), w2(z));

we compiute

v/ p(—0)

a(—0o0) + b(—co)

(4.31) det(ep1(z), p2(2)) = 2

using p(z) = a(z)b(z) — (c(:ﬁ))2 The identities (4.28) and (4.29) are also true for the
eigenvectors ¢} (z) due to Lemma 4.4. Hence the same argument and (4.17) show that

v p(=0c0)

—00) + b(—00)

(4.32) | det(p(2), Go()) = (lei(=)? ~ |e3(2)I*)2 ol = constant.

972 ALAIN JOYE AND CHARLES-EDOUARD PFISTER

If A(z) belongs to the third class, we proceed in a similar way. In this case, if

@(zx) is a solution of (1 i2) @(z) is another solution and we obtain from the explicit
formulae of Lemma 4.1 (with the choice /7 = eim/4)

(4.33) | 77(@) = —igu(z).

Finally we compute
!

det{ip(x) -g;(—:_cJ)_) = (e (@)}? — |ea(@)2)2 ) p(—o0)
, B(—00) — o ~c0)
= * * v P(—OO) _
(4.34) = (|ci (=) - ]%(x)iz)zﬁ(—oo) e e constant. [0

___Remark. Tt follows from (4.29) that if (ci(x), co(z)) are solutions of (3.18), then
(c(z), 1(x)) provide another solution of (3.18) when A(z) belongs to class 2 or 3. The
corresponding symmetry property when A(z) belongs to class 1 is that if (c1(z), ca(z))
satisfy (3.18), then {c2(z), —c1(z)) satisfy (3.18) as well. This property éan be derived
from (3.18) directly by using the antiself-adjointness of K,(z),¢ < ¢* in this case [13].

4.3. Main applications. a) Let A(z) be a 2 X 2 hermitian matrix, z € R, as
in equation (1.7). The equation

d
(4.35) z'a—(';ii) = A2)p(z), €—0
describes the adiabatic limit of the dynamics of a two-level quantum mechanical sys-
tem. The squared modulus of the element S2; gives the probability P(e) of a quantum
transition over infinite time between the two eigenstates of the system.
COROLLARY 4.6. If A(xz) is hermitian and satisfies Conditions I-111,

2
i . *
Ple) = |82 = Z e_’/ € f.,k el(z’s)d’e—ie;z(k,s) + O(e—ns'l)es‘lﬂmﬁm(zl)_
k=1 .
b) Let A{z) be the matrix (1.11)
0 1
(4.36) Az) = ( E—V(z) 0)

associated with the semiclassical regime of Schrédinger equation

(4.37) —e? dzd”;gx) +V(z)o(z) = Bp(x), e—0,

where inf,cr £ —V(z) > 0. A solution ¢(z) of (1.11) characterized by the asymptotic
conditions ¢1(—co) = 0, ca(—o0) = 1 describes a particle coming from the right whose
energy is strictly above the potential barrier V(). The reflection coefficient R (e) for

this scattering process is then defined by R(g) = [é((—i% [2. As it stands here, it cannot

be computed from the knowledge of S2:. However, as a consequence of Lemma 4.5
and the remark following it, we can write

(4.38) R(E) = T2 oo fﬁ;ﬁglz
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where &1(—00) = 1 and &2(—c0) = 0. Hence we have the following corollary.
COROLLARY 4.7. If A(z) given by (4.46) satisfies conditions I-1I1,

2 .
P . *
!52112 _ Ze—z/e fﬂk e1{z.g) dzg—‘w;z(k-s) n O(e—ne"l)esdlﬂmﬁu(n)_

14|82

Rie) =

k=1

c) Let A(z) be the matrix

(4.39) Alz) = (wz(zx) é)

associated with the equation of motion (1.9) of a classical oscillator whose frequency
varies slowly with time :

: d
(4.40) g2 = —w?(z)u(z), u(0)=1uo,& el R uy, &—0.

Fufz) _
dx2 dz

We assume that the initial values up and ui1 are independent of €. In tv_arms of the
variable u(z), the adiabatic invariant (1.6) reads (keeping the same notation J )

2 (@) + (@)l

(4.41) J(z,€) =

Note that we do not require the initial values up and u; to be real. Let us express
AJ(g) in terms of the elements of the matrix 5. We set

wiz) 0
(4.42) Qz) = ( 0 __1_)
' w(z)
so that we have with ¢(x) defined by (1.8)
(443) J(z,€) = (p(@)IQ)p(2))-
‘Writing
. 2 . 'z 3 ’ dI'
(4.49) o(@) = 3 dj(ale /o Ss CIENE g ),
j=1
where

' 1
—_— w(—c0)
(4.45) pi(z) = ( Vw(z) ) 1T w2 (—o0)’
(Dt )

we compute
(4.46) J(ze) = 22 S @) + @),

1+ w?(—c0
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Let us introduce the coefficients d;(z) by
é

. 2
(4.47) o)=Y di@)e /e ds S gy

j=1

satisfying the initial condition

. \
(4.48) { 0(0) = ("‘“ ) = d(0)1(0) + d5(0)5(0).

U1

This last equation and Lemma 4.1 allow us to express the d5(0) as functions of up and
t1 and we have in particular d5(0) = O(1). As a consequence of Corollary 4.3 we have
|dj{£c0)| = |d}(%00)|,5 = 1,2, so that '

(@49) AJ(e) = 2252 (1at ool 4 54002 — [di (—o0) — |a5(~o0)2).

Then it results from the linearity of equation (3.18} and from the remark following
the proof of Lemma, 4.5 that we can write

- (4.50) (ggg) = afe) (c}*(m)) + Ble) ("_3-(-"’_)) ,

c3(2) ci(z)

where the ¢}(x) satisfy (3.18) as well with boundary conditions ci{—co) = 1,e5(—00) =
0. These boundary conditions together with equation (2.46) allow us to express the

constants afe) and B(e) as functions of the d%(0) which are defined by the initial
condition (4.48): :

(@51) (d;(-oo)) _ (a(e)) _ (#©O+0(e=")Y

d3(~c0) Ble) d3(0) + Ofe=="")
We can now express the total variation of the adiabatic invariant as a function of the
matrix § and the initial conditions using (4.49) and Lemma 4.5:

AJ(e) = 2%%0-0—)[4Re{a(5)@c{(+oo)c§ (+o0)}

(4.52) + 2{g(+00) F(lale)? + |8(e) 2)]

Hence, by (4.51) and Corollary 4.3, we have the following corollary.
COROLLARY 4.8. If A(z) given by (4.39) satisfies conditions I-I1I,

w(—00) - +2ife [ (el (z.6)—ey (z
Tt o (oq) Re{ds (~oo)(~o0)e e fy e Ea—a@ g o

+ 215212 (ld1 (—00) |2 + |da(—00)[2)].

AJ(Ee)=2

If dy{—o0)da(—o0) =0

2
_ ., w(—o0) P e [ ellze)ds (ke
A = o [ 2 . e 12k} (jdy (—00)|2 + |da(~o0)[2)

+ O(e—ne‘l)ee‘lzlmAu(zi)_
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If di(—oo)da(—o0) # 0

p *
w(=00) FOS e i —is*z(k-e)}
=87 Redd (0 0 € e € !
AJ(E) 81+w2(-—00) { 1( ) 2( )k=1

-+ O(e-—-.ﬂ‘.e-l )eE_IImA12(Z1) ,

where the quantities dj(0) = O(1) are determined by the initial con_dz'tion (4.48).
Remark. 1) The coefficients d; are O(1) since the initial conditions o and u are
independent of &.
ii) The condition d; (—oco}dz(—c0} # 0 is equivalent to d1(0)d2(0) # 0. From (4.45)

and (4.48) we compute .
a0) = 3y [ F ) (uo (0 - mm) ,
(4.53) dz(O) = % Liu;%o? (‘Uo w(O) + \/—%Iﬂ) s

so that d) (—o0)dz(—0c0) # 0 is equivalent to u1 # Z+iw(0)uo. This condition is always
true for real initial values up and u;.

Appendix. We briefly describe in this appendix an explicit example of potential

V(z) for which the semiclassical above barrier reflection coefficient can be c?mputed
by apf;lying the general theory developed in this paper. Consider the potential

1

(A1) . V(o) =170

and choose an energy level E > 1. Then the function

(A2) p(z) = ple) = B - 1=
is positive for any z € R. This function is meromorphic in C with first-order poles at
the points

(A.3) b = (/KDY E=0,1,2,3

and first-order zeros at the points
. 1\ 4
(A4) Zg = (1 - E) eil{m/4)+k(r/2)} k=0,1,2,3.

Hence the matrix A(z) given by (1.11) has an analytif: contiuua.tiox_l in the set QI'E
C\{y1.v2.v3.v4} - Lhe Stokes lines are obtained by stufiymg the level lines of the mu fi-
valued function f; dz'p(z’) in the set . By a numerical St‘Eldy, we see that these lines
behave in the first quadrant of the complex plane as descnb}ed in Fig. 7. _

We can show by exploiting the symmetries of the function p that these l_lr%es are
symmetric with respect to both the real and imaginary axes. _Hence, Conditions I,
11, and TII are satisfied and the above barrier reflection coefficient can be computed
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F1G. 7. The level lines of fuz dz'p(z") in the first quadrant of the complez plane.

asymptotically as i goes to zero using the method explained above. In particular,

we see from Corollary 4.2 that in the first-order asymptotic formula, 812(k), k = 0,1

is real since the function ¢(z} = 0 and ||x1(Foo}f| = ||xa(£co)||; see (4.7). Hence it

remains to compute |, " p(z)dz, k=1,2, to get the first-order asymptotic formula for

R(h). Moreover, the presence of two first-order zeros in the upper half-plane linked

by a Stokes line shows that an interference phenomenon takes place (Stiickelberg -
oscillations) at the first order already, even though the potential barrier displays one

bump only. The high-order corrections can be systematically computed using the

theory developed in this paper; we omit this computational aspect here.

Acknowledgments. We thank the referee for constructive suggestions and C.
Ballif for computing numerically the Stokes lines of the example in the appendix.
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