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RIGHT-HANDED BIALGEBRAS AND THE PRELIE

FOREST FORMULA.

FRÉDÉRIC MENOUS AND FRÉDÉRIC PATRAS

Abstract. Three equivalent methods allow to compute the antipode
of the Hopf algebras of Feynman diagrams in perturbative quantum
field theory: the Dyson-Salam formula, the Bogoliubov formula, and the
Zimmermann forest formula. Whereas the first two hold generally for
arbitrary Hopf algebras, the third one requires extra structure properties
of the underlying Hopf algebra but has the nice property to reduce
drastically the number of terms in the expression of the antipode (it is
optimal in that sense).

The present article is concerned with the forest formula: we show
that the formula generalizes to arbitrary right-handed polynomial Hopf
algebras. These Hopf algebras are dual to the enveloping algebras of
preLie algebras -a structure common to many combinatorial Hopf al-
gebras which is carried in particular by the Hopf algebras of Feynman
diagrams.

Introduction

Three equivalent methods allow to compute the antipode of the Hopf
algebras of Feynman diagrams in perturbative quantum field theory (QFT).
The first two hold generally for arbitrary graded connected Hopf algebras
and are direct consequences of the very definition of the antipode S as the
unique solution to ε = S ∗ I, that is the definition of S as the convolution
inverse to the identity map I of a Hopf algebra (here ε stands for the unit
of the convolution algebra of the endomorphisms of H). The Dyson-Salam
formula is the closed formula obtained by expanding as a formal power series
in I − ε the identity I−1 = (ε + (I − ε))−1. The Bogoliubov formula is a
recursive formula, obtained by rewriting the identity ε = S ∗ I as

0 = S(T ) + T +m ◦ (S ⊗ I)⊗∆,

where T is an arbitrary element in a graded component Hn, n > 0 of H
and m,∆ stand respectively for the product and the reduced coproduct on
H (∆(T ) = ∆(T ) − 1 ⊗ T − T ⊗ 1). The formula is solved by induction
on the degree of the graded components of H and underlies the so-called
Bogoliubov recursion that computes the counterterm and the renormalized
values associated to the Feynman rules of a given QFT [5, 7].

The third one, the Zimmermann forest formula, is different in nature.
When expanding the previous two formulas on a general Feynman diagram,
terms are repeated and many cancellation occur. The forest formula relies
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2 FRÉDÉRIC MENOUS AND FRÉDÉRIC PATRAS

on combinatorial properties that do not hold on an arbitrary graded com-
mutative Hopf algebra, but has the nice property to reduce drastically the
number of terms in the expression of the antipode; it is actually optimal in
that sense.

These antipode formulas have been investigated by J.C. Figueroa and
J.M. Gracia-Bondia [8, 9] in the 2000s. They obtained a simple direct proof
of Zimmermann’s formula in QFT and showed more generally that one can
employ the distributive lattice of order ideals associated with a general par-
tially ordered set and incidence algebra techniques in order to resolve the
combinatorics of overlapping divergences that motivated the development of
the renormalization techniques of Bogoliubov, Dyson, Salam, Zimmermann
et al.

The present article is also concerned with the forest formula, but with a
different approach: we show that the formula generalizes to arbitrary right
handed polynomial Hopf algebras, that is the Hopf algebras dual to the en-
veloping algebras of preLie algebras. This latter structure is carried by the
Hopf algebras of Feynman diagrams, but also by many other fundamental
Hopf algebras since preLie algebras show up not only in QFT or related
areas (statistical physics...), but also in differential geometry (an idea origi-
nating in Cayley’s tree expansions), abstract algebra (Rota-Baxter algebras
and operads give rise to preLie algebra structures), numerics (for the same
reason as in differential geometry: differential operators give rise to preLie
products), and so on. We refer e.g. to the fundational article [1] and the
surveys [2, 16].

From now on, k denotes a ground field of characteristic zero. All the
algebraic structures to be considered are defined over k.
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1. PreLie algebras and their enveloping algebras

Definition 1. A preLie algebra is a vector space L equipped with a bilinear
map x such that, for all x, y, z in L:

(x x y) x z − x x (y x z) = (x x z) x y − x x (z x y).

The vector space L is equipped with a Lie bracket

[x, y] := x x y − y x x,

see e.g. [1, 4] for further details. We write U(L) for the enveloping algebra
of L viewed as a Lie algebra.

We will also denote by x the right action of the universal enveloping
algebra of L on L that extends the pre-Lie product: ∀a, b ∈ L, (b)a := b x a.
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This action is well defined since the product x makes L a module over L
viewed as a Lie algebra:

∀a, b, c ∈ L, ((c)b)a − ((c)a)b = (c x b) x a− (c x a) x b

= c x (b x a− a x b) = (c)[b, a].

Recall from [13] that one can equip S(L), the symmetric algebra over L
with a product ∗ induced by x that makes (S(L), ∗) the enveloping algebra
of L. Through the identification of S(L) with the polynomial algebra over L,
we write its elements as polynomials l1...ln. The corresponding symmetric
tensor in (V ⊗n)Sn is

∑

σ∈Sn

lσ(1)⊗...⊗lσ(n), where Sn stands for the symmetric

group of order n. The shuffle product of symmetric tensors induces the usual
product of the corresponding polynomials.

An enveloping algebra carries the structure of a cocommutative Hopf al-
gebra for which the elements of the Lie algebra identify with the primitive
elements. The corresponding coproduct on S(L) is the usual unshuffling
coproduct: for arbitrary l1, ..., ln ∈ L,

(1) ∆(l1...ln) =
∑

I

lI ⊗ lJ

where, for a subset I of [n], lI :=
∏

i∈I li, where I runs over the (possibly
empty) subsets of [n] and J := [n]− I. The product ∗ is associative but not
commutative and is defined as follows:

(2) (a1...al) ∗ (b1...bm) =
∑

f

B0(a1 x B1)...(al x Bl),

where the sum is over all maps f from {1, ...,m} to {0, ..., l} and Bi :=
∏

j∈f−1(i) bj. For example, in low degrees:

(3) a ∗ b = ba+ a x b = ab+ a x b,

a1a2 ∗ b = a1a2b+ (a1 x b)a2 + a1(a2 x b),

a ∗ b1b2 = ab1b2 + b1(a x b2) + b2(a x b1) + a x (b1b2)

= ab1b2 + b1(a x b2) + b2(a x b1) + a x (b1 ∗ b2 − b1 x b2)

= ab1b2 + b1(a x b2) + b2(a x b1) + (a x b1) x b2 − a x (b1 x b2).

2. Right-handed polynomial Hopf algebras

Notice that the increasing filtration of S(L) by the degree in the previous
section is respected by the product ∗, but the direct sum decomposition into
graded components is not:

(4) Sn(L) ∗ Sm(L) ⊂
⊕

n≤i≤n+m

Si(L).
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Restricting this inclusion on the image, one gets a map from L⊗ S(L) to L
which is simply the x map. Iterating this map and using the associativity
of ∗ results in the identity

(a x (b1...bn)) x (c1...cm) =
∑

I1
∐

...
∐

In+1=[m]

a x ((b1 x cI1)...(bn x cIn)cIn+1),

where the Ii are possibly empty. This identity defines on L the structure
of a symmetric brace algebra, and the two notions of symmetric brace al-
gebras and preLie algebras happen to be equivalent (the two categories are
isomorphic) [13, Cor. 5.4].

Conversely the property (4), the categorical properties of the notion of
brace algebras (see [11, 12, 14]) together with these results on D. Guin and
M. Oudom on the symmetric brace algebra structure of the primitive part of
enveloping algebras of preLie algebras [13] allow to characterize enveloping
algebras of preLie algebras [15]:

Theorem 2. For V a vector space, let S(V ) be equipped with a Hopf algebra
structure (with product ∗, unit 1 ∈ S0(V ) = k and coproduct ∆) such that

• The coproduct is the unshuffling coproduct (1) so that in particular
Prim(S(V )) = {x ∈ S(V ), ∆(x) = x⊗ 1 + 1⊗ x} = V ,

• The product ∗ satisfies, for all n ≥ 2, Sn(V ) ∗ Sm(V ) ⊂
⊕

2≤i

Si(V ).

Then, V is equipped with a preLie algebra structure by the restriction of ∗
to a map from V ⊗ V to V . Furthermore, S(V ) is the enveloping algebra of
V and ∗ identifies with the product constructed in (2).

Following Turaev [19], whose article seem to have been the first to in-
vestigate these phenomena, we define as right-handed cofree cocommuta-
tive bialgebras the Hopf algebras satisfying the conditions of the Theorem.
Right-handed refers to the condition on the product; we will use the same
terminology for the dual condition, which was the one actually stated and
studied by Turaev. Cofree cocommutative refers to the fact that the un-
derlying coalgebra is the vector space of polynomials over a vector space V
equipped with the unshuffling coproduct of polynomials. We get that

Corollary 3. The categories of right-handed cofree cocommutative bialge-
bras and the category of preLie algebras are equivalent.

Let us give an elementary and self-contained proof of these results, dis-
entangled of the notational complexities of brace calculus that were deviced
originally for algebras up to homotopy and that are not required in this
simple situation. The calculations in the proof are interesting on their own;
compare with [15, Thm 5.3], where a less general assumption (termed right-
sided condition: Sn(V ) ∗ Sm(V ) ⊂

⊕

n≤i

Si(V ), it is weaker than Turaev’s) is

made on the behaviour of the product.
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Recall first that the polynomial algebra over V , k[V ] ∼= S(V ) = k ⊕
S(V )+, is the free augmented commutative algebra over V . That is, equiv-
alently, for an arbitrary augmented commutative algebra A, Lin(V,A+) ∼=
Alg(k[V ], A). Here, + is used to denote the augmentation ideal and Alg the
category of augmented commutative algebras.

By duality, for an arbitrary coaugmented cocommutative coalgebra C =
k ⊕ C+ with coaugmentation coideal C+, there is a canonical bijection (or,
in categorical langage, adjunction)

Lin(C+, V ) ∼= Coalg(C,S(V )),

where Coalg denotes the category of coaugmented cocommutative coalge-
bras. In particular, a coaugmented cocommutative coalgebra morphism to
S(V ) is entirely characterized by its restriction to V on the image. The
inverse bijection is obtained by dualizing the isomorphism Lin(V,A+) ∼=
Alg(k[V ], A): for f ∈ Lin(C+, V ), the corresponding element in Coalg(C,S(V ))
is given by

(5)
⊕

n∈N∗

f⊗n ◦∆
[n]
,

where ∆
[n]

is the iterated reduced coproduct from C to ((C+)⊗n)Sn ⊂
(C+)⊗n, that is

∆
[1]

= I, ∆
[2]

= ∆, ∆
[n]

= (I⊗n−2 ⊗∆) ◦∆
[n−1]

for n ≥ 3,

and where we used the identification of (V ⊗n)Sn with Sn(V ) described in
the first section.

Let us apply this property to the Hopf algebra S(V ) of the Theorem.
Since S(V ) is a Hopf algebra, the product map ∗ from C = S(V ) ⊗ S(V )
to S(V ) is a coaugmented cocommutative coalgebra morphism, where the
coproduct ∆ of S(V )⊗ S(V ) is induced by the unshuffle coproduct(written
here for notational clarity ∆S(V )) of S(V ):

∆ = (I ⊗ τ ⊗ I) ◦ (∆S(V ) ⊗∆S(V ))

with τ(x ⊗ y) = y ⊗ x. Let us write π for its restriction to a map from
S(V ) ⊗ S(V ) to V . By assumption, π is null on the V ⊗n ⊗ S(V ), n ≥ 2;
it is the identity map on the components k ⊗ V ∼= V and V ⊗ k ∼= V . For
a, b ∈ V , since on S(V )⊗ S(V ), we have

∆(a⊗ b) = (a⊗ 1)⊗ (1⊗ b) + (1⊗ b)⊗ (a⊗ 1)

and, since ∆(a ⊗ 1) = ∆(1 ⊗ a) = ∆(b ⊗ 1) = ∆(1 ⊗ b) = 0 we get by
adjunction:
(6)

a∗b =
∑

n≥1

π⊗n ◦∆
[n]
(a⊗b) =

∑

n=1,2

π⊗n◦∆
[n]
(a⊗b) = π(a⊗b)+a⊗b+b⊗a,

where we recognize the equation (3) expressing the product of two elements
of a preLie algebra in the enveloping algebra in terms of the preLie product.
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The same computation at higher orders would express the product a1∗...∗an
as the sum of a1...an and lower order terms (polynomials in

⊕

k<n

Sk(V )).

Applying this computation to the associativity relation ∗ ◦ (∗ ⊗ id) =
∗ ◦ (id ⊗ ∗) for the restriction to V on the image of the product map from
S(V )⊗ S(V )⊗ S(V ) to S(V ), we get:

∀a, b, c ∈ V, π(π(a⊗ b)⊗ c) = π(a⊗ (π(b⊗ c) + b⊗ c+ c⊗ b),

or

(7) π(π(a ⊗ b)⊗ c)− π(a⊗ (π(b⊗ c)) = π(a⊗ (b⊗ c+ c⊗ b)).

Since the last expression is symmetric in b and c, we get finally

π(π(a⊗ b)⊗ c)− π(a⊗ (π(b⊗ c)) = π(π(a⊗ c)⊗ b)− π(a⊗ (π(c⊗ b)),

where we recognize the preLie identity.
The same calculation can be repeated with higher tensor products: the

restriction on the image to V of product map from S(V )⊗n to S(V ) can be
computed on a tensor product of elements of V as

π(...π(π(a1 × a2)⊗ a3)...⊗ an),

or as

π(a1 ⊗ (a2 ∗ ... ∗ an)) = π(a1 ⊗ ((a2...an) + R),

where the remainder term R is a polynomial in
⊕

k<n

Sk(V ). This shows that

the restrictions of π to V ⊗Sn(V ) can be computed inductively and depend
only on the value of π on V ⊗ V .

The Theorem follows: V , the Lie algebra of primitive elements of S(V ) is
a preLie algebra. By the Cartier-Milnor-Moore theorem [3, 17, 18], S(V ) is
its enveloping algebra. Since the preLie algebra structure of V determines
uniquely the algebra structure of S(V ), the product ∗ identifies with the
product computed using (2).

The previous Theorems dualize ([19, 15]).

Theorem 4. For V a vector space, let S(V ) be equipped with a Hopf algebra
structure (with product ∗ and coproduct ∆ with counit the projection from
S(V ) to S0(V ) = k) such that

• The product is the product of polynomials (or the shuffle product
when elements of S(V ) are viewed as symmetric tensors),

• The coproduct ∆ is right-handed, that is ∆(V ) ⊂ V ⊗ S(V ).

Such a bialgebra will be called a right-handed polynomial bialgebra. Then,
V is equipped with a preLie coalgebra structure by the restriction of ∆ to a
map from V to V ⊗ V . Furthermore, S(V ) is the coenveloping coalgebra of
V and the category of right-handed polynomial bialgebras is equivalent to the
category of pre-Lie coalgebras.

Here ∆ denotes the reduced coproduct, ∆(x) := ∆(x)− x⊗ 1− 1⊗ x.
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3. Toward chains and forests

Chains and forests are naturally associated to the action of the iterated
reduced coproduct on the Feynman graphs of a given QFT: chains are suc-
cessions of strict inclusions of subgraphs, whereas forests are family of sub-
graphs satisfying certain technical conditions, essentially such that the con-
nected components of the subgraphs in a chain form a forest. We refer to
[9] for a detailed analysis of these notions, that have also appeared recently
in relation to Hopf algebra structures in control theory [6].

This section aims at defining the analog notion of a forest (indeed trees) in
the more general context of right-handed polynomial bialgebras. As we shall
see, some tree indexations naturally appear in the computation of iterated
coproducts.

Let from now on in this article H = S(V ) be a right-handed polynomial
Hopf algebra. We assume that V has a basis B = {bi, i ≥ 1}, fixed once
for all. Notice that in most application domains of the theory of preLie
algebras and coalgebras (see [2, 16]), there is a natural choice for the basis
B and therefore a natural notion of chain and forest will result.

In the sequel, we consider multisets over N∗ and, for any such multi-
sets I, J , write I ∪ J for their union. For example, {1, 2, 2} ∪ {2, 3, 3} =
{1, 2, 2, 2, 3, 3}. With these notations, one can consider monomials bI =
∏

i∈I bi, so that bI .bJ = bI∪J and one can note b∅ the unit of H. Let us fix
bi ∈ B. We aim at computing the value of the antipode on bi, S(bi), that
can already be expressed using the Dyson-Salam formula with the help of
iterated coproducts:

S(bi) =
∑

k≥1

(−1)km[k] ◦∆
[k]
(bi),

where m[k] is the k–fold product.
We can first expand the reduced coproduct of bi as follows:

∆(bi) =
∑

i0,I 6=∅

λi;i0
I bi0 ⊗ bI .

The coefficients λi0;i
I completely determine the coproduct and its action on

products, as well as the action of the iterated coproducts. At this stage,
one can opt for a graphical representation and consider that, in ∆(bi), the
different terms are indexed by non planar decorated corollas whose root is
by (i; i0) and leaves decorated by the positive integers:

∆(bi) =
∑

λ
(

(i; i0)

i1 ik

)

bi0 ⊗ bi1 . . . bik .

Here, non planar means as usual for trees that the ordering of the branches
does not matter, reflecting the commutativity of the product.
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Let us now consider a single term in this reduced coproduct, for instance

λ
(

(i; i0)

i1 i2

)

bi0 ⊗ bi1bi2 .

One can observe that

∆(bi1bi2) = (1⊗bi1+bi1⊗1+∆(bi1))(1⊗bi2+bi2⊗1+∆(bi2))−1⊗bi1bi2−bi1bi2⊗1

so that the contribution of λ









(i; i0)

i1 i2









bi0 ⊗ bi1bi2 to ∆
[3]
(bi) = (Id ⊗

∆)(∆(bi)) will split in four terms, whose complexity is encoded by the ap-
pearance of products of coefficients λ·;·

···.
There is a first term with no more ”complexity” than in ∆(bi):

λ
(

(i; i0)

i1 i2

)

bi0 ⊗ (bi1 ⊗ bi2 + bi2 ⊗ bi1).

There is a second term, where only the reduced coproduct of bi1 occurs:

λ
(

(i; i0)

i1 i2

)

(
∑

λ
i1;i1,0
i1,1...i1,k

bi0 ⊗ (bi1,0 ⊗ bi2bi1,1...i1,k + bi2bi1,0 ⊗ bi1,1...i1,k)),

and this contribution is naturally indexed by the trees:

(i; i0)

(i1; i1,0)

i1,1 i1,k

i2

.

On the same way, there is a contribution, corresponding to (1 ⊗ bi1 + bi1 ⊗
1)∆(bi2) indexed by the trees:

(i; i0)

i1 (i2; i2,0)

i2,1 i2,l

,

and finally the terms in relation with ∆(bi1)∆(bi2) that will be indexed by
trees

(i; i0)

(i1; i1,0)

i1,1 i1,k

(i2; i2,0)

i2,1 i2,l

.

When iterating the reduced coproduct, such groups of term naturally
appear, labeled by trees that encode the presence of the coefficients λ·;·

···.
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Definition 5. Let us consider finite rooted trees (connected and simply con-
nected finite posets with a unique minimal element) whose internal vertices
are decorated by pairs p = (p1; p2) of positive integers and leaves are dec-
orated by positive integers (note that in the tree with only one vertex, the
vertex is considered as a leaf).

A forest is simply a commutative product of such trees. For any internal
vertex x (x ∈ Int(T )) in such tree or forest, we note d(x) = (d1(x); d2(x))
its decoration, and, if x is a leaf (x ∈ Leaf(T )), we note for convenience its
decoration d(x) = d1(x) = d2(x). For any internal vertex x, we also note,
succ(x) the set of its immediate successors.

If the root of a tree is decorated by i or (i; i0), we say that the tree is
associated to bi (T ∈ Ti). For a given pair p, we note B+

p (T1 . . . Ts) the tree
obtained by adding a common root decorated by p to the trees T1 . . . Ts.

The reader will notice that in the QFT terminology such trees are called
forests (because to each tree is associated a forest by cutting the root).

Definition 6. The length of a tree, l(T ), is the number of elements in T
viewed as a poset. The height h(T ) of a tree is the maximum number of
elements in a chain from the root to a leaf.

The coefficient λ(T ) is defined as follows: λ(•i) = 1 and if T = B+
i;i0

(T1 . . . Ts),
then

λ(T ) = λi,i0
i1,...,is

λ(T1) . . . λ(Ts)

when T1, . . . , Ts are respectively associated to bi1 , . . . , bis . In other words

λ(T ) =
∏

x∈Int(T )

λ
d(x)
d1(succ(x))

.

The b-value of a tree is the element v(T ) of S(V ) defined as

v(T ) =
∏

x∈T

bd2(x)

We extend naturally these notions to forests:

l(T1 . . . Ts) = l(T1) + · · ·+ l(Ts)

h(T1 . . . Ts) = max(h(T1), . . . h(Ts))

λ(T1 . . . Ts) = λ(T1) . . . λ(Ts)

v(T1 . . . Ts) = v(T1) . . . v(Ts).

In the sequel, once a forest F is given, we will note abusively, for any
vertex x of F , bx = bd2(x).

For example, for the tree

T =
(i; i0)

(i1; i1,0)

i1,1 i1,2

(i2; i2,0)

i2,1 i2,2 i2,3

,
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l(T ) = 8, h(T ) = 3, λ(T ) = λi;i0
i1,i2

λ
i1;i1,0
i1,1,i1,2

λ
i2;i2,0
i2,1,i2,2,i2,3

and

v(T ) = bi0bi1,0bi1,1bi1,2bi2,0bi2,1bi2,2bi2,3 .

We can also rephrase the definition of ∆:

(8) ∆(bi) =
∑

T=B+(i;i0)(•i1 ···•ik )∈Ti;h(T )=2

λ(T )v(•i0)⊗ v(•i1 · · · •ik).

We can now state the Zimmermann forest formula in the framework of right-
handed polynomial algebras.

4. The PreLie forest formula

Theorem 7. The value of the antipode S of the right-handed polynomial
bialgebra S(V ) on an element bi ∈ B is given by the cancellation free formula:

(9) S(bi) =
∑

T∈Ti

(−1)l(T )λ(T )v(T )

By cancellation free, we refer to the fact that each tree appears only
once, as in the classical QFT Zimmermann’s forest formula. Several terms
corresponding to the same tree would instead appear in the Dyson-Salam
(and Bogoliubov) formula, as illustrated below.

We postpone the proof to the next section. Let us first show on an
elementary example how the notion of forest and the forest formula behave
concretely. We consider the emblematic case (see e.g. [9]) of the Faà di
Bruno Hopf algebra encoding the substitution product in the algebra of
formal power series

f(t) = t+
∞
∑

n=2

fn
tn

n!
.

On the polynomial algebra generated by the coordinate functions an(f) :=
fn, n ≥ 2, the substitution product translates into the coproduct

∆(an) =

n
∑

k=1

ak ⊗Bn,k(a1, ..., an+1−k),

where a1 := 1 and the Bn,k are the (partial, exponential), Bell polynomials
defined by the series expansion

exp(u
∑

m≥1

xm
tm

m!
) = 1 +

∑

n≥1

tn

n!
[

n
∑

k=1

ukBn,k(x1, ..., xn+1−k)].

Setting bn := an+1, we get

∆(b1) = 0, ∆(b2) = 3b1 ⊗ b1, ∆(b3) = 6b2 ⊗ b1 + b1 ⊗ (3b21 + 4b2).

To compute S(b3), let us apply the classical Dyson-Salam formula ob-
tained by expanding as a formal power series in I − ε the identity S =
I−1 = (ε + (I − ε))−1 =

∑

n(−1)n(I − ε)∗n. We get, grouping the terms
according to the powers (I − ε)∗n and (since our goal is here to understand
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the structure of the calculation of the antipode on an example) avoiding to
identify immediately the terms inside these groups:

S(b3) = −b3 + (6b2 · b1 + 3 b1 · b
2
1 + 4 b1 · b2)− (3 · 2 b1 · b

2
1 + 4 · 3 b1 · b

2
1)

= −b3 + 10b1b2 − 15b31.

Overall, 6 terms appear that can be resummed into three terms.
On the other hand ∆(b3) = 6b2 ⊗ b1 + b1 ⊗ (3b21 + 4b2) can be rewritten

∆(b3) = λ(
(3; 2)

1

)b2 ⊗ b1 + λ(
(3; 1)

1 1

)b1 ⊗ b1b1 + λ(
(3; 1)

2

)b1 ⊗ b2.

When iterating the coproduct, as in the previous section, we get:

∆
[3]
(b3) = 2λ(

(3; 1)

1 1

)b1 ⊗ b1 ⊗ b1 + λ(
(3; 1)

2

)λ(
(2; 1)

1

)b1 ⊗ b1 ⊗ b1

where

λ(
(3; 1)

2

)λ(
(2; 1)

1

) = 4.3 = 12 = λ(
(3; 1)

(2; 1)

1

)

Overall, we have now 5 forests: •3,
(3; 2)

1

,
(3; 1)

1 1

,
(3; 1)

2

,
(3; 1)

(2; 1)

1

, and

instead of the six terms in the formula S(b3) = −b3 +m[2] ◦∆
[2]
(b3)−m[3] ◦

∆
[3]
(b3), the indexation by trees, that corresponds to the forest formula gives

S(b3) = −b3+λ(
(3; 2)

1

)b2·b1−λ(
(3; 1)

1 1

)b1·b1·b1+λ(
(3; 1)

2

)b1·b2−λ(
(3; 1)

(2; 1)

1

)b1·b1·b1

That contains only 5 terms and takes into account some cancellations be-

tween the terms associated to
(3; 1)

1 1

.

Although extremely elementary, this example gives the flavour of the gen-
eral pattern followed by the forest formula and of the cancellations occurring.
The reader can also compare with other examples as in [9] or [6].

5. Chains and linearization of forests

This section aims at proving the main theorem, Thm 7 and, in the process,
introduces various useful tools in order to understand the behaviour of right
handed polynomial bialgebras S(V ).



12 FRÉDÉRIC MENOUS AND FRÉDÉRIC PATRAS

The first computations we did in section 3 suggest that, when iterating
the reduced coproduct, the tensor products we get can be associated to
trees, so that, in the end, some cancellations occur in the computation of
the antipode and yields the preLie forest formula.

The following notions, inspired by analogous constructions on finite topolo-
gies (a generalization of posets) [10], aim at encoding these formulas.

Definition 8. Let P be a finite poset of cardinality n. A k-linearization of
P is a surjective, order preserving map f from P to [k], where k ≤ n. We
write f ∈ k − lin(P).

Here, order preserving means that strict inequalities are preserved: x < y
implies f(x) < f(y). Note that k must be greater or equal to the ”height”
of the poset, that is the length of its maximal interval.

Definition 9. Let P be a forest (as in Definition 5) with a given decoration
d = (d1, d2). If f is a k-linearization of P , we call the tensor product

C(f) := (
∏

x1∈f−1(1)

bx1)⊗ ...⊗ (
∏

xk∈f−1(k)

bxk
)

a k-chain of P . As before, bxi
stands for bd2(xi).

Since, by their very definition, the decorations of trees associated to bi
run over all the indices of basis elements appearing in the various iterated
reduced coproducts of bi (ordered according to their relative positions in the
iterations of the reduced coproducts), a fundamental key to the proof is that
k-linearizations describe all the tensors of length k that can be obtained it
the k-fold iterated reduced coproduct.

The proof of theorem will follow from the two following fundamental
lemmas, whose proof is postponed to the next Section:

Lemma 10. Let I = {i1, . . . , is} be a multiset and FI = {T1 . . . Ts, Tj ∈ Tij},
then

∆(bI) =
∑

F∈FI

∑

f∈2−lin(F )

λ(F )C(f)

Lemma 11. We have, for the action of the k-fold iterated coproduct ∆
[k]

:=
(id⊗k−2 ⊗∆) ◦ ... ◦ (id⊗∆) ◦∆:

∆
[k]
(bi) =

∑

T∈Ti

∑

f∈k−lin(T )

λ(T )C(f).

As a corollary,

Corollary 12. For bi ∈ B, we have:

(id− ε)∗k(bi) =
∑

T∈Ti

∑

f∈k−lin(F)

λ(T )v(T ),

and
S(bi) =

∑

k≥1

∑

T∈Ti

∑

f∈k−lin(T )

(−1)kλ(T )v(T ).
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The proof of Thm 7 boils down in the end therefore to proving that, for
a given tree T ,

∑

k≥1

∑

f∈k−lin(T )

(−1)k = (−1)l(T ).

The identity follows from the general Proposition:

Proposition 13. For an arbitrary rooted tree P of cardinality m viewed as
a poset, we have:

∑

f∈k−lin(P )

(−1)k = (−1)m.

Let us prove the Proposition by induction onm: it is obvious whenm = 1.
Let us assume that the Proposition is true for posets of cardinality less or
equal m. A poset P ′ of cardinality m+1 can always be written P ′ = P ∪{x},
where x is a maximal element in P ′. Let us also introduce the predecessor
y of x for the tree structure (the maximal z with z < x).

A linearization of P ′ can be obtained from a k-linearization f of P as
follows (all linearizations of P ′ are obtained in that way).

Consider the sequence (F1, . . . , Fk) = (f−1(1), . . . , f−1(k)) with p = f(y)
(y ∈ Fp). The linearizations that can be obtained by inserting x > y corre-
spond to the sequences:

(F1, . . . , Fp, {x}, Fp+1, . . . , Fk) (F1, . . . , Fp, Fp+1 ∪ {x}, Fp+2, . . . , Fk)
(F1, . . . , Fp, Fp+1, {x}, Fp+2, . . . , Fk) (F1, . . . , Fp, Fp+1, Fp+2 ∪ {x}, . . . , Fk)
...

...
(F1, . . . , {x}, Fk) (F1, . . . , Fk ∪ {x})
(F1, . . . , Fk, {x})

We get that f gives rise to (k − p) k-linearizations of P ′ and (k − p + 1)
k + 1-linearizations of P ′. Finally:

∑

f∈k−lin(P ′)

(−1)k =
∑

f∈k−lin(P )

(−1)k((k − p)− (k − p+ 1))

= −
∑

f∈k−lin(P )

(−1)k = (−1)m+1.

6. Iterated coproducts and trees

We postponed to this section the proof of lemmas 10 and 11, the first one
serving in the proof of the latter.

6.1. Proof of Lemma 10. We want to prove that for a given multiset
I = {i1, . . . , is} and FI = {T1 . . . Ts, Tj ∈ Tij}, we have

∆(bI) =
∑

F∈FI

∑

f∈2−lin(F )

λ(F )C(f)

First observe that, as linearizations are strictly increasing, 2 − lin(F ) is
empty if h(F ) > 2.
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The proof is recursive on the cardinal of I.
If I = {i}, we recover the formula (8): Let T ∈ Ti, if h(T ) = 1, then T = •i

and 2− lin(•i) is empty, otherwise, h(T ) = 2 and T = B+(i0; i)(•i1 · · · •ik).
In this latter case, the only possible 2-linearization sends the root on 1 and
all the other vertices on 2.

Suppose now that the result holds for any monomial bI = b{i1,...,is} of a
given length s. For the monomial bI .bj , the right-hand term S of the above
formula can be written

S =
∑

F∈FI

∑

T∈Tj

∑

f∈2−lin(F.T )

λ(F.T )C(f)

and λ(F.T ) = λ(F )λ(T ). For the poset F.T , no vertex of F is comparable
to a vertex of T and any 2-linearization f of F.T can be deduced from
the restrictions of f to F and T . For k = 1, 2 let F k = f−1(k) ∩ F and
T k = f−1(k) ∩ T , so that f−1(k) is the disjoint union of F k and T k:

(1) If f is such that none of the F k or T k is empty, then the restrictions
of f to F and T are 2-linearizations. The set of such f is in bijection
with 2− lin(F )× 2− lin(T ) and the corresponding subsum of S is:

S1 =
∑

F∈FI
T∈Tj

∑

f1∈2−lin(F )
f2∈2−lin(T )

λ(F )λ(T )C(f1)C(f2) = ∆(bI)∆(bj)

(2) If f is such that F 1 and F 2 are nonempty but (T 1, T 2) = (T 1, ∅),
necessarily, no elements of T 1 are comparable: otherwise two such
elements could not be in the same subset f−1(1). We thus have
T 1 = •j and, finally, the corresponding subsum is:

S2 =
∑

F∈FI

∑

f1∈2−lin(F )

λ(F )C(f1).(bj ⊗ 1) = ∆(bI).(bj ⊗ 1)

(3) For the same reason, if f is such that F 1 and F 2 are nonempty
but (T 1, T 2) = (∅, T 2), necessarily, T 2 = •j and the corresponding
subsum is:

S3 =
∑

F∈FI

∑

f1∈2−lin(F )

λ(F )C(f1).(1⊗ bj) = ∆(bI).(1 ⊗ bj)

(4) If f is such that T 1 and T 2 are nonempty but (F 1, F 2) = (F 1, ∅),
necessarily, F 1 = •i1 · · · •is and the corresponding subsum is:

S4 =
∑

T∈Tj

∑

f2∈2−lin(T )

λ(T )C(f2).(bJ ⊗ 1) = ∆(bj).(bI ⊗ 1)

(5) If f is such that T 1 and T 2 are nonempty but (F 1, F 2) = (∅, F 2),
necessarily, F 2 = •i1 · · · •is and the corresponding subsum is:

S5 =
∑

T∈Tj

∑

f2∈2−lin(T )

λ(T )C(f2).(1⊗ bI) = ∆(bj).(1 ⊗ bI)
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(6) If (T 1, T 2) = (T 1, ∅) and (F 1, F 2) = (∅, F 2), this correspond to a
unique 2-linearization that gives :

S6 = bj ⊗ bI

(7) If (T 1, T 2) = (∅, T 2) and (F 1, F 2) = (F 1, ∅), this correspond to a
unique 2-linearization that gives :

S7 = bI ⊗ bj

Putting together these seven sums, this gives

S + 1⊗ bI∪j + bI∪j ⊗ 1 = (∆(bI) + 1⊗ bI + bI ⊗ 1)(∆(bj) + 1⊗ bj + bj ⊗ 1)

Thus

S = ∆(bI∪j)− 1⊗ bI∪j − bI∪j ⊗ 1 = ∆(bI∪j)

This ends the proof.

6.2. Proof of Lemma 11. It remains to prove that

∆
[k]
(bi) =

∑

T∈Ti

∑

f∈k−lin(T )

λ(T )C(f).

We already proved the above formula for k = 2 (see formula 8). Suppose
the result hold for a given k ≥ 2 and consider the right-hand side of the
formula at order k + 1:

R =
∑

T∈Ti

∑

f∈(k+1)−lin(T )

λ(T )C(f).

Note that, we can restrict the sum to trees of height greater than k.

Definition 14. A nonempty corolla cut C of a tree T (C ∈ Ccut(T )) is
a subset of T such that: (1) its elements are maximal or predecessors of
maximal elements, (2) if y ∈ C then {x ; x > y} ⊂ C.

Such a cut inherits the decorations of T and the order induced by T . It is
clear that this is a forest of height 1 or 2. The reader can easily check that
for any corolla cut C of a tree T , λ(T ) = λ(T/C)λ(C).

For instance, if

T =
(i; i0)

(i1; j0)

j1

(i2; k0)

k1k2

We obtain 7 corolla cuts of height 1 by choosing 1,2 or 3 leaves. As for the
corolla cuts of heights 2, we get:

C1 =
(i1; j0)

j1

C2 =
(i1; j0)

j1

•k1 C3 =
(i1; j0)

j1

•k2 C4 =
(i1; j0)

j1

•k1 •k2 ,
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C5 =
(i2; k0)

k1 k2

C6 =
(i2; k0)

k1 k2

•j1

and, finally,

C7 =
(i1; j0)

j1

(i2; k0)

k1 k2

.

Once such a corolla cut C = T1..Ts is given, we note T/C the tree obtained
as follows: for 1 ≤ i ≤ k, if h(Ti) = 2 (a ”true terminal” corolla) remove all
the maximal elements of Ti in T and replace the decoration (k; l) of the root
of Ti by k in the new tree. In the previous example T/C = T if h(C) = 1,

T/C1 = T/C2 = T/C3 = T/C4 =
(i; i0)

i1 (i2; k0)

k1k2

,

T/C5 = T/C6 =
(i; i0)

(i1; j0)

j1

i2

and, finally

T/C7 =
(i; i0)

i1 i2

.

We write T ∧ C for the set of leaves of T/C that coincides with minimal
elements of C and for a given T and g ∈ mlin(T ), write

(T 1
g , . . . , T

m
g ) = (g−1(1), . . . , g−1(m)),

and

C(g) = C1(g) ⊗ · · · ⊗ Cm(g).

Let us observe that, for any k + 1-linearization f of a tree T , since f is
strictly increasing,

• The set C = T k
f ∪ T k+1

f is a nonempty corolla cut of T .

• The restriction of f to this cut determines a unique 2-linearization
fC of C.

• The map fC defined on T/C by fC(x) = f(x) if f(x) < k and
fC(x) = k otherwise is a k linearization of T/C and (fC)−1(k) =
T ∧ C.

Conversely, on can associate to a sequence (C, g, h) ∈ Ccut(T ) × k −
lin(T/C)×2−lin(C) such that g−1(k) = T ∧C a unique (k+1)-linearization
on T given by the ordered partition

(g−1(1), . . . , g−1(k − 1), h−1(1), h−1(2)).
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Thanks to this bijection, R is equal to
∑

T ∈ Ti
C ∈ Ccut(T )

g ∈ k − lin(T/C); g−1(k) = T ∧ C
h ∈ 2− lin(C)

λ(T/C)λ(C)C1(g)⊗· · ·⊗Ck−1(g)⊗C1(h)⊗C2(h)

We can reindex this sum by T ′ = T/C that run over Ti, g ∈ k − lin(T ′),
C is a forest of height lower or equal to 2 whose set of roots {r1, ..., rs} has
the same cardinal than g−1(k) (namely the previous cardinality of T ∧ C)
and their decoration d1 coincide. If we note I = d1(g

−1(k)) :

R =
∑

T ′ ∈ Ti
g ∈ k − lin(T )

C ∈ FI

h ∈ 2− lin(C)

λ(T ′)λ(C)C1(g) ⊗ · · · ⊗ Ck−1(g)⊗ C1(h)⊗ C2(h)

and, since Ck(g) = bI , we get, thanks to the previous lemma:

R =
∑

T ′ ∈ Ti
g ∈ k − lin(T )

λ(T ′)C1(g)⊗· · ·⊗Ck−1(g)⊗∆(Ck(g)) = (Id⊗
k−1

⊗∆)◦∆
[k]
(bi).

This ends the proof of the lemma.
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