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Abstract In this paper we introduce a model evaluation and comparison metric based on the method-7

ology introduced in Faranda et al (2013) to assess biases and their potential origins in a historical model8

simulation against long-term reanalysis. The metric is constructed by exploiting recent results of dynam-9

ical systems theory linking rare recurrences to the classical statistical theories of extreme events for time10

series. We compute rare recurrences for 100 years daily mean temperatures data obtained in a model11

with historical greenhouse forcing (the Institut Pierre-Simon Laplace, IPSL-CM5 model) and compare12

them with the same quantities obtained from two datasets of reanalysis (20 Century Reanalysis and13

ERA 20C). The period chosen for the comparison is 1900-2000 and the focus is on the European region.14

We show that with respect to the traditional approaches, the recurrence technique is sensitive to the15

change in the size of the selection window of extremes due to the conditions imposed by the dynamics.16

Eventually, we study the regions which show robust biases with respect to all the techniques investigating17

the possible origins.18

Keywords Climate · Dynamical Systems · Extreme events · Recurrences · Temperature19

Davide Faranda
LSCE, CEA Saclay l’Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
Tel.: +33-169081142
Fax: +33-169087716
E-mail: davide.faranda@lsce.ipsl.fr

M. Carmen Alvarez Castro
LSCE, CEA Saclay l’Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France

Pascal Yiou
LSCE, CEA Saclay l’Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France



2 Davide Faranda et al.

1 Introduction20

Temperature extremes at one location are generally defined from the tail of the temperature probabil-21

ity distribution (Katz and Brown 1992; Coles 2001). This definition focuses the data analyses of the22

maxima/minima of time series or exceedances over high thresholds. This has justified the application23

of extreme value theory (EVT) in climate sciences, to assess the statistical properties of large values of24

temperature, precipitation or wind speed (Nikulin et al 2011).25

26

EVT (Leadbetter et al 1983) has been widely used to study temperature extremes (Ghil et al 2011;27

Katz 2010). This statistical approach models the probability distribution of high values with General-28

ized Extreme Value distributions (GEV) or Generalized Pareto Distribution (GPD) (Gnedenko 1943;29

Pickands III 1975).30

31

One of the outcomes of those statistical approaches is the computation of return periods for extreme32

events (Galambos 1980). Once the probability distribution of the extremes is modeled by a GEV or a33

GPD law, one is able to compute return level for events with a return period that is larger than the34

length of observations, i.e. a probability so small that they have not yet been observed in the available35

data.36

A limitation of a straightforward application of EVT to climate variables is that it focuses on large37

events and does not treat events that are described by moderate values of a physical variable. One way38

of illustrating this limitation is to look at a chaotic dynamical system with (at least) one unstable fixed39

point near the center of the attractor, like in the system of Lorenz (1963). In such a system, two of the40

unstable fixed points are located near the center of the strange attractor and never reach extreme values41

in the phase space. SThe occurrence of such events escape an analysis with EVT, although they are rare42

because of their dynamical instability (Lucarini et al 2014).43

44

We propose to extend the notion of return period of extreme events to rare events. This proposition is45

based on the application of EVT to the dynamical information obtained from the statistics of recurrences46

of events. The recurrence approach hails from dynamical systems theory and has been known since the47

work of Poincaré (Frisch 1956). However, only recently it has been proved that classical extreme value48

laws (GEV distributions) can be used to describe the recurrence properties around points of the phase49

space of a dynamical system (Freitas et al 2010; Faranda et al 2011). The recurrences of the dynamics50

around a point of the phase space allow to define rare events, i.e. regions of the phase space that are51

seldom visited. Extreme values obtained as recurrences around a point of the phase space have as lim-52

iting distribution a GEV if the system fulfills specific chaotic constraints that replace the independence53

condition for random variables (Freitas et al 2010).54

55

The goal of this paper is to present a metric to evaluate the rare temperature events of climate model56

simulations and compare them with reanalysis data. This metric is compared to analyses of extremes of57

temperature with the EVT. Comparing the metrics and the datasets helps to assess regional biases in58

climate model simulations.59

60

We focus on recurrence properties of European temperature data for the 20 Century Reanalysis (here-61

inafter 20CR) and a model run (IPSL-CM5) forced with historical greenhouse gases concentrations. We62

introduce the classical extreme value theory (EVT) metrics and the one based on the recurrence analysis63

in Section 2. We illustrate the recurrence metric on several temperature time series taken from reanalyses64
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and model simulation in Section 3. In Section 4 we compare the EVT and recurrence metrics on the65

temperature data of the IPSL model and the two reanalysis product. Finally we provide a justification66

of the results and summarize the main findings.67

2 Methods68

In this section, after recalling the EVT approaches to the study of extreme events as large (or small)69

ones, we present the metric based on the recurrences analysis and focus on rare events. We also explain70

the algorithmic procedure we use to obtain our results.71

2.1 Extreme Value Theory: large deviations72

The first way to model the extremes of a continuous random variable X is to determine the probability73

distribution of the maxima of X over blocks of m observations. Under hypotheses of independence74

and identical distribution (IID), the probability distribution of maxima Mm = max{X0, X1, ..., Xm−1}75

converge to generalized extreme value (GEV) law (Leadbetter et al 1983):76

FG(Mm < x) = exp

{
−
[
1 + ξ

(
x− µ(m)

σ(m)

)]−1/ξ
}

(1)

with 1 + ξ(x − µ)/σ > 0. The location parameter µ(m) and the scale parameter σ(m) > 0 in Eq. 177

account for the normalization of the data. The sign of the shape parameter ξ discriminates the kind of78

tail decay of the parent distribution. We call this approach Block Maxima (BM) and we determine the79

GEV parameters from a maximum likelihood estimator.80

81

The practical choices of optimal block lengths n stem from heuristic considerations on the length of82

datasets (Coles 2001). The laws of extremes that are determined allow one to estimate return periods83

associated to return levels of extreme events. By construction, extreme events are rare. Therefore their84

return periods are large. The r-year return value is formally defined by setting Eq. 1 equal to 1 − 1/r.85

This computation is based on the assumption that, for large m, the shape parameter ξ of the GEV does86

not depend anymore on m and therefore one can extrapolate over the length of the sample. Since we87

work with limited data-sets, ξ is not independent on m and the previous formula give biased results.88

In order to overcome this problem and compute reliable return levels for r-year return value, we have89

to fit a different GEV for each bin length m and use as return level the estimate of µ(m) which is, by90

definition, the expected return level for return period r = m (Coles 2001).91

2.2 Recurrence analysis: rare events92

Here, we focus on rare events, i.e. which have a long return period. Such events are not necessarily93

extreme in the sense outlined in the previous subsection. This complementary point of view is based on a94

use of the dynamical information contained in the time series. In order to describe this idea, we consider95

a discrete time dynamical system. This is a reasonable hypothesis for an atmospheric system (Lucarini96

et al 2012; Faranda et al 2013). The dynamics is governed by a set of equations f , which controls the97

variables of the systems x such that xt+1 = f(xt). We assume that, by starting from a random initial98
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Fig. 1 Illustration of the recurrence technique. a Time series of temperature obtained from the 20CR analysis at Lon=30E,
Lat=61N. b-d Series of the distances from the temperature of ζ =11 ◦C, 17.5 ◦C, 27.5 ◦C respectively. Colored stars indicate
the minima selected for different bin lengths, as in the legend. e-f Empirical cumulative distribution functions (cdf) for
ζ =11 ◦C, 17.5 ◦C, 27.5 ◦C respectively. Different colors correspond to different bin lengths. h-j Results of the Anderson
Darling test in terms of the ratio between test parameters and critical values (circles) and test results (stars) for different
bin lengths.

condition, the dynamics follows a chaotic trajectory. We fix an arbitrary point ζ of the trajectory and99

measure the time series of the distances between ζ and the other observations in the trajectory:100

g(t; ζ) = − log(d(xt, ζ)).

d(x, y) is a distance function between two vectors: by definition it tends to 0 when the vectors x and y are101

close to each other. We take the opposite of the logarithm (− log) in order to increase the discrimination102

of small values of d(x, y) and treat high values of g. We are interested in the extremes of g(t; ζ), for all t.103

Such extremes define the recurrences of the system for all ζ. To select the extremes, we apply again the104

BM approach this time by dividing the time series g(xt), in intervals of length m. Every m observations,105

the closest recurrence to the point ζ is taken. If n intervals of length m are available in the series, one106

ends up with n closest recurrences.107

108
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If the system is chaotic, it has been shown that the distribution of the extremes of g(t; ζ) converge to109

a GEV of Gumbel type (Gumbel 1958). A detailed explanation for this can be found in Faranda and110

Vaienti (2013). The reason is intuitive: the Gumbel law is in the form exp(− exp(−x)). Here one of the111

exponential functions comes from the exponential recurrence statistics, the other by the inverse of the112

logarithm function.113

114

The distribution of extremes of g(t; ζ) contains the dynamics of the systems in terms of rate of con-115

vergence to the expected GEV: depending on the bin length m, one gets or not convergence to the116

asymptotic extreme value laws. For this reason it is possible to define the shortest bin length when117

appropriate statistical tests (such as the Lilliefors (1969) or the Anderson and Darling (1954) tests) fail118

to reject the hypothesis that the extreme statistics of g(t; ζ) is GEV distributed. This quantity gives119

the shortest return time τ for the point ζ. Hence ζ is normally recurrent for m > τ , or rare for m < τ120

(Faranda and Vaienti 2013).121

122

2.3 The algorithm123

The recurrence approach can be adapted to the study of time series (rather than all the variables of a124

dynamical systems). In the subsequent analysis ζ is a reference temperature at a given location and xt125

is a time series of daily mean temperatures. f represents the (unknown) atmospheric dynamics.126

127

The analysis is illustrated step-by-step in Fig. 1. The daily temperature data at single grid points are128

shown in Fig.1a. From the global minimum temperature, to the global maximum temperature, all the129

values recorded in the series are checked alternatively as ζ. The dotted lines correspond to three different130

temperatures chosen to illustrate the technique.131

132

Fig. 1b, c, d show the distances (grey curves) from the references temperatures T = 11 ◦C, 17.5 ◦C, 27.5133

◦C respectively for all the 100 years analyzed. The minimum distances corresponding to a bin length134

of m = 1, 2, 3, 4 years are indicated in color. Since the scale is fixed to be the same for all the cases,135

one remarks that for shortest bin length, when ζ = 11 ◦C or ζ = 27.5 ◦C, the minimum distances can136

be relatively large. This does not happen for the temperature of 17.5 ◦C. In order to assess whether137

the distribution of minimum distances are compatible with a Gumbel law, one needs first to take -log138

and then compare the empirical cumulative density function (cdf) with the best fit to the Gumbel law.139

Such comparison is shown in Fig.1e, f, g. As before, different colors correspond to different bin lengths.140

By eye, it is difficult to assess whether a fit is good or not although qualitatively the fits for the cases141

ζ = 17.5 ◦C look more reliable. The quantitative answer to this question is given via the Anderson and142

Darling (1954) test, whose results are displayed in Fig.1h, i, j. It measures the integral between the two143

cdfs (empirical and fitted). If the value of this integral is small with respect to a tabulated critical value,144

then the test does not reject the hypothesis that the data are Gumbel distributed. Fig.1h, i, j show the145

results of the different Anderson-Darling tests in terms of the ratio between the test statistics and the146

critical value (blue circles), and of the outcome of the test (red stars). When the ratio is smaller the one,147

the Anderson Darling test succeed (h = 0). This happens for all the bin length at ζ = 17.5 ◦C, and only148

for m = 4 years for ζ = 27.5 ◦C. The occurrence of this temperature can therefore be considered rare for149

time scales smaller than 3 years and normal for time scales larger than 4.150
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Fig. 2 Region of temperatures for which the Anderson-Darling test does not refuse the hypothesis that data are Gumbel
distributed (blue area) for different period of recurrences m in years. Minimum return times τ and corresponding return
levels ` are represented by the projections of the green line on the x and y axis respectively.

In Fig.2 we visualize the results of the Anderson-Darling test in the (m, ζ) plane. The blue area represents151

the region where the Anderson-Darling test does not reject the hypothesis that the data are Gumbel152

distributed. Rare temperatures are located in the white area between the red lines (the absolute extreme153

of the series, indicated as global maximum and global minimum) and the blue area. The minimum return154

times τ are the projection on the m axis of the green curve and the correspondent return levels ` are the155

projections on the temperatures axis.156

3 Temperature recurrences of four European locations157

The analysis is focused on the European region, between 35◦N − 62◦N and 12◦W − 32◦E. We com-158

pare data from the 20 Century Reanalysis (20CR) (Compo et al 2011), the ERA 20C (Poli et al 2013)159

and an historical run of the Institut Pierre-Simon Laplace (IPSL) model (Dufresne et al 2013). Here160

we focus on surface temperature variations and relate them to the sea level pressure (SLP). The 20CR161

data yields a horizontal resolution of 1◦. They cover the period between 1871 and 2010. Our analysis is162

based on the ensemble mean of 20CR. The ERA 20C assimilates observations of surface pressure and163

surface marine winds only. The horizontal resolution is approximately 125 km (spectral truncation T159).164

165

The IPSL-CM5, contributed to the 5th phase of the Coupled Model Intercomparison Project (CMIP5).166

In addition to the physical atmosphere-land-ocean-sea ice model, it also includes a representation of167

the carbon cycle, the stratospheric chemistry and the troposphere chemistry with aerosols. The version168

used here is IPSL-CM5A medium resolution, 1.25◦ × 2.5◦ (143 × 144L39). The model is thoroughly169

documented by Hourdin et al (2013a). The extremes were first investigated by Cattiaux et al (2013). In170

order to compare the results, the reanalysis have been bilinearly re-interpolated on the same grid as the171

model.172

For all the datasets, we consider 100 years (1900-1999) of daily temperature data. This allows for the173

computation of return times between 6 months up to 4 years. This limit is imposed by the length of174

the time series: the block-minima approach requires to keep a sufficient number of extremes as well as a175

large set of observations in each bin for the selection of extremes. For recurrence windows longer than 4176

years, we get less than 25 maxima and unreliable estimates of the GEV distributions. Conversely, events177

chosen for bin length shorter than 6 month are not rare enough to be considered in the analysis.178
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Fig. 3 Recurrence analysis at four specific grid points of the 20CR. Temperature for which the Anderson-Darling test does
not refuse the hypothesis that data are Gumbel distributed, are located in the blue area for different period of recurrences
m in years. Red dotted line represents global maximum and minimum of the time series, gray dotted line represents 0 ◦C.
a Ireland, b Po Valley,c Vienna Region, d Paris Region.

In order to illustrate the recurrence technique, we compute the 20CR temperature recurrences at 4 grid179

points with different climate characteristics. Results are displayed in Fig.3a for Ireland, Fig. 3b for the180

Po Valley , Fig. 3c for Vienna Region and Fig. 3d for Paris Region.181

182

We first describe the different shapes of the blue area of normal recurrences explainable in terms of the183

climate characteristics of the grid points considered. The climate of Ireland is mild: extreme cooling or184

warming is prevented by the presence of the Atlantic Ocean. The green curve is therefore very symmetric185

and saturates at the values of 0 ◦C (for the minima) and 18 ◦C for the maxima.186

187

The Po Valley climate is influenced by a Mediterranean component as well as by the local geographical188

features. The presence of both the Alps and the Apennines creates, in combination with blocking events,189

stable condition and large daily temperature excursions (Beniston 2006). Negative temperatures are gen-190

erally associated to snowfalls which occur even at the sea level almost every year (Terzago et al 2010).191

This feature is captured by the shape of the green curve for the minima: for a return period of 1 year,192

recurrences of temperatures lower than 0 are rare, but for higher return times negative temperatures193

recurrences become typical.194

195

The region of Vienna features a continental climate and very cold extremes of temperature are produced196

for 3 or 4 years return time. The Paris region is greatly influenced by the Atlantic Ocean, but blocking197

conditions may trigger large temperature excursions associated to both cold spells and heat waves as198
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shown by the low values reached by the green curve for 3-4 years return period.199

200

Over geographically uniform regions the variation between the recurrence plots shown in this example is201

uniform. However, at mountain ranges, or for grid points with land-sea sharp variations, great differences202

can appear even for contiguous grid points.203

204

The asymmetry between the behavior of maxima and minima is coherent with the extreme value statis-205

tics computed with the GEV approach or the analysis of conditional variance (Yiou et al 2009). As206

described by Brown et al (2008), both the maxima and minima temperature extremes obey a Weibull207

law corresponding to a negative shape parameter of the GEV distribution, as generally expected for208

physical observables (Faranda et al 2014). Brown et al (2008) show that maxima are more bounded than209

minima i.e. the shape parameter is more negative for the maxima. In our analysis, this is reflected by210

the slower saturation of the τ curve for the minima of temperature recurrences.211

212

4 Comparison between EVT and recurrence metrics213

We compare the return levels obtained with the recurrence technique ` to the ones computed by using214

the BM approach µ by taking maxima and minima of temperatures over block lengths of m = 1, 2, 3, 4215

years. The biases are denoted as ∆Tmax and ∆Tmin and computed as ∆Tmax(m) = `20CR − `ERA20C216

for the recurrences, and ∆Tmax(m) = µ20CR−µERA20C for the GEV return levels. Analogous quantities217

are defined for the minima and other combinations of model/reanalysis.218

219

The results are shown in Fig. 4a–f for the maxima and Fig. 4g–l for the minima. The box-plots provide220

information about the distribution of the biases: on each box, the central mark is the median, the edges221

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not222

considered outliers, and outliers are plotted individually. The x-axis show different bin lengths m. Fig.223

4a–c and Fig. 4g–i show the bias obtained via the recurrence technique and Fig. 4d–f and Fig. 4j–l for the224

BM approach. The left hand-side column in Fig. 4 report the biases between 20CR and ERA 20C, the225

central report the box-plots the biases between the IPSL model and ERA 20C and the right hand-side226

the biases for the IPSL model and ERA 20C.227

228

The two methodologies provide different results: the sign of the median can vary between recurrences and229

BM as well as the distribution of outliers. Moreover, the BM is substantially insensitive to the change of230

bin length m. For the BM approach, one can hardly spoil differences between the distributions obtained231

for m = 1 or m = 4. In this case, the GEV fitting with short (e.g. 1 years) bin lengths is biased as the232

asymptotic regime, i.e. the limit m � 1 is not reached. The procedure introduced to determine ` pre-233

vents from short size effects because, when m is too short to contain good recurrences of ζ, the Anderson234

Darling test simply refuses the hypothesis that the data are Gumbel distributed. This explains why the235

plots analysed in Fig. 3 have a conic shape (they would rather be rectangular for the BM approach) and236

show a sensible variation between 1 and 4 years estimations.237

238

Before assessing the way the IPSL model represent temperature extremes, we compare the two reanalysis239

products to check the consistency between the two datasets (Fig. 4 a, d). For the maxima, the BM ap-240

proach suggests that 20CR are warmer of about 2 ◦C than the ERA 20C. The median of the distribution241
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for the biases computed with the recurrence techniques is positive. Most of outliers are positive at m = 1242

year bin length and negative for m = 4 years. For the minima the results are shown in Fig.4g, j. In this243

case the median biases are negative for both the methods. We remark that for m = 4 years the box plots244

obtained with the recurrence technique and the BM approach are similar.245

246

We have seen that for the reanalysis products analyzed the biases in the representation of both large (via247

the BM approach) and rare (via recurrences) extremes can reach up to 15 ◦C. It is not surprising that248

the comparison of the output of the IPSL historical simulation with the reanalysis suffer from the same249

problems. In addition to the box-plots, we represent the the spatial distributions of the biases between250

IPSL model and 20CR in Fig. 5a, b (maxima) and Fig. 6a, b (minima) and in Fig. 5c, d (maxima) and251

Fig. 6c, d (minima) for the ERA 20C. Maxima of the IPSL model seems to reproduce well those of252

the reanalysis over the Mediterranean basin. A positive bias over Great Britain and a negative bias for253

the Iberian peninsula appear as robust features with respect to the change of reanalysis data-set and254

the change of bin length. The results for the minima show less coherence, although one can identify a255

negative bias over the Scandinavian region and over England and a positive bias over continental Europe.256

Overall, biases for the minima are larger than for the maxima257

258

5 Understanding the biases in extremes259

In order to explain the differences on both large and rare extremes, we first assess whether they orig-260

inate by a poor representation of the mean and of the variability of the temperature distributions or261

whether they are related to finer statistical properties (higher moments of temperature distributions).262

This analysis tells whether the extreme value analysis add a real information with respect to the classical263

statistical characterization. We then focus on the Scandinavian region and the Iberian peninsula and264

try to understand the possible origin of some biases found with the previous analysis which seem robust265

with respect to the change in the reanalysis data-set and in the bin length m.266

5.1 Analysis of Moments267

We report in Fig. 7 the differences in the ith moment mi between the two reanalysis products Fig.7a–c,268

the IPSL and the 20CR Fig.7d–f, the IPSL and the ERA 20C in Fig.7g–i. Differences in the mean m1269

are plotted in Fig.7a, d, g, in the standard deviation m2 in Fig.7b, e, h and in the skewness m3 in Fig.7c,270

f, i. Differences in the mean affect the location parameter µ of the GEV distribution. The effects of271

biases in the mean for the recurrence plots shown in Fig.3 mostly consist in shifting the diagrams up272

or down. From our analysis is evident that the biases found for the means are small and do not have a273

coherent spatial structure. Moreover, the difference in means are clearly not related to the difference in274

variance, as it should be in case of systematic bias according to the method proposed by Yiou et al (2009)275

for estimation of conditional variance. In addition, the deviations found for the standard deviation and276

skewness are also relatively small and locally compensate each other effects, e.g. over the Scandinavian277

region. They affect the recurrence diagrams by a change of the saturation values of `. It is evident that278

such statistical quantities (even combined) can not fully explain the biases found for rare recurrences.279

This means that the extremal behavior depends also on high order moments which are tricky to measure280

for short time series.281
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Fig. 4 Box plots of the biases ∆Tmax (red) and ∆Tmin (blue) between 20CR and ERA 20C a,d,g,j, IPSL and ERA 20C
b,e,h,k, IPSL and 20CR c,f,i,l. Central marks are the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. x axis
shows different bin lengths m from 1 to 4 years.



Return times of hot and cold days via recurrences and extreme value theory 11

(a) ∆ T
max

  IPSL − 20CR m=2y

   8oW    0o     8oE   16oE   24oE 

  40oN 

  45oN 

  50oN 

  55oN 

  60oN 

 

 

−10

−5

0

5

10

(b) ∆ T
max

  IPSL − 20CR m=4y

   8oW    0o     8oE   16oE   24oE 

  40oN 

  45oN 

  50oN 

  55oN 

  60oN 

 

 

−10

−5

0

5

10

(c) ∆ T
max

  IPSL − ERA 20C m=2y

   8oW    0o     8oE   16oE   24oE 

  40oN 

  45oN 

  50oN 

  55oN 

  60oN 

 

 

−10

−5

0

5

10

(d) ∆ T
max

  IPSL − ERA 20C m=4y

   8oW    0o     8oE   16oE   24oE 

  40oN 

  45oN 

  50oN 

  55oN 

  60oN 

 

 

−10

−5

0

5

10

Fig. 5 Analysis of the biases ∆Tmax obtained via the method of recurrences for the IPSL model and 20CR (a,b) and for
the IPSL model and ERA 20C (c,d). From left to right the bin length m is increasing from 2 to 4 years. A spatial median
filter on a window 3×3 has been applied to the data.

5.2 Atmospheric circulation and biases282

We now focus on the two regions (Scandinavia and south-west Iberian Peninsula) where the represen-283

tation of rare recurrences highlights consistent differences between reanalyses and model historical run,284

and we investigate the origins of such biases. The first hypothesis is that the biases are found for a285

specific weather circulation pattern. In order to verify this claim, we construct an average pressure field286

representing all the situation which are related to rare temperature in the models but not in the 20CR,287

and vice-versa.288

289

To obtain such pressure fields we follow this procedure: i) we select a period of recurrence m (e.g. two290

years) ii) we compute the values of ` located on the τ line and therefore representing the boundaries291

between normal and rare temperature recurrences (e.g. ` = −35◦C for the minima of the IPSL-CM5292

model and ` = −21◦C over Scandinavia for m = 2 years), iii) we determine the composite SLP field293

corresponding to the temperature return levels ` for the model and the correspondent values for the294

reanalysis and average over them, iv) we repeat the procedure by changing the period of recurrence m295

and check the robustness of the results with respect to changes in m.296

297
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Fig. 6 Analysis of the biases ∆Tmin obtained via the method of recurrences for the IPSL model and 20CR (a,b) and for
the IPSL model and ERA 20C (c,d). From left to right the bin length m is increasing from 2 to 4 years. A spatial median
filter on a window 3×3 has been applied to the data.

If a predominant pressure field appears from this analysis, then we can use this information to understand298

the nature of the bias. In Fig. 8 we represent the average pressure field for the situation associated to299

the bias in the Scandinavian region (left panel) and in the south-west Iberian Peninsula (right panel).300

Some of the daily pressure fields which have been averaged to produce Fig. 8 is reported in Fig. 9 for301

Scandinavia and in Fig. 10 for south-west Iberian Peninsula.302

303

Fig. 8a illustrates the SLP pattern linked to the Scandinavian bias. The average pressure field shows a304

maximum over Scandinavia and the daily pressure fields reported in Fig. 9 show comparable weather305

patterns. In cold nights with snow or ice cover, the presence of stable condition (high pressure) with clear306

skies can produce a significant cooling. The over-cooling observed in the model can be therefore due to307

an insufficient representation of the compensation mechanisms, like the parametrization of the low level308

clouds and of the snow/ice graying that affect the surface albedo (Hourdin et al 2013a,b).309

310

On the other hand, by looking at Fig. 8b and the daily pressure fields of Fig. 10, we cannot conclude311

that there is a predominant weather pattern associated with the temperature bias in the south-west312

Iberian Peninsula. Moreover, the analysis of daily pressure fields reported in Fig. 10 show a large variety313

of patterns which all have different signatures on surface temperature (Yiou and Nogaj 2004). Contrary314
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Fig. 7 Differences in the statistics of the first three central moments of the temperature distribution T . a-c show the
biases between 20CR and ERA 20C, d-f the biases between IPSL model and 20CR, g-i the ones between IPSL model and
ERA 20C. From left to right first (mean m1), second (standard deviation m2) and third order (m3) moments respectively.
A spatial median filter on a window 2×2 has been applied to the data.

to the results found for Scandinavia, we conclude that the bias over the Iberian peninsula is independent315

on the weather pattern considered. The origin of the bias are instead linked to the geography: the model316

represents south-west Iberian Peninsula not as a continental grid point, but as a mixture of land and317

sea. This area is characterized by the presence of the Guadalquivir valley, which is located between the318

mountain ranges Sierra Morena and Betic System, creating a local continental climate over the region319

where high temperatures can be easily attained in summer (Rivas-Mart́ınez et al 1997; Hernández-320

Ceballos et al 2013).321

6 Discussion322

In this paper we have used the recurrence analysis proposed in Faranda and Vaienti (2013) to study323

the dynamics of temperature extremes over the European region. The GEV fitting, based on the block-324

maxima approach, considers extreme events as large (or small) observations. The recurrence technique325

is focused on the analysis of events that are rare independently on the magnitude of the observables326

considered. We have shown that the metrics used to evaluate extremes over the European region for327

two reanalysis products and an historical simulation provide different results and that the recurrence328

technique is more sensitive to the change in bin-length with respect to the BM approach.329

330
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Fig. 8 a: average pressure field (in hPa) obtained by averaging all the pressure fields of the days where the IPSL-CM5
model simulated temperatures between -20 ◦C and -35 ◦C in the Scandinavian region.b: average sea level pressure field (in
hPa) obtained by averaging all the pressure fields of the days where the 20CR registered temperatures between 25 and 35
◦C in the south-west Iberian Peninsula .
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Fig. 9 Daily sea level pressure fields (in hPa) for some of the situations where the IPSL-CM5 model simulated temperatures
between -20 ◦C and -35 ◦C in the Scandinavian region.
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Fig. 10 Daily sea level pressure fields (in hPa) for some of the situations where the 20CR registered temperatures between
25 ◦C and 35 ◦C in the south-west Iberian Peninsula.

For the maxima we found that the representation of warm days given by the IPSL model is coherent331

with the reanalysis data-sets over most of the European region. Differences are localized over specific332

areas, as the south-west Iberian peninsula and Great Britain. For the minima biases are larger and there333

is some inconsistencies with respect to the change of bin length over some regions. Negative biases over334

England and Scandinavia appear as robust features with respect to the change in reanalysis data-set and335

bin length.336

337

We then investigated the biases obtained with the recurrence analysis against the first order moments338

of the temperature biases distribution and the atmospheric circulation. By analysing the pressure fields339

associated to cold and warm days misrepresented in the IPSL model, we have associated the bias for340

south-west Iberian Peninsula to the sea/land mask of the model which represents these grid points with341

a fraction of sea, whereas this region is affected by a marked local continental climate. The over-cooling342

observed in Scandinavia have been associated to the representation of atmospheric circulation in the343

model because a precise weather pattern consisting of an high pressure over this region appears for most344

of the events considered for the conditional average. The misrepresentation is then attributed to the345

radiative effects which are possibly not compensated by model parameterizations. These and the other346

biases can hardly be explained by just looking at the first order moments of the temperature distribution.347

348
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Besides the results obtained for the IPSL model examined in this paper, the technique can be easily349

adapted for the analysis of different models and variables and to combine the extremes of multiple vari-350

ables simultaneously. The computation of robust minimum return times for extremes of temperature351

data avoids the use of asymptotic statistical theories which can provide return times on longer - even352

infinite - periods without considering the underlying dynamics.353

354

Future applications of these methods include the study of climate change for temperature recurrences of355

models and reanalysis data. The signature of climate change will correspond to modifications of the blue356

area and the green curve of the recurrence diagrams when two period with different greenhouse forcing357

are considered.358
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