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Abstract—Many models have been recently developed for the
optimization of biomass related supply chains. However, models
for biopower supply chains powered by animal waste have not
received much attention yet. In this paper, we propose a mixed
integer linear programming model for supplier selection and
procurement planning for a biopower plant. The model integrates
time window constraints for the collection of animal waste as well
as inventory constraints. We show that the model is intractable
with a state-of-the art commercial solver and propose a heuristic
approach based on the Adaptive Large Neighbourhood Search
(ALNS) framework. We show the efficiency of this approach on
a case study in central France.

I. INTRODUCTION

The declining reserves of fossil fuels and an ever-increasing
demand for energy has forced many economies to gradually
shift their dependency for energy derived from non-renewable
to renewable sources. The shift can be seen from the fact
that between 2003 and 2012, the gross energy consumption of
energy derived from renewable sources in France has increased
from 12.1% to 15.6% [1].

Among the various sources of renewable energy produced
in France, biomass holds a major share with 52% [2]. Owing
to a large agricultural area and immense resources of animal
waste, the production of energy from biomass holds a lot of
potential in France [3]. Moreover, the potential of biomass to
produce energy in different forms - as biofuel (bioethanol) and,
biopower (electricity), is really beneficial as well. At present,
there exist more than 230 active biomass processing plants
worth an installed capacity of 110MWe and these figures are
expected to triple by the year 2020 [4]. This boost in the
number of biomass processing plants is due to the increased
feed-in tariffs and subsidies provided to the producers.

However, despite the abundance and ease of availability
of biomass (agricultural and animal waste), producing energy
from biomass is costlier than other sources [5]. In particular,
transportation cost of animal waste is an issue because of its
high water content [6].

Thus, it is imperative to produce energy at the lowest
possible costs for biomass to remain an attractive source of
energy in the future.

Biomass collected from agricultural farms can be broadly
divided into two categories waste coming from plants (agricul-
tural biomass) and animal waste. Agricultural waste is gener-
ally produced during the harvesting season in high quantities.
While on the other hand, animal waste is characterized by
irregular production, and in small quantities. This imposes
time-windows on the collection of animal waste, and thus
differentiates it with the agricultural waste. In this paper, we
consider the strategic selection of animal waste suppliers for a
biopower plant and the tactical optimization of the collection
schedule at suppliers. In must be noted here that the biomass
considered in this study is restricted to animal waste, due to
its characteristics which make it different from other biomass
supply chains. In section II, we review the related literature to
better position our work in the corresponding field of research.
In section III, we propose a mixed integer linear programming
(MILP) formulation. The MILP model minimizes the total
costs, by taking into account the transportation costs incurred
while procuring the biomass. We take into account the time-
windows (minimum and maximum gap between consecutive
deliveries) to align this problem closer to practice. The model
also takes into account several practical constraints such as
the collection of a minimum percentage of biomass from a
selected supplier. This constraint does not exist in all situations,
but is still common in many real-life situations. In section
IV, we present a case study in central France and show
that the CPLEX solver cannot solve it within acceptable
computation time. In section V, we propose an Adaptive Large
Neighborhood Search (ALNS) [7], [8] meta-heuristic for the
problem. We also run scenarios with different plant capacities
and time discretizations. Section VI concludes this paper, and
maps issues for further research.

II. LITERATURE SURVEY

Extensive literature reviews on the biomass supply chains
have been proposed by [9], [10] and [11] and can be referred
for the current state of the art of the problem. In their literature
review, Eskandarpour et al. [12] identify biomass to bioenergy
supply chains as the leading application area of sustainable
supply chain network design.

Studies have been made to reduce costs by the opti-
mization of the biomass to bioethanol supply chains which



take into account the various aspects of the production from
harvesting, transportation, and handling from the supply to the
end-customer (see [13], [14], [15], [16] or [17]). However,
these papers mainly focus on bioethanol production, which
have different characteristics compared to biopower production
systems. In bioethanol production systems, the end-product
is usually supplied to several customers and the production
is guided through the stochastic demand for the product.
However, in case of biopower production systems, the output is
injected into the power grids which serve the local populations.
It is thus independent of the customers demand and bounded-
above by the treatment capacity of the facility at each period.

Further, there have been studies which take into consid-
eration the different types of biomass like switch-grass [17],
cotton-stalk [18] and miscanthus [19] for the production of
energy products. Most of these types of biomass are agricul-
tural products and offer high seasonality due to limited periods
of harvesting. Consequently, long-term storage is provided as
a solution during seasons of no production [20]. As per the
knowledge of the authors, there are no studies which consider
animal waste as the input for biopower plants.

The procurement of biomass deals with two sub-problems
(a) selection of sites from where the biomass waste can
be collected and, (b) determination of the procurement plan
from each selected site such that the biomass equivalent to
the processing capacity of the plant is collected. While the
first decision is made for a few years (strategic), the latter
decision is taken for shorter periods, usually weeks or months
(tactical). The selection of farms would affect the subsequent
procurement schedule, which may be globally sub-optimal.
Thus, it would be only beneficial to solve the two sub-problems
as an integrated global problem, as is done by [16].

The supply chain design for biomass processing industries
has not received much attention in the research community
until recently. However, recently this topic has interested a
lot of researchers due to the growing awareness towards
efficient energy production from renewable sources. Several
optimization models have been proposed for decisions at strate-
gic, tactical and operational levels. At the strategic level, the
main problems are facility location and capacity determination.
These problems have been studied by [16], [21] and [22]
among others. All of these studies propose MILP models to
solve these problems. However, most of these problems are
focused on biomass to bioethanol supply chains. At the tactical
level, the key decisions include procurement schedules, trans-
portation fleet management and inventory monitoring. These
problems have been studied mainly for bioethanol production
by several types of biomass. The studies have been made on
miscanthus [19], wood residues [23] and cotton stock [18].
The studies have been missing on supply chains with animal
waste which are very different at operation and tactical levels.

There have been a few studies which have tried to inte-
grate the two levels of decision as a single problem. Several
mathematical models have been proposed to find the optimal
facility location and biomass collection schedules [15], [17].
In addition to the above problem, a MILP model to address the
problem of farm selection, resource allocation and operating
schedule has been proposed in a study by Lin et al. [16].
This is one of the most comprehensive models for biomass
to bioethanol supply chains. However, this study is focused

on agricultural waste and does not take into the time-windows
imposed by animal waste.

Figueirido et. al. [24] presents a systematic approach for
the design of biopower supply chains with animal waste as
biomass. However, the study does not present any optimization
models for the design of the supply chains. Moreover, it
proposes the selection of farms through a qualitative method
and does not consider the time-windows.

As far as solution methods are concerned, most biomass
supply chain design problems are solved with MILP and
MINLP solvers (see for example [15]- [17]) which sometimes
require extremely long computation times. With the addition of
time-windows the problem becomes even harder, especially for
a large number of farms and finer time discretization. Thus, we
need a method which can provide good results in reasonable
amount of time. As far as heuristic and metaheuristic methods
are concerned, no method seems to be widely used by different
authors. Adaptive Large Neighbourhood Search (ALNS) has
proved to be really efficient for solving optimization problems
such as vehicle routing problems, arc scheduling problems,
pollution routing, snow-plowing and timetabling problem (see
[8], [25], [26], [27], [28], [29], [30] or [31]). However, for
solving supply chain network design (SCND) problems, the
use of Large Neighbourhood Search (LNS) has been explored
by a few studies (see ref. [32] or [33]), but to the best of
our knowledge, LNS (or ALNS) has not been used yet to
solve integrated strategic and tactical problems, especially for
biomass supply chain design problems.

The literature survey clearly identifies the need for studying
biomass processing supply chains for animal waste which take
into account its special characteristics. In addition to that,
we need a solution method which provides good results in
reasonable amount of time. Thus, our study tries to fill in
these gaps by providing a model for the selection of farms
and the determination of procurement schedules which take
into account the inherent time-windows.

III. PROBLEM DESCRIPTION

In this problem, we try to optimize the procurement plan
for a single biomass processing facility, with known monthly
maximal demand, at integrated strategic and tactical level.
It offers several characteristics like seasonal supply, time-
windows on collection trips which make the problem interest-
ing. We only consider the upstream leg of the supply chain as
the output from the plant is injected into the grid. Downstream
actors are not considered as the power is injected directly into
the electricity grids. We also consider the facility as a black
box, and any activity within the plant is out of the scope of
this model.

We consider a single biomass processing facility for a given
maximal capacity equivalent to the energy output of C tons
of biomass per day. The production is a continuous process
and exactly C tons of biomass (animal waste, in this case)
must be provided each day. The biomass can be procured
from a set F of candidate farms, which can be selected to
be long-term suppliers of biomass. The decision of selection
or non-selection remains unchanged for the whole planning
horizon T . Each farm i ∈ F is located at a distance di from
the facility. The availability of biomass at each farm depends



on the farm size and shows high seasonality. For each period
t ∈ T , biomass availability at farm i is given as Pit. The length
of each period t ∈ T is n days.

Animal waste offers specific characteristics compared to
the agricultural waste. Although it is not limited to small peri-
ods (e.g. harvesting), it still offers a seasonal trend. Moreover,
there are conditions imposed on the collection of animal waste
due to practical reasons. The production of animal waste is
spread both spatially and temporally; therefore, all the animal
waste is usually assembled together after a certain period of
time which could be of the order of a few weeks. This fact
introduces a minimum gap between consecutive collection
trips, as before this period the animal waste may not be
accumulated. Two consecutive collections at a farm must be
separated by at least gmin periods.

Moreover, animal waste usually has a higher rate of bio-
degradation than the agricultural waste, due to its higher
moisture content. Its semi-liquid state renders it difficult to
store and handle. Thus, long-term storage is avoided [34],
[35]. This imposes a restriction on the maximum gap of gmax
periods between two consecutive collections at a farm.

We assume that all the manure collected beyond the gap of
gmax periods is rendered invaluable due to excessive moisture
content and therefore, low heating value. Additionally in some
cases, mutual agreement dictates a collection of at least α%
of the total biomass available at any farm, in case a farm is
selected as a supplier. However, to maintain generality, this
constraint can be easily relaxed by setting the value of α to zero
in cases where this condition does not hold true. The quantity
Wit of biomass left in the farm after each collection is disposed
off and is not available anymore in subsequent periods. If there
is no collection at farm i during period t−1, then the quantity
Jit of biomass available at period t is calculated as Jit =
Ji,t−1 + Pit.

In case the total available biomass from the selected farms
is less than the required capacity of nC for the period,
a quantity Et of biomass is secured from non-contractual
suppliers (not selected) at an additional cost or penalty of
A/ton.

Furthermore, storage of collected biomass at the facility
is of importance as well. Biomass is degradable and loses
its energy value over time due to absorption of moisture.
Thus, it is really important to process the biomass before its
energy content reaches a threshold below which it is deemed
as unacceptable. Any consumption until K days from the day
of collection is considered acceptable. Any processing beyond
that would result in a reduced production of energy, and hence
a loss of LEUR/ton. This cost is in addition to the standard
inventory costs for the biomass within the plant, charged at
HEUR/ton/period.

The optimization problem consists of selecting a set of
farms and planning the procurement at each farm in the
time horizon while minimizing the total costs. The various
parameters involved in the problem are defined in Table I. The
variables of the mathematical model are introduced in Table
II.

For the given notations, the problem can be modeled by
the MILP (1)-(13).

TABLE I. PARAMETERS USED IN THE MATHEMATICAL MODEL.

Parameters
F Set of farms
T Set of time periods in the planning horizon
n Length of each time period (in weeks)
C Processing capacity of the facility per day (in tons)
K Number of periods before biomass start losing its power (in weeks)
Pit The biomass availability at farm i ∈ F during period t ∈ T
di Distance of farm i ∈ F from biopower plant (in km)

gmin Maximum time gap between two consecutive collections for each farm
(in weeks)

gmax Minimum time gap between two consecutive collections for each farm
(in weeks)

H Inventory cost in the biopower plant (in /ton/week)
Tc Cost of transport per ton-distance biomass collected (/km-ton)
A Additional cost of buying biomass from non-contractual suppliers (/ton)
L Cost (loss of value + handling + storage) incurred to store biomass for

more than K days (in /ton/week)

TABLE II. PARAMETERS USED IN THE MATHEMATICAL MODEL.

Continuous material flow variables (in tons)
It Total inventory of biomass at the biopower plant during period t ∈ T
Jit Total availability of biomass at farm i ∈ F during period t ∈ T
I′t Total amount of biomass that stays for more than K days at the

facility during period t ∈ T
Et Quantity of additional biomass bought during period t ∈ T
Wit Amount of biomass discarded after each collection

Binary and Integer Decision Variables
Yi 1, if a farm i ∈ F is selected; 0, otherwise
Xit 1, if a collection is made from a farm i ∈ F during period t ∈ T
Qit quantity of biomass collected from a farm i ∈ F during period t ∈ T

(in tons)

max Tc
∑
t∈T

∑
i∈F

Qitdi +
∑

t ∈ T (HIt +AEt + LI ′t) (1)

s.t.

It = It−1 +
∑
i∈F

Qit + Et − nC ∀t ∈ T − {0} (2)

It ≤ KC + I ′t ∀t ∈ T (3)

Ji,(t−1) +Pit = Qit+Jit+Wit ∀i ∈ F, t ∈ T −{0} (4)

Wit ≤MiXit ∀i ∈ F, t ∈ T (5)

Jit ≤Mi(1−Xit) ∀i ∈ F, t ∈ T (6)

α(Ji,t−1 + Pit) ≤Mi(1−Xit) +Qit ∀i ∈ F, t ∈ T (7)

t+gmin∑
t′=t

Xit′ ≤ Yi ∀i ∈ F, t ≤ |T | − gmin (8)

t+gmax∑
t′=t

Xit′ ≥ Yi ∀i ∈ F, t ≤ |T | − gmax (9)

Qit ≤MiXit ∀i ∈ F, t ∈ T (10)

Ji0 = 0 ∀i ∈ F (11)

Yit, Xit ∈ {0, 1} ∀i ∈ F, t ∈ T (12)

It, I
′
t, Jt,Wit ≥ 0 ∀i ∈ F, t ∈ T (13)



The objective function (1) minimizes the total cost which
is composed of transportation costs, additional costs of buy-
ing biomass from non-contractual suppliers, cost of holding
biomass surplus to the requirements of K days and standard
inventory costs. Constraints (2) are the inventory balance
equations for the plant. Constraints (3) calculate the inventory
surplus to the requirement of K days. Constraints (4) balance
the inventory at each farm. Constraints (5) permit discarding
only in case of a collection. Mi is a large number th at can

be set at
t∑

t′=0

Pit′ . Constraints (6) indicate that whatever is left

after any pickup will be lost and so it will not be considered
in the successive periods. Constraints (7) force a minimum
amount of biomass to be collected, while constraints (8) and
(9) impose the time-windows on the collections. Constraints
(10) allow collection only when collection is permitted and
only from the selected farms. Another point that must be noted
is that the model contains both binary as well as continuous
variables. However, the objective function depends only on the
continuous variables.

IV. EXACT APPROACH

A. Case Study

There is no existing benchmark for the problem. Therefore,
we apply the MILP model to a case study corresponding to a
biomass processing plant located in central France. The plant
can be served by a pre-screened set of farms, out of which a
set of optimal farms have to be determined. In this instance,
29 farms were considered for selection. The location of the
farms is showed in Figure 1.

Fig. 1. Location of the 29 pre-screened farms.

For each of these farms, the production of biomass has been
forecast based on historical records, which takes into account
the inherent seasonality.

The capacity of the plant is considered fixed. However,
in order to understand the structure of the problem, several
capacity scenarios were studied. In addition to that, the prob-
lem was solved with different time discretizations. The various
parameters for the problem are detailed in Table III.

B. Computational Results

Several scenarios were run on CPLEX Optimization Studio
12.6 on a Core i5-3230M CPU 2.60GHz, 6GB RAM. The

TABLE III. PARAMETERS

Parameter Value
|F | 29
gmin 4 weeks
gmax 13 weeks
K 2 weeks
α 85%
n 7 or 15
C 60, 70, 80

TABLE IV. UPPER BOUND (UB), LOWER BOUND (LB) AND GAP
AFTER 3 HOURS FOR SEVERAL VALUES OF C AND N.

C LB UB % Gap
n=15 (time period of two weeks)

80 51322.25 51568.60 0.48%
70 33670.21 34010.28 1.01%
60 19423.02 19720.19 1.53%

n=7 (time period of 1 week)
80 51958.30 53285.70 2.49%
70 30840.80 35187.60 12.35%
60 16964.1 20838.7 18.59%

runs were made for a runtime of 3 hours for several values
of capacity C and period lengths n. We analyzed 3 different
capacity values, namely, 60 tons/day, 70 tons/day and 80
tons/day. In this particular case, it must be noted that the
total availability of manure corresponds to around 70 tons per
day. Thus, the three chosen capacities represent the cases of
under-consumption, total-consumption and over-consumption,
respectively. The results are presented in Table IV.

From Table IV, it can be noted that the practical difficulty
of the problem depends on both the time discretization as well
as the capacity of the facility. It can be easily understood that
the dependence on time discretization is due to the explosion
of the number of variables for the same length of the planning
horizon. However, the dependence on the capacity is not that
straightforward. The instance where the capacity corresponds
to the total available manure is easier to solve as it is in the
interest of the problem to exclude all solutions which do not
include selection of all farms. While the exact method works
well for lower temporal resolutions and capacities greater than
the availability of the manure, it becomes highly intractable
for the other cases.

V. ADAPTIVE LARGE NEIGHBORHOOD SEARCH (ALNS)
METAHEURISTIC

Since the problem becomes intractable for larger instances
with finer time discretization, we explore the possibility of
solving the problem through a metaheuristic. The Adaptive
Large Neighbourhood Search (ALNS) was proposed by Ropke
and Pisinger [8] and is a variant of Large Neighbourhood
Search (LNS) framework which was first proposed by Shaw
[36] to solve Vehicle Routing Problems. The metaheuristic
is very similar to the ruin and create heuristic proposed by
Schrimpf et al. [37]. An extensive review of the LNS and
ALNS methodologies and their applications has been provided
in ref. [38]. The basic mechanism of the LNS is to destroy
and repair a solution iteratively using a combination of several
destroy and repair heuristics. In ALNS, the destroy and repair
heuristics are chosen dynamically based on their performance
in the solution process. A general scheme of the ALNS
framework is depicted in Algorithm 1.



Algorithm 1 Adaptive Large Neighborhood Search
1: InitialSolution← getInitialSolution()
2: BestSolution← InitialSolution
3: CurrentSolution← InitialSolution
4: ρ−(1, ..., 1) and ρ+ = (1, ..., 1)
5: count ← 0
6: while termination criteria not met do
7: Select Destroy and Repair Operator using ρ− & ρ+

8: s← CurrentSolution
9: s← Destroy(s)

10: s← Repair(s)
11: if s ≤ BestSolution then
12: BestSolution← s
13: CurrentSolution← s
14: else if acceptance(s, CurrentSolution) then
15: CurrentSolution← s
16: end if
17: count ← count + 1
18: if count mod 100 = 0 then
19: update ρ− and ρ+
20: end if
21: end while
22: return BestSolution

At each iteration, a part of the current solution is removed
through some predefined Destroy mechanism to get a partial
solution s (line 8). This solution s is then reconstructed using
one of the predefined Repair heuristics to reach a new feasible
solution (line 9).The solution s can be then accepted or rejected
based on acceptance criteria (line 13), which may be defined
by the user. The Destroy and Repair mechanisms are selected
based on their past performance using scores ρ− and ρ+,
respectively (line 6), which are updated at the end of each
100 iterations (line 16).

A. ALNS Implementation

The ALNS metaheuristic was coded in Java. It is modular
and can be applied to the problem at hand by defining the
following problem specific components: initial solution, ac-
ceptance criterion, stopping criterion. The various destruction
and repair operators will be detailed in the next section.

1) Solution Encoding: A solution can be encoded as a set
of three interdependent matrices Y , X and Q. Y is a binary
matrix of dimension |F |×1 representing the selection of farms.
X is a binary matrix of dimension |F | × |T | representing the
collection periods at each farm. Q is a real positive matrix of
dimension |F | × |T | representing quantities collected at each
period at each farm.

2) Getting Initial Solution: In the initial solution, we con-
sider that all farms are selected. In this situation, the problem
can be considered equivalent to a multi-dimensional knapsack
problem, where the capacity of the facility has to be filled with
supplies from the selected farms. However, in this case, the
supplies surplus to the capacity can be stored in the inventory,
with inventory cost H and penalties for supplies of more
than K days of requirement. We use the greedy mechanism
proposed by Dantzig [39] to solve the knapsack problem for
each period sequentially. The farms which high quantity of
waste per unit distance are preferred. If a farm is selected

for one given period, it is not selected during the following
gmin − 1 periods to maintain feasibility. Further, in case a
farm is not selected for gmax periods, then it is selected in
the next period. This ensures time constraints satisfaction.

3) Acceptance Criterion: To avoid the solution from get-
ting trapped in a local-minimum, a classical approach is
to adopt an acceptance criterion based on the principles of
simulated annealing [40]. If solution s′ deteriorates previous
solution s, it can be accepted, with probability e− f(s

′)−f(s)
θ ,

where s is the current solution and θ is a positive parameter
called temperature. The initial temperature is set such that
a solution that is 5% worse than the initial solution has
an acceptance probability of 50%. This temperature is then
reduced at the end of each iteration with a fixed cooling rate
of 0.03%.

4) Stopping Criterion: The algorithm is run for 10000
iterations.

B. ALNS Operators

This section details the operators used in our implementa-
tion of the ALNS metaheuristic.

1) Destruction Operators: The destruction operators are
used to remove some parts of the solution, so that newer so-
lutions can be explored by re-constructing partial solutions. In
this particular problem, we distinguish two ways of destroying
a solution:

a) altering the matrix Y of farm selection,
b) altering the matrix X of farm collections.

Let us first describe the destruction operators of family a).
Note that after altering matrix Y , matrices X and Q must be
completely rebuilt.

a1) Random De-Selection: This operator randomly de-
selects between 1 and 20% selected farms from matrix Yi.

a2) Random Selection: In addition to preserving the se-
lected farms from the incumbent solution, this operator ran-
domly selects between 1 and 20% of the previously non-
selected farms. This allows the construction of new X and
Q matrices over a wider range of farms.

a3) Random Toggle This operator randomly chooses be-
tween 1 and 0.2 × |F | elements in matrix Y and toggles the
values between 0 and 1. The selected farms are set to 0, while
non selected farms are set to 1.

a4) Worst Output/Distance Ratio Swap: This operator sorts
the lists of selected (S) and non-selected (NS) farms in the
ascending order of total output through the planning horizon
per distance (

∑
t Pit/dt). Then, the rth element in the selected

list is set as non-selected while the pth element in the non-
selected list is set as selected. The value of r and p are
calculated as shown in (14) and (15):

r = S [λp|S|] (14)

p = NS [θp|NS|] (15)

where λ and θ are random numbers between 0 and 1,
p ≥ 1 is a deterministic parameter as described by Ropke
and Pisinger [8].



a5) Worst Surplus Removal: The last farm added during
each period produces a surplus I ′t, which is undesirable. Thus
a list L containing the last added farms during each period is
maintained, and sorted non-increasingly based on their value of
surplus. The qth element from the list de-selected is presented
in (16).

q = L [κp|L|]] (16)

where, κ is a random value between 0 and 1, and p ≥ 1 is a
deterministic parameter as defined in operator a4.

Let us now detail the destruction operators in family b).
For the following operators, we assume that matrix Y is not
destroyed.

b1) Random Erase: For this operator, we randomly erase
between 40% and 60% of the values in matrix X . We choose
a high range of destroyed values in order to allow the heuristic
to explore different solution regions.

b2) Random Erase and Swap: This operator randomly
erases xe % of the solution matrix. Out of the remaining
(100−xe)% of the matrix, we toggle 15% of the values. Only
feasible toggles are performed, which do not violate the gmin
rule. The gmax rule can be compromised in this phase of the
algorithm and would be taken care of in the repair phase. While
rule b1 allows preserving a part of the solution and building
around it, there are still chances of patterns being repeated.
The rule b2 forces the solution to have some characteristics
opposite to the incumbent solution.

b3) Removal of collections with surplus: This operator
forces the value of collections generating surplus to 0. The
removed collections, along with the collections from the non-
destroyed solutions, are kept intact for the repair phase.

2) Repair Operators: While the destruction operators allow
the algorithm to navigate through a wider section of the
solution space, the repair operators follow the path of intensifi-
cation. They are more focused on reaching the best solution for
a given partial solution. The following repair operators were
employed during the study:

c1) Greedy Repair This operator is almost the same as the
construction heuristic used for the initial solution. However,
in case of solutions for which the collections were partially
destroyed, we consider the capacity of the period as a partially-
filled knapsack. Then, we try to fill this capacity by the best
feasible collection. The best collection is the collection with
the highest value of biomass available per unit distance.

c2) Noised Greedy Repair A noise of ηi, very close to 1,
is added to the value νi of biomass per unit distance for each
farm i ∈ F , such that the updated value for farm each farm
is ηi × νi. Now, the knapsack is again filled with the feasible
farms with the best noised values.

3) Selecting Destroy and Repair Operators: The destroy
and repair operators are selected through an adaptive roulette
wheel procedure. Each destroy (or repair) operator j is given a
score ρ−j (or ρ+j ) based on its performance during the previous
iterations. Higher value of ρ−j (or ρ+j ) suggests greater success
of the operator for the given instance. The probability of
selecting an operator from m different operators is given as

ρj∑m

j=1
ρj

.

TABLE V. COMPARISON OF UPPER BOUNDS ACHIEVED BY CPLEX
AND THE ALNS ALGORITHM.

C CPLEX LNS % Gap CPU LNS (sec)
n=15 (time period of two weeks)

80 51568.60 51523.24 0.09% 141.4
70 34010.28 33896.40 0.33% 139.8
60 19720.19 19444.14 1.40% 140.2

n=7 (time period of 1 week)
80 53285.70 52489.30 1.49% 142.6
70 35187.60 30897.36 12.19% 143.6
60 20838.70 17411.8 16.44% 141.7

The value of ρj is updated at the end of each segment. We
define a segment as 100 iterations. During each segment, we
sum up the scores received by each operator for its contribution
to a solution. An operator receives a score σ1 if it provides a
new global best solution, σ2 if it provides a solution which has
never been accepted before with objective value better than
the current solution, and σ3 if it provides a solution which
has never been accepted before but with objective value worse
than the current solution. Thus, at the end of each segment,
the value of ρj is updated as in equation (17).

ρj ← ρj(1− η) + η
πj
Ωj

(17)

where, πj is the sum of scores received by operator j during
the last segment, and Ωj is the number of times it was selected.
The reaction factor η ∈ [0, 1] controls the rate of adjustment
of ρ.

C. Assessment of the ALNS metaheuristic

Due to the stochastic nature of the heuristic, 10 runs for
each scenario were made and the average computational results
are provided in Table V. Columns 2 and 3 report the upper
bounds obtained with Cplex (after 3 hours of computation) and
the ALNS metaheuristic, respectively. Column 4 is the relative
difference between the results on Columns 2 and 3. Column 5
indicates the computation time for the 10000 iterations of the
ALNS.

It can be seen that the ALNS method shows significant im-
provement over the solution provided by CPLEX as we move
towards the more constrained instances. The improvement is
as high as 16% with capacity 60 and time discretization of
7 days. Thus, it can be seen that ALNS, in general, provides
better and quicker solutions.

VI. CONCLUSION AND FUTURE WORK

The optimization of supply chain for biopower production
from animal waste is a relatively unexplored field from an
optimization research point of view. In this study we address
the optimization of biopower supply chains with animal waste
as the source of energy. We propose a mathematical model
which takes into account the practical constraint of collection
time-windows imposed by the inherent nature of the animal
waste. We also consider other practical constraints which often
tie facilities into collecting a minimum proportion of the total
production. Then, we propose an ALNS metaheuristic that can
solve the problem very efficiently.

The proposed model can be further improved by inclusion
of transportation fleet management and a finer modeling of



methane loss. Possible extensions include mixed sources of
biomass (animal, energy crops, wood, industrial waste, etc.)
or bi-objective optimization of both the logistic costs and the
environmental impact.
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