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Abstract The Next-Generation Airborne Collision Avoid-
ance System (ACAS X) is intended to be installed on all
large aircraft to give advice to pilots and prevent mid-air
collisions with other aircraft. It is currently being developed
by the Federal Aviation Administration (FAA). In this pa-
per we determine the geometric configurations under which
the advice given by ACAS X is safe under a precise set of
assumptions and formally verify these configurations using
hybrid systems theorem proving techniques. We consider
subsequent advisories and show how to adapt our formal
verification to take them into account. We examine the cur-
rent version of the real ACAS X system and discuss some
cases where our safety theorem conflicts with the actual ad-
visory given by that version, demonstrating how formal, hy-
brid systems proving approaches are helping ensure the safety
of ACAS X. Our approach is general and could also be used
to identify unsafe advice issued by other collision avoidance
systems or confirm their safety.
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1 Introduction

With growing air traffic, the airspace becomes more crowded,
and the risk of airborne collisions between aircraft increases.
In the 1970s, after a series of mid-air collisions, the Federal
Aviation Administration (FAA) decided to develop an on-
board collision avoidance system: the Traffic Alert and Col-
lision Avoidance System (TCAS). This program had great
success, and prevented many mid-air collisions over the years.
Some accidents still happened; for example, a collision over
Überlingen in 2002 occurred due to conflicting advice be-
tween TCAS and air traffic control. Airspace management
will evolve significantly over the next decade with the intro-
duction of the next-generation air traffic management sys-
tem; this will create new requirements for collision avoid-
ance. To meet these new requirements, the FAA has decided
to develop a new system: the Next-Generation Airborne Col-
lision Avoidance System, known as ACAS X [4,11,15].

Like TCAS, ACAS X avoids collisions by giving ver-
tical guidance to an aircraft’s pilot. A typical scenario in-
volves two aircraft: the ownship where ACAS X is installed,
and another aircraft called the intruder that is at risk of col-
liding with the ownship. ACAS X is designed to avoid Near
Mid-Air Collisions (NMACs), situations where two aircraft
come within rp = 500 ft horizontally and hp = 100 ft ver-
tically [15] of each other. The NMAC definition describes a
volume centered around the ownship, shaped like a hockey
puck of radius rp and half-height hp.

In order to be accepted by pilots, and thus operationally
suitable, ACAS X needs to strike a balance between giving
advice that helps pilots avoid collisions but also minimizing
interruptions. These goals drive the design in opposite di-
rections each other, and cannot both be perfectly met in the
presence of unknown pilot behavior. As part of the ACAS X
development process, this work focuses on precisely charac-
terizing the circumstances in which ACAS X gives safe ad-
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Table 1 ACAS X advisories and their modeling variables

ACAS X Specification [13] Our model
Vertical Rate Range Strength Delay Sign Advisory

Advisory Description Min (ft/min) Max (ft/min) alo δ (s) w vlo (ft/min)
DNC2000 Do Not Climb at more than 2,000 ft/min −∞ +2000 g/4 5 −1 +2000
DND2000 Do Not Descend at more than 2,000 ft/min −2000 +∞ g/4 5 +1 −2000
DNC1000 Do Not Climb at more than 1,000 ft/min −∞ +1000 g/4 5 −1 +1000
DND1000 Do Not Descend at more than 1,000 ft/min −1000 +∞ g/4 5 +1 −1000
DNC500 Do Not Climb at more than 500 ft/min −∞ +500 g/4 5 −1 +500
DND500 Do Not Descend at more than 500 ft/min −500 +∞ g/4 5 +1 −500
DNC Do Not Climb −∞ 0 g/4 5 −1 0
DND Do Not Descend 0 +∞ g/4 5 +1 0
MDES Maintain at least current Descent rate −∞ current g/4 5 −1 current
MCL Maintain at least current Climb rate current +∞ g/4 5 +1 current
DES1500 Descend at at least 1,500 ft/min −∞ −1500 g/4 5 −1 −1500
CL1500 Climb at at least 1,500 ft/min +1500 +∞ g/4 5 +1 +1500

SDES1500 Strengthen Descent to at least 1,500 ft/min −∞ −1500 g/3 3 −1 −1500
SCL1500 Strengthen Climb to at least 1,500 ft/min +1500 +∞ g/3 3 +1 +1500
SDES2500 Strengthen Descent to at least 2,500 ft/min −∞ −2500 g/3 3 −1 −2500
SCL2500 Strengthen Climb to at least 2,500 ft/min +2500 +∞ g/3 3 +1 +2500

COC Clear of Conflict −∞ +∞ Not applicable
MTLO Multi-Threat Level-Off Not applicable

vice, and where safety is traded off for operational suitabil-
ity, helping to identify modifications that improve its safety
and performance.

1.1 Airborne Collision Avoidance System ACAS X

In order to prevent an NMAC with other aircraft, ACAS X
uses various sensors to determine the position of the own-
ship, as well as the positions of any intruders [5]. It com-
putes its estimate of the best pilot action by linearly interpo-
lating a precomputed table of scores for actions, and, if ap-
propriate, issuing an advisory to avoid potential collisions [6]
through a visual display and a voice message.

An advisory is a request to the pilot of the ownship to al-
ter or maintain her vertical speed. ACAS X advisories are
strictly vertical, and never request any horizontal maneu-
vering. Table 1 shows the advisories ACAS X can issue.
For example, Do-Not-Climb (DNC) requests that the pilot
not climb, and Climb-1500 (CL1500) requests that the pi-
lot climb at more than 1500 ft/min. The current version of
ACAS X can issue a total of 16 different advisories plus
Clear-of-Conflict (COC), which indicates that no action is
necessary, and Multi-Threat-Level-Off (MTLO), which is
used in the case of multiple intruders. To comply with an ad-
visory, the pilot must adjust her vertical rate to fall within the
advised vertical rate range. Based on previous research [13],
the pilot is assumed to do so using a vertical acceleration of
strength at least alo starting after a delay of at most δ after
the advisory has been announced by ACAS X.

At the heart of ACAS X is a table whose domain de-
scribes the instantaneous state of an encounter, and whose
range is a set of scores for each possible action [13,16]. The

table is obtained from a Markov Decision Process (MDP)
approximating the dynamics of the system in a discretiza-
tion of the state-space, and optimized using dynamic pro-
gramming to maximize the expected value of events over
all future paths for each action [13]. Near Mid-Air Colli-
sion events, for example, are associated with large negative
values and issuing an advisory is associated with a small
negative value. The policy is to choose the action with the
highest expected value from a multilinear interpolation of
grid points in this table. ACAS X uses this table, along with
some heuristics, to determine the best action to take for the
geometry and dynamic conditions in which it finds itself.

1.2 Identifying Formally Verified Safe Regions

Since ACAS X involves both discrete advisories to the pi-
lot and continuous dynamics of aircraft, it is natural to for-
mally verify it using hybrid systems. However the complex-
ity of ACAS X, which uses at its core a large lookup table—
defining 29,212,664 interpolation regions within a 5-dimensional
state-space—makes the direct use of hybrid systems verifi-
cation techniques intractable. Our approach is different. It
identifies safe regions in the state space of the system where
we prove formally that the current positions and velocities
of the aircraft ensure that a particular advisory, if followed,
prevents all possible NMACs. Then it compares these re-
gions to the configurations where the ACAS X table returns
this same advisory. Moreover our safe regions are symbolic
in their parameters, and can thus be easily adapted to new
parameters or new versions of ACAS X.

Going beyond the results of [12], this paper devises and
formally proves safety regions for advisories that can be cor-
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rected later on. In that context, an advisory need not be safe
on its own to be considered acceptable, but the system needs
to be able to correct it with a subsequent advisory. This is
particularly useful to assess the safety of preventative ad-
visories, and leads to the discovery of very relevant unex-
pected behaviors of the system.

Our results provide independent characterizations of the
ACAS X behavior to provide a clear and complete picture
of its performance. Our method can be used by the ACAS X
development team in two ways. It provides a mathemati-
cal proof—with respect to a hybrid systems model—that
ACAS X is absolutely safe for some configurations of the
aircraft. Additionally, when ACAS X is not safe, it is able to
identify unsafe or unexpected behaviors and suggests ways
of correcting them.

Our approach of formally deriving safe regions then com-
paring them to the behavior of an industrial system is, as far
as we are aware, the first of its kind in the formal verifica-
tion of hybrid systems. The approach may be valuable for
verifying or assessing properties of other systems with sim-
ilar complexities, or also using large lookup tables, which is
a common challenge in practice. Finally, the constraints we
identified for safety are fairly general and could be used to
analyze other collision avoidance systems.

The paper is organized as follows. After an overview of
the method in Sect. 2, we start with a simple two-dimensional
model assuming immediate reaction of the pilot in Sect. 3.
We extend the model to account for the reaction time of the
pilot in Sect. 4, consider more liberal safe regions to toler-
ate advisories that are only safe if followed up by suitable
subsequent advisories in Sect. 5, and extend the results to
a three-dimensional model in Sect. 6. Relationships and ex-
tensions are discussed in Sect. 7. In Sect. 8, we compare the
advisory recommended by a core component of ACAS X
with our safe regions, identifying the circumstances where
safety of those ACAS X advisories is guaranteed within our
model.

2 Overview of the ACAS X Modelling Approach

To construct a safe region of an advisory for an aircraft,
imagine following all allowable trajectories of the ownship
relative to the intruder, accounting for every possible posi-
tion of the ownship and its surrounding puck at every future
moment in time. The union of all such positions of the puck
describes a potentially unsafe region; for each point there
exists a trajectory that results in an NMAC. Dually, if the
intruder is outside this set, i.e., in the safe region, an NMAC
cannot occur in the model.

Fig. 1 depicts an example of a head-on encounter and its
associated safe region for the advisory CL1500, projected in
a vertical plane with both aircraft. It is plotted in a coordi-
nate system fixed to the intruder and centered at the initial
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(b) Side view of the encounter

Fig. 2 An encounter between ownship O and intruder I, with NMAC
puck in gray of horizontal radius rp and vertical radius hp

position of the ownship. The ownship, surrounded by the
puck, starts at position 1 and traces out a trajectory follow-
ing the red curve. It first accelerates vertically with g/4 until
reaching the desired vertical velocity of +1500 ft/min at po-
sition 3. It then climbs at +1500 ft/min, respecting the spec-
ification of Table 1. The green safe-region indicates starting
points in the state space for which the aircraft will remain
safe for the duration of the encounter when following the
CL1500 advisory. Note that no safe region exists above the
trajectory since the ownship could accelerate vertically at
greater than g/4 or climb more than +1500 ft/min, in accor-
dance with Table 1.

2.1 Model of Dynamics

Let us consider an encounter between two planes—ownshipO
and intruder I , as portrayed in Fig. 2. Following the notation
of the ACAS X community [13], let r = ‖r‖ be the hori-
zontal distance between the aircraft (called range) and h the
height of the intruder relative to the ownship. We assume
that the relative horizontal velocity rv of the intruder with
respect to the ownship is constant throughout the encounter.
I.e., from a top view, the planes follow straight-line trajec-
tories. Let θv be the non-directed angle between rv and the
line segment r. In the vertical dimension, we assume that
the ownship’s vertical velocity v can vary at any moment,
while the intruder’s vertical velocity vI is fixed throughout
the encounter. Moreover, we assume that the magnitude of
the vertical acceleration of the ownship cannot exceed ad in
absolute value.

Our analysis considers all these as symbolic parame-
ters and is, thus, valid for any value they might have. For
a typical encounter, r varies between 0 nmi and 7 nmi,1 h
between −4,000 ft and 4,000 ft, rv = ‖rv‖ between 0 kts

1 We use units most common in the aerospace community, even
though they are not part of the international system, including nauti-
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Fig. 1 Nominal trajectory of the ownship (red) and safe region for the intruder (green), immediate response

and 1,000 kts, and v and vI between −5,000 ft/min and
+5,000 ft/min. The acceleration ad is usually g/2, where
g is Earth’s gravitational acceleration. The NMAC puck of
ACAS X has radius rp = 500 ft and half-height hp = 100 ft.

2.2 Model of Advisories

Recall that ACAS X prevents NMACs by giving advisories
to the ownship’s pilot. Every advisory, except Clear-of-Conflict
(COC), has a vertical rate range of the form (−∞, vlo] or
[vlo,+∞) for some vertical rate vlo (Table 1), which we call
the target vertical velocity. We model any advisory by its
corresponding target vertical velocity vlo, and a binary vari-
able w for its orientation, whose value is −1 if the verti-
cal rate range of the advisory is (−∞, vlo] and +1 if it is
[vlo,+∞). This symbolic encoding can represent many ad-
visories and is robust to changes in the ACAS X advisory
set. As a matter of fact, the only advisory that this symbolic
encoding cannot handle is the recently-added Multi-Threat
Level-Off (MTLO) advisory, only relevant in the presence
of multiple intruders.

Following the ACAS X design [13], we assume that the
ownship pilot complies with each advisory within δ seconds,
and that she accelerates with acceleration at least alo to reach
the target vertical velocity.

3 Safe Region for an Immediate Pilot Response

We present in this section a simplified version of the dynam-
ics from Sect. 2.1. We give a hybrid model for this simplified
system and prove its safety. The new assumptions will be re-
laxed in later sections to achieve the safety verification of the
full model of Sect. 2.1.

cal miles nmi (1,852metres), knots kts (nautical miles per hour), feet
ft (0.3048meter) and minutes min (60 seconds).

3.1 Model

In this section, we assume that the ownship and intruder are
flying head-on (θv = 180◦). We also assume that the pi-
lot reacts immediately to any advisory (δ = 0 s), and that
the advisory COC is not allowed. These assumptions will be
relaxed in Sect. 4 and Sect. 6. The model in this section per-
mits updates to the resolution advisory but, unlike in Sect. 5,
each advisory issued has to be safe, i.e., it has to prevent any
NMAC at any future time, even if followed forever. We as-
sume that r is a scalar: if r ≥ 0 then the ownship is flying
towards the intruder, otherwise it is flying away from it. Both
cases could require an advisory. Since the ownship and in-
truder are flying head-on with straight line trajectories, there
exists a vertical plane containing both their trajectories. In
this plane, the puck becomes a rectangle centered around
the ownship, of width 2rp and height 2hp, and there is an
NMAC if and only if the intruder is in this rectangle (in gray
on Fig. 1).

3.2 Differential Dynamic Logic and KeYmaera X

We model our system using Differential Dynamic Logic dL [19,
20,21,22], a logic for reasoning about hybrid programs, a
programming language for hybrid systems. The logic dL
allows discrete assignments, control structures, and execu-
tion of differential equations. It is implemented in the theo-
rem prover KeYmaera X [8], that we use to verify our safe
regions with respect to our models. All the KeYmaera X
models and proofs of this paper can be found at http:
//www.ls.cs.cmu.edu/pub/AcasX-long.zip.

The dL formula for the model that we use in this section
is given in Eq. (1). We use the notation L−1impl for the safe
region: the letter L stands for lower bound (for w = 1; it
is an upper bound for w = −1); the subscript impl stands
for implicit safe region, as described in Sect. 3.3; and the su-
perscript −1 indicates that the region is safe for unbounded
time; the rationale behind its use will become more clear in

http://www.ls.cs.cmu.edu/pub/AcasX-long.zip
http://www.ls.cs.cmu.edu/pub/AcasX-long.zip
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Sect. 5.2.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0∧
2 (w = −1 ∨ w = 1) ∧ L−1impl(r, h, v, w, vlo)→
3 [( ( ?true ∪
4 (w := −1 ∪ w := 1); vlo := ∗;
5 ?L−1impl(r, h, v, w, vlo); advisory := (w, vlo) );

6 a := ∗;
7 {r′ = −rv, h′ = −v, v′ = a & wv ≥ wvlo ∨ wa ≥ alo}
8 )∗] (|r| > rp ∨ |h| > hp)

(1)

This formula of the form p → [α]q says all executions of
hybrid program α starting in a state satisfying logical for-
mula p end up in a state satisfying q. It is akin to the Hoare
triple {p}α{q}with precondition p and postcondition q. The
precondition in Eq. (1) imposes constraints on several con-
stants, as well as the formula L−1impl(r, h, v, w, vlo) (which
we identify below) that forces the intruder to be in a safe
region for an initial advisory (w, vlo). We cannot guaran-
tee safety if the intruder starts initially in an unsafe region.
The postcondition encodes absence of NMAC. Lines 3–5
express the action of the ACAS X system. The nondeter-
ministic choice operator ∪ in Line 3 expresses that the sys-
tem can either continue with the same advisory by doing
nothing—just testing the trivial condition ?true—this en-
sures it always has a valid choice and cannot get stuck. Oth-
erwise it can choose a new advisory (w, vlo) in Line 4 that
passes the safety condition L−1impl(r, h, v, w, vlo) in Line 5—
advisory represents the next message to the pilot. Line 6 ex-
presses the action of the ownship pilot, who can nondeter-
ministically choose an arbitrary acceleration (a := ∗). The
ownship and intruder aircraft then follow the continuous dy-
namics in Line 7. The evolution of the variables r, h and v
is expressed by a differential equation, and requires (using
the operator &) that the ownship evolves towards its target
vertical velocity vlo at acceleration alo (condition wa ≥ alo),
unless it has already reached vertical velocity vlo (condition
wv ≥ wvlo). Finally, the star ∗ on Line 8 indicates that the
program can be repeated any number of times, allowing the
system to go through several advisories.

3.3 Implicit Formulation of the Safe Region

In this section, we identify what formula can be used as safe
region L−1impl(r, h, v, w, vlo) to prove Eq. (1). As in Sect. 2,
we use a coordinate system fixed to the intruder and with its
origin at the initial position of the ownship (see Fig. 1).

First case: if w = +1 and vlo ≥ v. Fig. 1 shows, in red, a
possible trajectory of an ownship following exactly the re-
quirements of ACAS X. This nominal trajectory of the own-
ship is denoted by N and merely represents one possible

scenario to consider. The pilot reacts immediately, and the
ownship starts accelerating vertically with acceleration alo
until reaching the target vertical velocity vlo—describing a
parabola—then climbs at vertical velocity vlo along a straight
line. Horizontally, the relative velocity rv remains constant.
Integrating the differential equations in Eq. (1) Line 7, the
ownship position (rn, hn) at time t along N is given by:

(rn, hn) =


(
rvt ,

alo
2
t2 + vt

)
if 0 ≤ t < vlo − v

alo
(a)(

rvt , vlot−
(vlo − v)2

2ar

)
if
vlo − v
alo

≤ t (b)

(2)

Recall that in the ACAS X specification, the ownship
moves vertically with acceleration of at least alo, then con-
tinues with vertical velocity of at least vlo. Therefore all
possible future positions of the ownship will turn out to be
above the red nominal trajectory. An intruder is safe if its
position is always either to the side of or under any puck
centered on a point in N , that is:

∀t.∀rn.∀hn.
(
(rn, hn) ∈ N → |r−rn| > rp∨h−hn < −hp

)
(3)

We call this formulation the implicit formulation of the safe
region. It does not give explicit equations for the safe region
border, but expresses them instead implicitly by quantifiers
with respect to the nominal trajectory from Eq. (2).

Generalization. The reasoning above is generalized to the
case where the target vertical velocity is exceeded (vlo <

v) —which happens after the parabola part of the nominal
trajectory— and symmetrically to the case of descend-type
advisories (w = −1).

Eq. (1) gives the pilot ample flexibility in how to respond
to a resolution advisory and gives ACAS X full flexibil-
ity to choose any advisories respecting L−1impl(r, h, v, w, vlo).
In particular, we cannot assume the pilot would follow the
nominal trajectory N . We prove that, nevertheless, the safe
regions identified like this respect safety property Eq. (1).
The implicit formulation of the safe region isL−1impl(r, h, v, w, vlo)

in Fig. 3, and verified to be safe in KeYmaera X:

Theorem 1 (Correctness of implicit safe regions) The dL
formula given in Eq. (1) is valid. That is as long as the advi-
sories followed obey formula L−1impl there will be no NMAC.

3.4 Explicit Formulation of the Safe Region

The implicit formulation of the safe region gives an intuitive
understanding of where it is safe for the intruder to be. How-
ever, because it still contains quantifiers, its use comes at the
extra cost of eliminating the quantifiers, which is inefficient
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Implicit formulation

A(t, hn, v, w, vlo) ≡

(
0 ≤ t <

max(0, w(vlo − v))
alo

∧ hn =
walo

2
t2 + vt

)

∨

(
t ≥

max(0, w(vlo − v))
alo

∧ hn = vlot−
wmax(0, w(vlo − v))2

2alo

)
L−1
impl(r, h, v, w, vlo) ≡ ∀t.∀rn.∀hn.

(
rn = rvt ∧A(t, hn, v, w, vlo)→ (|r − rn| > rp ∨ w(h− hn) < −hp)

)
Explicit formulation

case−1
1 (r, v, w, vlo) ≡ −rp ≤ r < −rp −

rv min(0, wv)

alo
case−1

2 (r, v, w, vlo) ≡ −rp −
rv min(0, wv)

alo
≤ r ≤ rp −

rv min(0, wv)

alo

bound1(r, h, v, w, vlo) ≡ wrv2h <
alo

2
(r + rp)

2 + wrvv(r + rp)− rv2hp bound2(r, h, v, w, vlo) ≡ wh < −
min(0, wv)2

2alo
− hp

case−1
3 (r, v, w, vlo) ≡ rp −

rv min(0, wv)

alo
< r ≤ rp +

rv max(0, w(vlo − v))
alo

case−1
4 (r, v, w, vlo) ≡ rp +

rv max(0, w(vlo − v))
alo

< r

bound3(r, h, v, w, vlo) ≡ wrv2h <
alo

2
(r − rp)2 + wrvv(r − rp)− rv2hp

bound4(r, h, v, w, vlo) ≡ (rv = 0) ∨
(
wrvh < wvlo(r − rp)−

rv max(0, w(vlo − v))2

2alo
− rvhp

)
case−1

5 (r, v, w, vlo) ≡ −rp ≤ r < −rp +
rv max(0, w(vlo − v))

alo
case−1

6 (r, v, w, vlo) ≡ −rp +
rv max(0, w(vlo − v))

alo
≤ r

bound5(r, h, v, w, vlo) ≡ wrv2h <
alo

2
(r + rp)

2 + wrvv(r + rp)− rv2hp

bound6(r, h, v, w, vlo) ≡ (rv = 0 ∧ r > rp) ∨
(
wrvh < wvlo(r + rp)−

rv max(0, w(vlo − v))2

2alo
− rvhp

)
L−1
expl(r, h, v, w, vlo) ≡

(
wvlo ≥ 0→

4∧
i=1

(case−1
i (r, v, w, vlo)→ boundi(r, h, v, w, vlo))

)

∧
(
wvlo < 0→

6∧
i=5

(case−1
i (r, v, w, vlo)→ boundi(r, h, v, w, vlo))

)

Fig. 3 Implicit and explicit formulations of the safe region for an immediate response (lower bounds for w = 1, upper bound for w = −1)

and impractical to repeatedly compute during the compar-
ison part of our analysis. An efficient comparison with the
ACAS X table, as described in Sect. 8, can only be achieved
with a quantifier-free, explicit formulation, that we present
in this section. We show that both formulations are equiva-
lent. As for the implicit formulation, we derive the equations
for one representative case before generalizing them.

First case: ifw = +1, rv > 0, v < 0 and vlo ≥ 0. We are in
the case shown in Fig. 1 and described in detail in Sect. 3.3.
The nominal trajectoryN is given by Eq. (2). The boundary
of the (green) safe region in Fig. 1 is drawn by either the
bottom left hand corner, the bottom side or the bottom right
hand corner of the puck. For this case, this boundary can
be characterized by a set of equations (where cases 1 to 4
follow cases 1 to 4 of Fig. 3):

0. positions left of the puck’s initial position (r < −rp) are
in the safe region;

1. then the boundary follows the bottom left hand corner of
the puck as it is going down the parabola of Eq. (2)(a);
therefore for −rp ≤ r < −rp − rvv

alo
, the position (r, h)

is safe if and only if h < alo

2rv2 (r+rp)
2+ v

rv
(r+rp)−hp;

2. following this, the boundary is along the bottom side
of the puck as it is at the bottom of the parabola of
Eq. (2)(a); therefore for −rp − rvv

a ≤ r ≤ rp − rvv
alo

,
the position (r, h) is in the safe region if and only if
h < − v2

2alo
− hp;

3. then the boundary follows the bottom right hand corner
of the puck as it is going up the parabola of Eq. (2)(a);
therefore for rp− rvv

alo
< r ≤ rp+ rv(vlo−v)

alo
, the position

(r, h) is safe if and only if h < alo

2rv2 (r − rp)2 + v
rv
(r −

rp)− hp;
4. finally the boundary follows the bottom right-hand cor-

ner of the puck as it is going up the straight line of
Eq. (2)(b); therefore for rp + rv(vlo−v)

alo
< r, the po-

sition (r, h) is in the safe region if and only if h <
vlo
rv
(r − rp)− (vlo−v)2

2ar
− hp.
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Generalization. The general case is given in the formula
L−1expl(r, h, v, w, vlo) of Fig. 3. The cases 1-4 and their asso-
ciated bounds are for the case wvlo ≥ 0, whereas cases 5
and 6 and associated bounds are for wvlo < 0; both cases 5
and 6 follow the bottom left-hand corner of the puck as it is
going along the nominal trajectory. We use KeYmaera X to
formally prove that this explicit safe region formulation is
equivalent to its implicit counterpart:

Lemma 1 (Equivalence of explicit safe regions) If w =

±1, rp ≥ 0, hp > 0, rv ≥ 0 and alo > 0, then the conditions
L−1impl(r, h, v, w, vlo) and L−1expl(r, h, v, w, vlo) are equivalent.

Since the assumptions of Lemma 1 are invariants of the
model in Eq. (1), the explicit safe regions give a model that
inherits safety from Theorem 1, which we formally prove
in KeYmaera X by a combination of contextual equivalence
reasoning and monotonicity reasoning [22] to embed the
conditional equivalence from Lemma 1 into the context of
Theorem 1.

Corollary 1 (Correctness of explicit safe regions) The dL
formula given in Eq. (1) remains valid when replacing all
occurrences of L−1impl with L−1expl. That is as long as the advi-
sories followed obey formula L−1expl there will be no NMAC.

4 Safe Region for a Delayed Pilot Response

Since the pilot will need some time to react to an advisory
issued by ACAS X, we generalize the model of Sect. 3 to
account for a non-deterministic, non-zero pilot delay, and
for periods of time where the system does not issue an advi-
sory (i.e., COC). In Fig. 4, for example, the pilot reacts to a
CL1500 advisory only after a certain reaction delay during
which she was still in the process of initiating a descent.

4.1 Model

In this section, we still assume that the ownship and intruder
are flying head-on (θv = 180◦). We use the same conven-
tions as in Sect. 3 for r and rv . The model includes an initial
period where there is no compliance with any advisory—
the ownship accelerates non-deterministically (within lim-
its) in the vertical direction. As before, we derive the safe
regions by considering all possible positions of the own-
ship’s puck in all possible trajectories that might evolve in
the encounter. To represent pilot delay for an advisory, the
model assumes an immediate advisory, and period of non-
compliance δ, representing the time it takes the pilot to re-
spond. To represent COC, the model looks for a safe advi-
sory it can issue ε in the future if necessary, where ε is the
system delay—i.e., the time before the system can issue a

new advisory—and shortest COC. Hence the period of non-
compliance is ε+ δ.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ ad ≥ 0 ∧ δ ≥ 0

2 ∧ ε ≥ 0 ∧ (w = −1 ∨ w = 1) ∧Dd
impl(r, h, v, w, vlo)→

3 [(
(
?true ∪

4 (w := −1 ∪ w := 1); vlo := ∗;
4 (d := δ; ?Dd

impl(r, h, v, w, vlo); adv := (w, vlo) ∪
5 d := δ + ε; ?Dd

impl(r, h, v, w, vlo); adv := COC)
)
;

6 a := ∗; ?(wa ≥ −ad); t := 0;

7 {r′ = −rv, h′ = −v, v′ = a,d′ = −1, t′ = 1 &

8 (t ≤ ε) ∧ (d ≤ 0→ wv ≥ wvlo ∨ wa ≥ alo)}
9 )∗] (|r| > rp ∨ |h| > hp)

(4)

We modify the model of Eq. (1) to capture these new
ideas, and obtain the model of Eq. (4), highlighting the dif-
ferences in bold. The structure, precondition (lines 1 and
2) and postcondition (line 9) are similar. The clock d, if
positive, represents the amount of time until the ownship
pilot must respond to the current advisory to remain safe.
Lines 3 to 5 represent the actions of the ACAS X system.
As before, the system can continue with the same advisory
(?true). Otherwise it can select a safe advisory (w, vlo) to be
applied after at most delay δ; or it can safely remain silent,
displaying COC, if it knows an advisory (w, vlo) that is safe
if it is followed after a combined pilot and system and pi-
lot delay of δ + ε. In line 6, the pilot non-deterministically
chooses an acceleration (a := ∗), within some limit (wa ≥
−ad). The set of differential equations in line 7 describes
the system’s dynamics, and the conditions in line 8 use the
clock t to ensure that continuous time does not evolve longer
than system delay ε without a system response (t ≤ ε).
Those conditions also ensure that when d ≤ 0 the pilot
starts complying with the advisory. The model is structured
so that the pilot can safely delay responding to an advisory
for up to δ, and the system can additionally delay issuing
an advisory associated with COC for up to ε. Because of
the loop in our model (line 9), the safety guarantees of this
theorem apply to encounters whose advisories change as the
encounter evolves, encounters with periods of no advisory,
and encounters where the ownship pilot exhibits some non-
deterministic behavior in the vertical dimension.

In the rest of the section we use the same approach as
in Sect. 3: we first derive an implicit formulation, then an
equivalent explicit formulation of the safe region, and prove
that the safe region guarantees that the intruder cannot cause
an NMAC.

4.2 Implicit Formulation of the Safe Region

As in Sect. 3.3, let us place ourselves in the coordinate sys-
tem centered on the current position of the ownship and
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Fig. 4 Nominal trajectory of the ownship (red) and safe region for the intruder (green), delayed response

where the intruder is fixed, and let us first assume that the
ownship receives an advisory (w, vlo) such that w = +1,
and that δ ≥ 0. Let us focus on the period of time before the
pilot reacts, which we henceforth call delay. During the de-
lay, the ownship can take any vertical acceleration less than
ad in absolute value, therefore its most restrictive nominal
trajectory N d is to accelerate the opposite way of the advi-
sory, at acceleration −ad. Horizontally, its speed is constant
at rv . It thus describes a delay parabola, in red on Fig. 4,
and its position (rn, hn) along the nominal trajectory for
0 ≤ t < δ is given by (rn, hn) =

(
rvt,−ad

2 t
2 + vt

)
.

After the delay, i.e., after time δ, the nominal trajectory
N d is the same as a nominal trajectory N from Sect. 3,
translated by time δ and by its position at time δ given by
rd = rn(δ) and hd = hn(δ), and starting with vertical ve-
locity vd = v−adδ. As in Sect. 3.3, we can now express the
implicit formulation of the safe region:

∀t.∀rn.∀hn.(rn, hn) ∈ N d → |r−rn| > rp∨h−hn < −hp

Symmetrically, the reasoning of this section extends to the
case where w = −1. Moreover, we can handle cases where
d < 0, i.e., after the pilot has reacted, by replacing d by
max(0, d). The generalized implicit formulation of the safe
region is given as Dd

impl in Fig. 5. Note that it involves the
expression A(t−max(0, d), hn−hd, vd, w, vlo) from Fig. 3
capturing the implicit safe region of Sect. 3.3 translated by
time max(0, d), vertical height hd, and starting at vertical
speed vd. It is proved correct in KeYmaera.

Theorem 2 (Correctness of delayed safe regions) The dL
formula given in Eq. (4) is valid. That is as long as the advi-
sories obey formula Dd

impl there will be no NMAC.

4.3 Explicit Formulation of the Safe Region

Similarly as in Sect. 4, we determine an explicit formulation
of the safe region, called Dd

expl in Fig. 5 based on Fig. 3, and
prove it correct in KeYmaera.

Lemma 2 (Equivalence of delayed explicit safe regions)
If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, ad ≥ 0, δ ≥ 0

and ε ≥ 0 then the two conditions Dd
impl(r, h, v, w, vlo) and

Dd
expl(r, h, v, w, vlo) are equivalent.

5 Safe Region for Subsequent Advisories

The safety analysis from Sect. 3 requires the system to only
issue advisories that will never lead to a collision. After pre-
senting our initial results to ACAS X designers and engi-
neers, we received feedback that the safety advice for single
advisories was too restrictive for their operational purposes.
Early in an encounter, there is often enough separation be-
tween aircraft and time in the encounter so that an initial
advisory, which would not be safe on its own, can still be
changed or corrected to keep the aircraft safe. The rationale
is that while ACAS X is designed to avoid collisions, it is
also designed to avoid bothering pilots as much as possible.
To balance these concerns, if an encounter is not immedi-
ately threatening, ACAS X will typically first issue COC, or
a preventive advisory like DNC or DND, before issuing a
more disruptive advisory to the pilot. In those cases, the first
advisory is often not safe in the sense of Sect. 3 : it will tend
to keep the planes from flying directly towards each other
immediately and will only ensure safety for a few seconds,
but not for the rest of the encounter.

As a consequence, running the safety analysis on the
immediate advisory leads to counterexamples considered as
false alarms by the ACAS X designers. Anything is safe if
you are far enough away; many of the examples of unsafe
behavior we found were uninteresting because if the pilots
chose a course that brought them closer, the system would
issue a more disruptive, but safer follow-on advisory. This
section builds on the previous work to develop a more so-
phisticated safety analysis that evaluates the safety of the
present advisory, and whether it is safe or could still be made
safe in the future, if necessary, via subsequent advisories.
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Implicit formulation

Bd(t, hn, v) ≡ 0 ≤ t < max(0, d) ∧ hn = −
wad

2
t2 + vt

const ≡ hd = −
wad

2
max(0, d)2 + vmax(0, d) ∧ vd − v = −wad max(0, d)

Dd
impl(r, h, v, w, vlo) ≡ ∀t.∀rn.∀hn.∀h

d.∀vd.
(
rn = rvt ∧ (Bd(t, hn, v) ∨ const ∧A(t−max(0, d), hn − hd, v, w, vlo))

→ (|r − rn| > rp ∨ w(h− hn) < −hp)
)

Explicit formulation

rd = rv max(0, d) vd = v − wad max(0, d) hd = −
wad

2
max(0, d)2 + vmax(0, d)

case7(r) ≡ −rp ≤ r ≤ rp bound7(r, h) ≡ wh < −hp case8(r) ≡ rp < r ≤ rd + rp case9(r) ≡ −rp ≤ r < rd − rp

bound8(r, h)≡ wrv2h < −
ad

2
(r − rp)2 + wrvv(r − rp)− rv2hp bound9(r, h)≡ wrv2h < −

ad

2
(r + rp)

2 + wrvv(r + rp)− rv2hp

Dd
expl(r, h, v, w, vlo) ≡

(
9∧

i=7

(casei(r)→ boundi(r, h))

)
∧ L−1

expl(r − r
d, h− hd, vd, w, vlo)

Fig. 5 Implicit and explicit formulations of the safe region for a delayed response

We use the neologism safeable to describe this superset of
the safe region.

This section builds up safeable in three steps. We first
present two-sided safe regions, providing both an upper and
a lower bound to the trajectory. We then present bounded
safe regions, which only ensure absence of collision for a
limited amount of time ε; bounded safe regions provide no
guarantee after time ε, and the corresponding model has no
liveness. Based on these important building blocks, we fi-
nally present safeable regions, which model subsequent ad-
visories, and have a corresponding model providing live-
ness. This section is new, and was not presented in the con-
ference version of this paper [12].

Throughout the section, we sill assume that the own-
ship and intruder are flying head-on (θv = 180◦), and we
use the same conventions as in Sect. 3 for r and rv . We say
that a subsequent advisory is a reversal if and only if it is
a downsense advisory (w = −1) while the first advisory
was upsense (w = 1)—or vice-versa. In the opposite case
we usually call the subsequent advisory a strengthening or a
weakening.

5.1 Two-Sided Safe Region with Immediate Pilot Response

A first step towards the treatment of subsequent advisories is
to provide both a lower and an upper bound to the trajectory
of the ownship while it follows an initial advisory. Indeed,
if the initial advisory is upsense with a reversal as a subse-
quent advisory, then it is crucial to also have an upper bound
on the height and vertical velocity of the aircraft when the
pilot starts following the subsequent advisory. Safe regions
described in Sect. 3 are not sufficient, as they only provide
a lower bound when w = 1, and an upper bound when

w = −1. To simplify the explanation, let us first consider
the case of an initial upsense advisory, i.e., with w = 1; the
case of the initial downsense advisory is symmetric. Lower
bound and upper bound will refer to the case w = 1; lower
and upper bound are switched in the case w = −1.

5.1.1 Model Let us consider a pilot receiving an initial ad-
visory (w, vlo) with w = 1, for example CL1500 or DND.
In Sect. 3 we argued that following the advisory (w, vlo)

meant that either the vertical speed of the ownship should be
greater than vlo, or its acceleration should be greater than alo,
leading to the differential equation’s domain wv ≥ wvlo ∨
wa ≥ alo. Similarly, we fix upper bounds vup and aup on the
vertical velocity and acceleration of the ownship while fol-
lowing advisory (w, vlo). They are again symbolic parame-
ters, with typical values aup = g/2 and vup = 10,000 ft/min.
We modify the model of Eq. (1) to capture these new ideas,
and obtain the model of Eq. (5), highlighting the differences
in bold.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ aup ≥ alo,

2 ∧ (w = −1 ∨ w = 1) ∧C−1
impl(r, h, v, w, vlo, vup)→

3 [( ( ?true ∪
4 (w := −1 ∪ w := 1); vlo := ∗;vup := ∗;
5 ?C−1

impl(r, h, v, w, vlo, vup); advisory := (w, vlo,vup) );

6 a := ∗;
7 {r′ = −rv, h′ = −v, v′ = a

8 & (wv ≥ wvlo ∨ wa ≥ alo)
9 ∧((wv ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0)}
10 )∗] (|r| > rp ∨ |h| > hp)

(5)

Beyond replacing the lower safe region L−1impl by a two-
sided safe region C−1impl, we impose aup ≥ alo to ensure that
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Fig. 6 Nominal trajectory of the ownship (red) and upper safe region for the intruder (green), immediate response

Fig. 7 Nominal trajectories of the ownship (red) and two-sided safe region for the intruder (green), immediate response

the pilot can always find a suitable acceleration between alo
and aup (line 1), and we add vup in the new choice of advi-
sory by the system (lines 4 and 5).

More interestingly, we update the evolution domain of
the differential equation (lines 8 and 9). To understand what
it means for the ownship to respect the new upper bounds
vup and aup, let us first consider an advisory for which w =

1, and let us distinguish two cases. If initially v ≤ vup,
then both upper bounds on vertical velocity and accelera-
tion need to be respected simultaneously, leading to condi-
tion v ≤ vup ∧ a ≤ aup. Otherwise, v > vup and the ini-
tial vertical speed of the aircraft v is initially already strictly
greater than vup. Given that the pilot receives an upsense
advisory, it would be unrealistic to assume that the aircraft
would typically follow a negative acceleration to get its ver-
tical speed to go back to vup. Instead, we assume that the
pilot does not accelerate up further, leading to the condi-
tion a ≤ 0. Incorporating the symmetric case w = −1
leads to the general evolution domain for the upper bound
(wvlo ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0.

This analysis leads to an important realization for the
upper safe region: in the case where the initial vertical ve-
locity overcomplies (i.e., when wv ≥ wvup), the upper tar-
get vertical velocity is not vup anymore, but rather it is the

initial value of v; in full generality the upper target vertical
velocity becomes the modified upper target vertical veloc-
ity wmax(wvup, wv). Throughout the implicit and explicit
formulations of the safe region, this modified target vertical
velocity will play the role simply played by vlo in Sect. 3;
we usually highlight it in bold.

5.1.2 Implicit formulation of the safe region The safe re-
gion C−1impl for two-sided safety consists of L−1impl from Fig. 3
and an additional upper bound U−1impl. The implicit formula-
tion of the upper bound U−1impl is similar to the implicit for-
mulation of the lower bound described in Sect. 3.3. As in
Sect. 3.3, we use a coordinate system fixed to the intruder
and with its origin at the initial position of the ownship.

First case: if w = +1 and vup ≥ v. We again consider a
(different) upper nominal trajectory Nup, represented in red
on Fig. 6. This nominal trajectory accelerates vertically with
acceleration aup until reaching the modified target vertical
velocity (which, here, is vup = max(wvup, wv)), describing
a parabola; it then continues at the vertical velocity vup along
a straight line. As before, the horizontal velocity remains
constant at rv . The ownship position (rn, hn) at time t along
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Implicit formulation

Aup(t, hn, v, w, vup) ≡

(
0 ≤ tn <

max(0, w(vup − v))
aup

∧ hn =
waup

2
tn

2 + vtn

)

∨

(
tn ≥

max(0, w(vup − v))
aup

∧ hn =
wmax(wvup, wv)

aup
tn −

wmax(0, w(vup − v))2

2aup

)
U−1
impl(r, h, v, w, vup) ≡ ∀tn.∀rn.∀hn.

(
rn = rvtn ∧Aup(t, hn, v, w, vup)→ (|r − rn| > rp ∨ w(h− hn) > hp)

)
C−1

impl(r, h, v, w, vlo, vup) ≡ L−1
impl(r, h, v, w, vlo) ∨ U

−1
impl(r, h, v, w, vup)

Explicit formulation

case−1
10 (r, v, w, vup) ≡ −rp ≤ r ≤ rp bound10(r, h, v, w, vup) ≡ wh > hp

case−1
11 (r, v, w, vup) ≡ rp < r ≤ rp +

rvmax(0, w(vup − v))
aup

case−1
12 (r, v, w, vup) ≡ −rp ≤ r < −rp +

rvmax(0, w(vup − v))
aup

bound11(r, h, v, w, vup) ≡ wrv2h >
aup

2
(r − rp)2 + wrvv(r − rp) + rv

2hp

bound12(r, h, v, w, vup) ≡ wrv2h >
aup

2
(r + rp)

2 + wrvv(r + rp) + rv
2hp

case−1
13 (r, v, w, vup) ≡ −rp +

rvmax(0, w(vup − v))
aup

≤ r case−1
14 (r, v, w, vup) ≡ rp +

rvmax(0, w(vup − v))
aup

< r

bound13(r, h, v, w, vup) ≡ (rv = 0 ∧ r > rp)∨
(
wrvh > max(wvup, wv)(r + rp)−

rvmax(0, w(vup − v))2

2aup
+ rvhp

)
bound14(r, h, v, w, vup) ≡ (rv = 0)∨

(
wrvh > max(wvup, wv)(r − rp)−

rvmax(0, w(vup − v))2

2aup
+ rvhp

)
U−1
expl(r, h, v, w, vup) ≡

(
max(wvup, wv)> 0→

13∧
i=10

(case−1
i (r, v, w, vup)→ boundi(r, h, v))

)
∧
(
max(wvup, wv)≤ 0→

∧
i∈{10,11,14}

(case−1
i (r, v, w, vup)→ boundi(r, h, v))

)
C−1

expl(r, h, v, w, vlo, vup) ≡ L
−1
expl(r, h, v, w, vlo) ∨ U

−1
expl(r, h, v, w, vup)

Fig. 8 Implicit and explicit formulations of the safe region for an immediate response (upper bounds for w = 1, lower bound for w = −1)

this nominal trajectory is, thus, given by:

(rn, hn) =



(
rvt ,

aup
2
t2 + vt

)
if 0 ≤ t < vup − v

aup
(a)(

rvt , vupt−
(vup − v)2

2aup

)
if
vup − v
aup

≤ t (b)

(6)

Recall that our specification is that the ownship moves ver-
tically with acceleration of at most aup, then continues with
vertical velocity of at most max(vup, v). Therefore all possi-
ble future positions of the ownship will turn out to be below
the red upper nominal trajectory. Therefore, an intruder is
now safe if its position (r, h) is always either to the side of
or above any puck centered on a point in Nup, that is:

∀t.∀rn.∀hn.(rn, hn) ∈ Nup

→ |r − rn| > rp ∨ h− hn > hp

(7)

We call this formulation the implicit formulation of the up-
per safe region.

Generalization. The reasoning above is generalized to the
case w = −1, leading to fully general equations for the
implicit formulation of the upper safe region presented in
Fig. 8.

Finally, the condition for the two-sided advisory C−1impl is
built as a disjunction of the lower safety advisory L−1impl and
upper safety advisory U−1impl. Although we cannot assume
that the ownship will follow either nominal trajectory, we
show that an ownship following the model of Eq. (5), thus
respecting the two-sided conditionC−1impl, stays between both
nominal trajectories, keeping it safe. The proof of safety is
verified in KeYmaera X:

Theorem 3 (Correctness of two-sided safe regions) The
dL formula given in Eq. (5) is valid. That is as long as the
advisories obey formula C−1impl there will be no NMAC.

5.1.3 Explicit formulation of the safe region Construct-
ing the explicit safety condition for the upper bound U−1expl

follows similar motivation and methods as in Sect. 3.4, but,
instead of distinguishing cases upon the target vertical ve-
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locity vlo, it distinguishes them upon the modified upper tar-
get vertical velocity wmax(wvup, wv).

First case: if w = +1, rv > 0, v ≤ 0 and vup > 0. In
particular vup > v, therefore the modified upper target verti-
cal velocity is max(vup, v) = vup. This is the case described
in Fig. 6, and the nominal trajectoryNup is given by Eq. (7).
The boundary of the (green) safe region in Fig. 6 is drawn by
either the top side, the top left hand corner or the top right
hand corner of the puck. This explicit formulation is a little
bit less intuitive than the formulation for the lower safe re-
gion of Sect. 3.4 because the different cases overlap. It can
nonetheless be described by a set of equations (where cases
10 to 13 are similar to cases 10 to 13 of Fig. 8):

0. positions left of the puck’s initial position (r < −rp) are
in the safe region;

10. up to r = rp, the boundary is horizontal along the top
side of the puck at its initial position; therefore for−rp ≤
r ≤ rp, the position (r, h) is in the safe region if and only
if h > hp;

11. then the boundary can follow the top right-hand corner
of the puck as it is going down the parabola of Eq. (6)(a);
therefore for rp < r ≤ rp+ rv(vup−v)

aup
, the position (r, h)

is safe if and only if h > aup

2rv2 (r−rp)2+ v
rv
(r−rp)+hp;

12. the boundary can also follow the top left-hand corner
of the puck as it is going up the parabola of Eq. (6)(a);
therefore for −rp ≤ r < −rp + rv(vup−v)

aup
, the position

(r, h) is safe if and only if h > aup

2rv2 (r + rp)
2 + v

rv
(r +

rp) + hp; note that this case can overlap with case 10;
13. finally the boundary follows the top left-hand corner of

the puck as it is going up the straight line of Eq. (6)(a);
therefore for −rp +

rv(vup−v)
aup

≤ r, the position (r, h)

is in the safe region if and only if h >
vup
rv

(r − rp) −
(vup−v)2

2aup
+ hp.

Generalization The general case is given in the formulaU−1expl

of Fig. 8. The cases 10-13, described above in a specific
case, are for the case max(wvup, wv) > 0, whereas cases
10, 11 and 14 are used for the case max(wvup, wv) ≤ 0;
case 14 follows the top left-hand corner of the puck.

Finally, the explicit condition for the two-sided advisory
C−1expl is built as a disjunction of the lower and upper safety
advisories, as shown in Fig. 8. A graphic representation of
C−1expl (in green) along with its associated nominal trajecto-
ries is shown in Fig. 7. We again use KeYmaera X to for-
mally prove that this explicit two-sided safe region formula-
tion is equivalent to its implicit counterpart:

Lemma 3 (Equivalence of two-sided explicit safe regions)
If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, aup ≥ alo then
the two conditionsC−1impl(r, h, v, w, vlo) andC−1expl(r, h, v, w, vlo)

are equivalent.

The assumptions of Lemma 3 are invariants of the model
in Eq. (5) . As a consequence, a model of explicit safe re-
gions inherits safety from Theorem 3, which we formally
prove in KeYmaera X (again by conditional congruence rea-
soning).

Corollary 2 (Correctness of two-sided explicit safe re-
gions) The dL formula given in Eq. (5) remains valid when
replacing all occurrences of C−1impl(r, h, v, w, vlo, vup) with
C−1expl(r, h, v, w, vlo, vup). That is, as long as the advisories
followed obey formula C−1expl(r, h, v, w, vlo, vup) there will be
no NMAC.

5.2 Bounded-Time Safe Regions

We build on the two-sided safe region to build a model and
safe regions for bounded-time safety, i.e., regions only guar-
anteeing safety of the ownship up to some time ε. Flying
aircraft in ways that are merely safe for a bounded time ε
is inherently unsafe. It is, nevertheless, a critical building
block toward constructing safeable regions, since those fea-
ture advisories that are acceptable for some time ε and can
be followed up with safe subsequent advisories. This sec-
tion studies only the former aspect of safety for bounded
time. An intuitive understanding of bounded-time safe re-
gions can be gathered from Fig. 9: the nominal trajectories
stop at time ε, beyond which the safe region provides no
guarantee. The corresponding safe regions are truncated ver-
tically at r = rvε+ rp.

We call the corresponding conditions Lε
impl and Lε

expl

for lower bounded-time safety, Uε
impl and Uε

expl for upper
bounded-time safety, andCε

impl andCε
expl for two-sided bounded-

time safety. By convention, a negative ε < 0 signifies an un-
bounded region, which fits to the notations L−1impl and L−1expl,
U−1impl and U−1expl, C

−1
impl and C−1expl used in Sect. 3 and 5.1.

5.2.1 Model We modify the model of Eq. (5) to reflect
the ideas of safety for up to time ε and obtain the model
of Eq. (8):

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ aup ≥ alo
2 ∧ (w = −1 ∨ w = 1) ∧Cε

impl(r, h, v, w, vlo, vup)→
3 [( ( (w := −1 ∪ w := 1); vlo := ∗; vup := ∗;
4 ?Cε

impl(r, h, v, w, vlo, vup); advisory := (w, vlo, vup) );

5 t := 0;

6 ( a := ∗;
7 {r′ = −rv, h′ = −v, v′ = a, t′ = 1

8 & (t ≤ ε ∨ ε < 0)

9 ∧ (wv ≥ wvlo ∨ wa ≥ alo)
10 ∧ ((wv ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0)

11 } )∗
12 )∗] (|r| > rp ∨ |h| > hp)
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Fig. 9 Nominal trajectories of the ownship (red) and bounded-time safe region for the intruder (green), immediate response

(8)

Beyond replacing the condition C−1impl by Cε
impl at lines 2 and

4, the most notable difference is the disappearance of the
?true case in the system decision (line 3 of Eq. (5)): since
an advisory can only be followed during at most time ε, we
disallow the model to loop and continue following the same
advisory. However, we need to still allow the pilot to use sev-
eral accelerations while she is following a given advisory; to
model this we add a loop (∗) around the pilot decisions on
lines 6 to 11; in Eq. (5) this second loop was not necessary
thanks to the ?true case. Finally, we add an explicit clock
variable t to model time since the last advisory was issued.
The variable t is initialized to 0 at each initial advisory (line
5), evolves with derivative 1 and enforces that the differen-
tial equation does not execute for longer than time bound
ε (t ≤ ε in line 7) unless time is unbounded (encoded by
ε < 0). Note that t is only reset on line 5 before the pi-
lot’s loop lines 6–10, so beyond time t = ε, only repetitions
of the outer loop lines 3–11 in Eq. (8) make any progress,
which will first issue an updated ACAS X advisory in lines
3–4 for the pilot to comply with from then on.

5.2.2 Implicit formulation of the bounded-time safe re-
gion The implicit and explicit formulations of the bounded-
time safe regions modify the different cases presented in
Sect. 5.1 to take into account the time bound ε. The gen-
eral philosophy is to have the bounded-time equations be an
extension of the equations presented in Sect. 5.1: to achieve
that all supplemental restrictions are of the form (ε < 0 ∨
restriction), which trivially evaluates to true when consid-
ering an unbounded time condition (represented by ε < 0).
Full equations are presented in Fig. 10.

The implicit formulations Lε
impl and Uε

impl are very sim-
ilar to the one presented in Sect. 5.1: when considering a
bounded nominal lower or upper trajectory, we only add a
condition tn ≤ ε whenever ε ≥ 0, to truncate the nominal
trajectory at time tn = ε. As usual, the two-sided implicit
formulation Cε

impl is the disjunction of Lε
impl and Uε

impl.

As usual, the proof of safety is verified in KeYmaera X:

Theorem 4 (Correctness of bounded-time implicit safe
regions) The dL formula given in Eq. (8) is valid. That is
as long as the advisories obey formula Cε

impl there will be no
NMAC for time up to ε if ε ≥ 0, and forever if ε < 0. There
are no guarantees beyond time ε if ε ≥ 0.

The loop invariant used to prove Eq. (5) has a subtle dif-
ference compared to the previous theorems. Unlike in all
previous theorems, Cε

impl is not an invariant of the corre-
sponding model Eq. (5) (but almost). To turn the implicit
conditions of Fig. 10 into an invariant, we capture the re-
maining time that we must follow an advisory by simply
turning ε into (ε− t) (i.e., when already having followed an
advisory for duration t we have to follow it for the remain-
ing duration ε− t). The condition ε < 0 encodes advisories
that must be followed forever, and remains unchanged in the
invariant. So ε < 0 ∨ tn ≤ ε turns into ε < 0 ∨ tn ≤ ε − t
in both Lε

impl and Uε
impl to obtain the invariant.

5.2.3 Explicit formulation of the bounded-time safe re-
gion The explicit formulation of the bounded-time safe
region also builds on its unbounded-time counterpart from
Sect. 5.1. In cases 1 to 6 and 10 to 14, and whenever ε ≥ 0,
only the following cases need to be modified:

– for a case that follows the bottom or top left-hand corner
of the puck, the corresponding boundary of the safe re-
gion should now stop when the puck reaches time ε, i.e.,
when the corner reaches −rp + rvε. Therefore we add
the condition r ≤ −rp + rvε. This is the case of caseε1,
caseε5, caseε6, caseε12 and caseε13;

– for a case that follows the bottom or top right-hand cor-
ner of the puck, the corresponding boundary of the safe
region should now stop when the puck reaches time ε,
i.e., when the corner reaches rp+ rvε. Therefore we add
the condition r ≤ rp + rvε. This is the case of caseε3,
caseε4, caseε11, and caseε14;

– caseε10 models the boundary above the puck at time 0

and is unaffected by bounded time;
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Implicit formulation

Lε
impl(r, h, v, w, vlo) ≡ ∀tn.∀rn.∀hn.

(
(ε < 0 ∨ tn ≤ ε)∧ rn = rvtn ∧Alo(t, hn, v, w, vlo)→ (|r − rn| > rp ∨ w(h− hn) < hp)

)
Uε
impl(r, h, v, w, vup) ≡ ∀tn.∀rn.∀hn.

(
(ε < 0 ∨ tn ≤ ε)∧ rn = rvtn ∧Aup(t, hn, v, w, vup)→ (|r − rn| > rp ∨ w(h− hn) > hp)

)
Cε

impl(r, h, v, w, vlo, vup) ≡ L
ε
impl(r, h, v, w, vlo) ∨ U

ε
impl(r, h, v, w, vup)

Explicit formulation

caseε1(r, v, w, vlo) ≡ case−1
1 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε2(r, v, w, vlo) ≡ case−1
2 (r, v, w, vlo) ∧

(
ε < 0 ∨ −

min(0, wv)

alo
≤ ε

)
caseε3(r, v, w, vlo) ≡ case−1

3 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ rp + rvε)

caseε4(r, v, w, vlo) ≡ case−1
4 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ rp + rvε)

caseε5(r, v, w, vlo) ≡ case−1
5 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε6(r, v, w, vlo) ≡ case−1
6 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε10(r, v, w, vup) ≡ case−1
10 (r, v, w, vup)

caseε11(r, v, w, vup) ≡ case−1
11 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ rp + rvε)

caseε12(r, v, w, vup) ≡ case−1
12 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε13(r, v, w, vup) ≡ case−1
13 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε14(r, v, w, vup) ≡ case−1
14 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ rp + rvε)

Lε
expl(r, h, v, w, vlo) ≡

(
wvlo ≥ 0→

4∧
i=1

(caseεi (r, v, w, vlo)→ boundi(r, h, v, w, vlo))

)

∧

(
wvlo < 0→

6∧
i=5

(caseεi (r, v, w, vup)→ boundi(r, h, v, w, vup))

)

Uε
expl(r, h, v, w, vup) ≡

(
max(wvup, wv)> 0→

13∧
i=10

(caseεi (r, v, w, vup)→ boundi(r, h, v, w, vup))

)
∧
(
max(wvup, wv)≤ 0→

∧
i∈{10,11,14}

(caseεi (r, v, w, vup)→ boundi(r, h, v, w, vup))

)
Cε

expl(r, h, v, w, vlo, vup) ≡ L
ε
expl(r, h, v, w, vlo) ∨ U

ε
expl(r, h, v, w, vup)

Special cases of the bounded-time explicit formulation

caseε15(r, v, w, vlo) ≡ caseε16(r, v, w, vlo) ≡ ε ≥ 0 ∧ −rp + rvε ≤ r ≤ rp + rvε

boundε15(r, h, v, w, vlo) ≡
(
ε ≤

max(0, w(vlo − v))
alo

→ wh <
alo

2
ε2 + wvε− hp

)
∧
(
ε >

max(0, w(vlo − v))
alo

→ wh < wvε−
max(0, w(vlo − v))2

2alo
− hp

)
boundε16(r, h, v, w, vup) ≡

(
ε ≤

max(0, w(vup − v))
aup

→ wh >
aup

2
ε2 + wvε+ hp

)
∧
(
ε >

max(0, w(vup − v))
aup

→ wh > max(wvup, wv)ε−
max(0, w(vup − v))2

2aup
+ hp

)
L̂ε
expl(r, h, v, w, vlo) ≡ L

ε
expl(r, h, v, w, vlo) ∧ (wvlo < 0→ caseε15(r, v, w, vlo)→ bound15(r, h, v, w, vlo))

Ûε
expl(r, h, v, w, vup) ≡ U

ε
expl(r, h, v, w, vup) ∧ (max(wvup, wv) ≤ 0→ caseε16(r, v, w, vup)→ bound16(r, h, v, w, vup))

Ĉε
expl(r, h, v, w, vlo, vup) ≡ L̂

ε
expl(r, h, v, w, vlo) ∨ Û

ε
expl(r, h, v, w, vup)

Fig. 10 Implicit and explicit formulations of the safe region for bounded time
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– caseε2 should only appear if the puck ever reaches the
bottom of the parabola Eq. (6)(a), that is, only in the case
where −min(0,wv)

alo
≤ ε, which is exactly the condition

we added.

The formulas for Lε
expl, U

ε
expl and Cε

expl are constructed from
these cases as before.

However, those changes alone are not enough. In the
expression of Lε

expl and when wvlo ≥ 0, there is a miss-
ing explicit boundary along the bottom side of the puck at
time ε; we add it explicitly as case15 → bound15 to form
L̂ε
expl. Similarly, in the expression of Uε

expl and when we have
max(wvup, wv) ≤ 0, there is a missing explicit boundary
along the top side of the puck at time ε; we add it explicitly
as case16 → bound16 to form Ûε

expl. We still define Ĉε
expl as

the disjunction L̂ε
expl∨ Ûε

expl. These extra cases 15 and 16 are
inconsequential for the safeable result and are, thus, kept in
the separate expression Ĉε

expl.

Lemma 4 (Equivalence of bounded-time explicit safe re-
gions) If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0,
aup ≥ alo then the two conditions Cε

impl(r, h, v, w, vlo, vup)

and Ĉε
expl(r, h, v, w, vlo, vup) are equivalent.

To prove this lemma we first prove that Lε
impl(r, h, v, w, vlo)

and L̂ε
expl(r, h, v, w, vlo) are equivalent, then that conditions

Uε
impl(r, h, v, w, vup) and Ûε

expl(r, h, v, w, vup) are equivalent.
The safety of explicit safe regions follows from Theo-

rem 4 and Lemma 4 by conditional congruence reasoning.

Corollary 3 (Correctness of bounded-time explicit safe
regions) The dL formula in Eq. (8) remains valid when re-
placing all occurrences of Cε

impl(r, h, v, w, vlo, vup) with the
formula Ĉε

expl(r, h, v, w, vlo, vup). That is, as long as the ad-
visories followed obey formula Ĉε

expl(r, h, v, w, vlo, vup) there
will be no NMAC.

5.3 Safeable region

Putting together the building blocks we have presented, we
finally present safeable regions, implicit Csafeable(ε)

impl and ex-

plicit Csafeable(ε)
expl . The intuition behind safeable is captured

in Fig. 11: we consider all the positions and speeds at which
the ownship can end up at time ε, and in particular the lowest
such position and speed (position lower 1), and the highest
such position and speed (position upper 1). At the lowest po-
sition, we look at the most extreme strengthening available;
and at the highest position, we look at the most extreme
reversal available. The disjunction of the two safe regions
of this strengthening and of this reversal corresponds to in-
truder positions that can be avoided by an appropriate action
at time ε: this is the safeable region. Another way of seeing
safeable is that it is a subset of bounded-time safe that also

provides liveness of the model: it ensures that the ownship
does not get stuck at time ε.

The safeable formulation is presented in Fig. 12, and a
graphic representation in Fig. 11. Throughout this section
we suppose that ε ≥ 0, i.e., all the safe regions not explicitly
labelled as non-bounded-time (with superscript −1) have a
finite time bound.

5.3.1 Model The model is presented in Eq. (9), and builds
on the bounded-time model Eq. (8), with very few changes.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ aup ≥ alo
2 ∧ ε ≥ 0 ∧ (w = −1 ∨ w = 1)

3 ∧Csafeable(ε)
impl (r, h, v, w, vlo, v

ex
lo , vup, v

ex
up)→

4 [( ( (w := −1 ∪ w := 1); vlo := ∗; vup := ∗;
5 ?C

safeable(ε)
impl (r, h, v, w, vlo, v

ex
lo , vup, v

ex
up);

6 advisory := (w, vlo, vup) );

7 t := 0;

8 ( a := ∗;
9 {r′ = −rv, h′ = −v, v′ = a, t′ = 1 & t ≤ ε
10 ∧ (wv ≥ wvlo ∨ wa ≥ alo)
11 ∧ ((wv ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0)

12 } )∗
13 )∗] (|r| > rp ∨ |h| > hp)

(9)

In fact, we are only changing the conditions toCsafeable(ε)
impl

on lines 2 and 4. But that makes a big difference: informally,
instead of having a model that gets stuck at time ε, we now
have a model that can always find a safeable advisory (al-
though we don’t formally prove that last fact yet).

5.3.2 Implicit and explicit formulations of the safeable
regions The formulations presented in Fig. 12 use the for-
mulations of the bounded-time safe regions as building blocks.
The implicit and explicit formulations are built in very sim-
ilar ways.

As shown in Fig. 11, the nominal lower bound trajectory
consists of a bounded-time lower bound trajectory starting
at time 0, followed by an unbounded-time lower bound tra-
jectory starting at time ε; this nominal trajectory is at height
hex and vertical velocity vex at time ε. Therefore the safe-
able lower bound consists of one bounded-time lower bound
up to time ε, followed by an unbounded-time lower bound
starting at time ε, height hexL and vertical velocity vexL .

The nominal upper bound trajectory consists, however,
of a bounded-time upper bound trajectory starting at time 0,
followed by an unbounded time reversed (i.e., taking −w)
lower bound trajectory starting at time ε; this nominal trajec-
tory is at height hex and vertical velocity vex at time ε. There-
fore the safeable upper bound consists of one bounded-time
lower bound up to time ε, followed by an unbounded-time
lower bound starting at time ε, height hexU and vertical veloc-
ity vexU .
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Fig. 11 Nominal trajectories of the ownship (red) and safeable region for the intruder (green), immediate response

As usual, the proof of safety is verified in KeYmaera X:

Theorem 5 (Correctness of implicit safeable regions) The
dL formula given in Eq. (9) is valid. That is as long as the
advisories followed obey formula Csafeable(ε)

impl there will be
no NMAC.

Before proving the equivalence ofCsafeable(ε)
impl andCsafeable(ε)

expl ,
we first prove a lemma allowing us to simplify cases 15 and
16 presented in Sect. 5.2.

Lemma 5 (Simplification of cases 15 and 16) If w = ±1,
rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, aup ≥ alo and ε ≥ 0:

– given hexL and vexL as defined in the definition ofLsafeable(ε)
expl

in Fig. 12, then: L−1expl(r − rvε, h − hex, vex, w, vexlo ) →
caseε15(r, v, w, vlo)→ boundε15(r, h, v, w, vlo);

– given hexU and vexU as defined in the definition ofU safeable(ε)
expl

in Fig. 12, then: L−1expl(r− rvε, h− hex, vex,−w, vexlo )→
caseε16(r, v, w, vup)→ boundε16(r, h, v, w, vup).

Lemma 6 (Equivalence of explicit safeable regions) Ifw =

±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, aup ≥ alo and
ε ≥ 0, then the two conditions Csafeable(ε)

impl and Csafeable(ε)
expl

are equivalent.

6 Reduction from 3D Dynamics to 2D Dynamics

In this section, we show that, with respect to our assump-
tions, any 3-dimensional encounter (Sect. 2) can be reduced
to a 2-dimensional encounter (Sect. 3) without loss of gener-
ality. This could be done using a change of reference frame
and a dimension reduction.

For the sake of clarity, let us put ourselves in a refer-
ence frame (O, i, j,k) fixed to the ownship (O). In this ref-
erence frame, the position of an intruder I is represented by
the tuple (x, y, h), and the differential equation system that
governs its motion is given by x′ = rx, y′ = ry , (h′)′ = a,
where rx, ry and a remain constant as time evolves. The mo-
tion of the encounter can be decoupled into a 2-dimensional

O

I

r

−rv

i

j

k
`
P

s

n

Fig. 13 Top view of the two reference frames

horizontal encounter in the reference frame (O, i, j) (hori-
zontal plane) and a 1-dimensional vertical encounter in the
reference frame (O,k). In what follows, we reduce the hori-
zontal encounter from a 2-dimensional motion to a 1-dimensional
motion, thereby simplifying the problem conceptually and
computationally by reducing its number of variables.

Fig. 13 depicts a top view of a generic encounter. We
denote by r the position, and rv the velocity, of the intruder
relative to the ownship, and by rv ≥ 0 the norm of rv .

First suppose rv > 0. The idea is to choose a refer-
ence frame (P,k, `) in which one axis k is aligned with rv ,
such that no relative motion happens in the other direction
`. Its fixed center P is defined as the orthogonal projection
of point O on the direction of rv . The unit vector k is de-
fined as rv

rv
, and ` is a unit such that (P,k, `) is positively

oriented.
Let v|O (resp. v|P ) denote the coordinates of a vector

v relative to the reference frame (O, i, j) (resp. (P,k, `)).
Then, the coordinates for r and rv are: r|O = (x, y), rv|O =

(rx, ry), r|P = (s, n) and rv|P = (−rv, 0). The scalar prod-
uct r ·rv and the cross product r×rv are independent of the
horizontal reference frame, therefore:
xrx + yry = −srv xry − yrx = nrv (10)

Given rx and ry , Eqns. (10) imply that the coordinates (x, y)
are uniquely determined by the choice of (s, n), as long as
rv 6= 0 (using rv2 = r2x + r2y). For any 2-dimensional con-
figuration, the encounter can thus be considered a head-on
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Implicit formulation

L
safeable(ε)
impl (r, h, v, w, vlo, v

ex
lo ) ≡ L

ε
impl(r, h, v, w, vlo) ∧(

∀hexL .∀v
ex
L .

(
0 ≤ ε <

max(0, w(vlo − v))
alo

∧ hexL =
walo

2
ε2 + vloε ∧ vexL = waloε+ v

∨ ε ≥
max(0, w(vlo − v))

alo
∧ hexL = vloε−

wmax(0, w(vlo − v))2

2alo
∧ vexL = vlo

)
→ L−1

impl(r − rvε, h− h
ex
L , v

ex
L , w, v

ex
lo )

)
U

safeable(ε)
impl (r, h, v, w, vup, v

ex
up) ≡ Uε

impl(r, h, v, w, vup) ∧(
∀hexU .∀v

ex
U .

(
0 ≤ ε <

max(0, w(vup − v))
aup

∧ hexU =
waup

2
ε2 + vupε ∧ vexU = waupε+ v

∨ ε ≥
max(0, w(vup − v))

aup
∧ hexU = wmax(wvup, wv)ε−

wmax(0, w(vup − v))2

2aup
∧ vexU = wmax(wvup, wv)

)
→ L−1

impl(r − rvε, h− h
ex
U , v

ex
U ,−w, v

ex
up)

)
C

safeable(ε)
impl (r, h, v, w, vlo, vexlo , vup, v

ex
up) ≡ L

safeable(ε)
impl (r, h, v, w, vlo, vexlo ) ∨ U

safeable(ε)
impl (r, h, v, w, vup, vexup)

Explicit formulation

L
safeable(ε)
expl (r, h, v, w, vlo, v

ex
lo ) ≡ L

ε
expl(r, h, v, w, vlo) ∧ L

−1
expl(r − rvε, h− h

ex
L , v

ex
L , w, v

ex
lo )

where


hexL =

walo

2
ε2 + vloε and vexL = waloε+ v if 0 ≤ ε <

max(0, w(vlo − v))
alo

hexL = vloε−
wmax(0, w(vlo − v))2

2alo
and vexL = vlo if ε ≥

max(0, w(vlo − v))
alo

U
safeable(ε)
expl (r, h, v, w, vup, v

ex
up) ≡ Uε

expl(r, h, v, w, vup) ∧ L
−1
expl(r − rvε, h− h

ex
U , v

ex
U ,−w, v

ex
up)

where


hexU =

waup

2
ε2 + vupε and vexU = waupε+ v if 0 ≤ ε <

max(0, w(vup − v))
aup

hexU = wmax(wvup, wv)ε−
wmax(0, w(vup − v))2

2aup
and vexU = wmax(wvup, wv) if ε ≥

max(0, w(vup − v))
aup

C
safeable(ε)
expl (r, h, v, w, vlo, vexlo , vup, v

ex
up) ≡ L

safeable(ε)
expl (r, h, v, w, vlo, vexlo ) ∨ U

safeable(ε)
expl (r, h, v, w, vup, vexup)

Fig. 12 Implicit and explicit formulations of the safeable region

encounter where s plays the role of r and where a new puck
radius, denoted sp, plays the role of rp.

Let us now determine the radius sp of the dimension-
reduced encounter, and prove that the absence of NMAC in
(O, i, j)—characterized by r2 > r2p—is equivalent to the
absence of NMAC in (P,k, `)—characterized by s2 > s2p.
Using (10):

rv
2r2 = rv

2(x2 + y2) = (xrx + yry)
2 + (xry − yrx)2

= rv
2(s2 + n2) .

Since rv 6= 0, this implies r2 = s2+n2. Therefore, r2 > r2p
if and only if s2 + n2 > r2p or equivalently s2 > r2p −
n2. If r2p − n2 < 0, the direction of the vector rv does not
intersect the puck, the inequality s2 > r2p − n2 is trivially
true, and the encounter is safe. If r2p−n2 ≥ 0, we choose the
new puck radius sp for the dimension-reduced encounter as
sp =

√
rp2 − n2 ≥ 0, and the safety condition in (P,k, `)

becomes s2 ≥ s2p. When θv = 180◦, one has s = r, n = 0

and sp = rp as in Sect. 3–4.

As the encounter evolves in (O, i, j) along x′ = rx, y
′ =

ry , its dimension-reduced version evolves in (P,k, `) along
the differential equations s′ = −rv, n′ = 0, obtained by
differentiating Eqns. (10) and canceling rv . The following
proposition, proved in KeYmaera, combines both dynamics
and shows that the absence of an NMAC of radius rp in
(O, i, j) is equivalent to the absence of an NMAC of radius
sp in (P,k, `).

Proposition 1 (Horizontal Reduction) The following dL
formula is valid(
xrx + yry = −srv ∧ xry − yrx = nrv∧
x2 + y2 = n2 + s2 ∧ rv2 = r2x + r2y

)
→ [x′ = rx, y

′ = ry, s
′ = −rv, n′ = 0](

x2 + y2 > r2p ↔ s2 > r2p − n2
)

(11)

Observe that the horizontal NMAC condition in (P,k, `)

only depends on the change of one variable rather than two.
The proposition also applies to the special case rv = 0. In
this case the origin P is no longer defined, and Eqns. (10)
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are trivially true. The variables s and n are constants (s′ =
0, n′ = 0), their initial values are only restricted by the con-
dition n2 + s2 = x2 + y2 in the assumption of the propo-
sition, but they are not unique. When the relative position
between the two aircraft does not evolve over time, if the in-
truder is at a safe distance initially, the encounter is still safe
for all time.

7 Tightness of Conditions

The conditions L−1impl and L−1expl in Fig. 3, Dd
impl and Dd

expl in

Fig. 5, and Csafeable(ε)
impl and Csafeable(ε)

expl in Fig. 12 specify con-
ditions we have derived for safety under varying assump-
tions. While we have formally proved that each of these
conditions is sufficient to guarantee safety within the rele-
vant models (Theorem 1, Corollary 1, Theorem 2, Lemma 2,
Theorem 5, and Lemma 6), we have not proved that these
conditions are necessary for safety or tight. I.e., if an advi-
sory and aircraft geometry meet the safety conditions, then
the aircraft are guaranteed to be safe under the relevant as-
sumptions. However, we have not proved that advisories are
not safe when that advisory and the associated geometry do
not meet the conditions.

In some cases, our conditions are overapproximations.
For the conditions that do not account for subsequent ad-
visories (safe conditions), L−1impl/L

−1
expl and Dd

impl/D
d
expl, con-

sider the following physically unreliable geometry. The air-
craft are diverging horizontally (e.g., θv = 0 and rv > 0),
the intruder is sufficiently above the ownship in altitude, i.e.,
more than hp above the ownship (h > hp), and the aircraft
are horizontally separated by exactly the radius of the puck,
i.e., r = rp. Intuitively, the intruder is directly above the left
edge of the gray box in Fig. 4. If considering an up-sense
advisory, this geometry does not pass L−1expl or Dd

expl because
the conditions have no exception for intruders over the exact
edge of the puck. However, NMAC would require the own-
ship to accelerate upward at an infinite rate, so NMAC is not
possible.

There are cases where advisories fail to meet the con-
ditions for subsequent advisories (safeable conditions), but
are safe under the relevant assumptions as well. Conditions
C

safeable(ε)
impl /Csafeable(ε)

expl are built from a lower-bound trajec-
tory and an upper-bound trajectory where, e.g., the lower-
bound trajectory ends with an unbounded-time trajectory
corresponding to the strongest possible upward subsequent
advisory (vertical velocity vex). Such construction forms a
reasonable overapproximation under the intuition that if the
strongest upward subsequent advisory makes the lower-bound
initial-trajectory safe, that subsequent advisory would also
make any other initial-trajectory safe. Analogous reason-
ing supports the construction of the upper-bound trajectory.
The limitation of this approach, with respect to complete-

ness, is that it implicitly assumes that the subsequent advi-
sory is fixed, or determined at the time of the first advisory.
I.e., it asks if there exists one subsequent advisory now (at
least either the most extreme upward or downward advisory)
that can guarantee safety in the future. In reality, ACAS X
chooses the subsequent advisory later in time, with some
knowledge of the initial portion of the trajectory. In some
cases, it is advantageous, for example, to choose the most
extreme downward advisory for lower initial trajectories and
to choose the most extreme upward advisory for upper ini-
tial trajectories. The result of this overapproximation is that
ACAS X could always choose a safe subsequent advisory
for some geometries that cannot be concluded safeable by
C

safeable(ε)
impl /Csafeable(ε)

expl .

8 Comparison of Safety Theorems to ACAS X

The preceding theorems about safety are independent of the
tested system. To characterize the safety of ACAS X itself,
we check whether advisories indicated by the core com-
ponent of ACAS X, consisting of the timing and logic ta-
bles, meet the conditions of the theorems. The timing and
logic tables of ACAS X contain scores for each advisory
for a set of discrete sample states. Each score quantifies
the desirability of issuing the corresponding advisory when
in the corresponding state and is the result of optimizing a
Markov decision process (MDP). In practice, ACAS X mul-
tilinearly interpolates advisory scores from the values stored
in the tables, given estimates of aircraft states. Although
these estimates model uncertainty in practice, we check be-
havior for the sample points themselves, assuming perfect
knowledge of state, to compare system behavior under best-
case circumstances. Table 2 shows the range of sample state
points, called cut-points, for each of the 7 dimensions of the
logic tables. These non-uniformly sampled cut-points were
chosen by the ACAS X designers to maximize system per-
formance for realistic encounters while keeping the size of
the tables modest. The previous advisory state includes the
previously-issued advisory and information about whether
the pilot was acting to comply with the advisory at the previ-
ous time step. This information is used in the MDP state for
the multi-step optimization. Together these samples make
up over 648 billion state combinations for which scores are
explicitly stored in the ACAS X logic tables.

Corollary 1 and Lemma 6 along with Theorem 5 reduce
the safety of all future trajectories to a static condition on
the current state: L−1expl or Csafeable(ε)

expl , respectively. We ex-
amine the advisory specified by the logic tables at each of
the 648 billion state combinations for which scores are ex-
plicitly stored and check the advisory against the respective
safe or safeable condition for that advisory.
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parameter samples range of values

relative alt. h (ft) 45 [-8000, -4000, -3600, -3200, -2800, -2400, -2000, . . . , -100, -50, 0, 50, . . . , 4000, 8000]
ownship alt. rate v (ft/s) 25 [-166.7, -83.3, -75.0, -66.7, -58.3, -50, . . . , -16.7, -8.3, -4.2, 0, 4.2, . . . , 83.3, 166.7]
intruder alt. rate vI (ft/s) 25 [-166.7, -83.3, -75.0, -66.7, -58.3, -50, . . . , -16.7, -8.3, -4.2, 0, 4.2, . . . , 83.3, 166.7]
previous advisory 33 { NONE-NONE, DNC2000-NONE, DNC2000-DNC2000, . . . , SCL2500-NONE, SCL2500-SCL2500 }
range r (ft) 101 [0, 50, 100, 150, 200, 250, 300, . . . , 1000, 1500, 2000, . . . , 39500, 40000, 100000, 200000]
relative velocity rv (ft/s) 187 [0, 10, 20, 30, 40, 50, 60, 70, 80, 90 . . . , 1700, 1750, 1800, . . . , 2350, 2400, 2450, 2500]
velocity angle θv (deg) 37 [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, . . . , 145, 150, 155, 160, 165, 170, 175, 180]

Table 2 Discrete parameter ranges and number of cut-points specified by ACAS X run 13 and checked during comparison

δ (seconds) ε (seconds) ad ∆a = aup − alo
0 1 g/106 0
1 2 g/6 g/12
3 5 g/3 g/6
5 7 g/2 g/4

Table 3 Delay and Acceleration Parameters Swept During Logic
Comparison. Delay pairs (left) are tied together, while acceleration
pairs (right) are tied. The 16 combinations of these pairs are tested.

Approach. To perform the comparison we use a 10-node
cluster, each with 48 cores and 128 GB RAM. Checks for
the relevant conditions are implemented in Julia 2 and run
on the 648 billion cut-point combinations in parallel, taking
approximately 8 days. We first define what we mean by a
counterexample.

Definition 1 (Counterexample) We say that a state is a coun-
terexample for the safe (resp. safeable) conditions if the ad-
visory given by the ACAS X logic tables for that state vio-
lates L−1expl given in Fig. 3 (resp. Csafeable(ε)

expl given in Fig. 12)
and for which there exists an alternative advisory that does
satisfy the respective safety conditions.

We say a state is non-safe, or non-safeable if it is a coun-
terexample for the safe or safeable conditions respectively.

We selected a set of parameters for acceleration and de-
lay ranges, shown in Table 3. The delays are parameterized
by two values δ and ε. The first, δ, is the delay from time
0 to the time at which the pilot begins adjusting vertical ac-
celeration to follow the first advisory. The second delay pa-
rameter, ε, is the delay from time 0 to the time at which the
second issued advisory begins to be followed. Thus the first
advisory is followed for ε − δ seconds and we require that
ε > δ. The selections of delay parameters in Table 3 have ε
values that are at least 1 second greater than δ to allow a pe-
riod of 1 second or more of compliance with a first advisory.
The right side of Table 3 gives the parameters governing the
limits of ownship acceleration. The free acceleration, ad, as
previously defined, is the maximum absolute acceleration of
the pilot during delay or COC; it is swept between almost
zero acceleration and g/2. (We used g/106 for almost zero
to avoid divisions by zero in our conditions.) The second

2 http://julialang.org.

Safe Counterexamples
(in billions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 15.38 15.05 14.85 14.79
(g/6, g/12) 15.40 15.03 14.87 14.88
(g/3, g/6) 15.43 15.02 14.95 15.14
(g/2, g/4) 15.45 15.01 15.18 15.33

Unresolvable States
(in billions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 10.42 10.64 10.84 10.96
(g/6, g/12) 10.42 10.75 11.16 11.51
(g/3, g/6) 10.42 10.88 11.59 12.36
(g/2, g/4) 10.42 11.04 12.13 13.46

Table 4 Number of Safe counterexamples (top) and number of unre-
solvable states (bottom) for each delay and acceleration parameter set

parameter, ∆a, the overcompliance acceleration, is the dif-
ference between the upper limit of acceleration under the
advisory, aup, and the lower compliance limit, alo. It is tied
in each case to one half of the free acceleration ad. The de-
lay parameter pairs are also tied together during each query,
meaning that during the first query (δ, ε) = (0, 1) and for
the second query (δ, ε) = (0, 2), and so on. All 16 combina-
tions of delay pairs and acceleration pairs are tested against
the total 648 billion cut-point combinations summarized in
Table 2.

Counterexamples. Tables 4 and 5 summarize the number
of counterexamples (Def. 1) we found. The lower portions
of the tables show the number of initial states tested that
were not resolvable with any of the available safe or safe-
able actions. That is, for those unresolvable states, there are
no available advisories that pass the conditions we formally
proved. For the safe comparison, the checks we perform are
limited to states in the ACAS X tables where COC is the
previous advisory (about 196 billion states). In addition, the
parameters ε and ∆a are not used in the safe conditions: ε
is fixed to −1 as we assume that the pilot will follow the is-
sued advisory forever; ∆a is not used as we assume that the
vertical acceleration has only to respect a minimal rate (alo)
to satisfy the advisory. Thus, only δ and ad vary. One can
notice that taking into account the pilot delay in the formal

http://julialang.org
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Safeable
Counterexamples
(in millions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 266.3 99.7 39.2 31.6
(g/6, g/12) 310.0 117.2 101.4 164.9
(g/3, g/6) 353.2 138.6 277.7 544.7
(g/2, g/4) 398.9 163.6 668.8 898.7

Unresolvable States
(in billions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 11.03 11.27 11.51 11.64
(g/6, g/12) 11.03 11.40 11.85 12.23
(g/3, g/6) 11.03 11.54 12.30 13.09
(g/2, g/4) 11.03 11.71 12.86 14.23

Table 5 Number of Safeable counterexamples (top) and unresolvable
states (bottom) for each delay and acceleration parameter set

model reduces the number of counterexamples. This may
seem at first counterintuitive as one expects less unsafe ad-
visories if the pilot responds immediately. However, given
that the previous advisory is a COC, the ACAS X tables are
designed to not necessarily issue a disruptive advisory right
away and will rather either issue a preventive advisory (such
as DNC or DND) or simply a MAINTAIN before actually
strengthening those advisories in the future if needed. Those
first advisories may indeed violate the safe conditions al-
though the system is able to resolve the potential encounters.
We also observe, on the contrary, that increasing the free
acceleration ad results in more counterexamples and more
unresolvable encounters. This is a straightforward effect of
our worst case analysis: if we allow g/2, say, as worst case
vertical acceleration, then we have to consider that the pilot
will actually accelerate at g/2 during the delay, which may
be unrealistic.

Overall, as shown in Table 4, we found billions of coun-
terexamples to Corollary 1 (safe regions). Many were used
to create test encounters and tested in the full system as a
means of targeted stress testing. As alluded to earlier, the
ACAS X system was able to resolve many of those by is-
suing subsequent advisories, which actually motivated the
safeable extension we developed in this paper. Indeed, safe-
able counterexamples represent states where the advice given
by ACAS X may not be correctable by subsequent advi-
sories, although an alternative guaranteed safe sequence ex-
ists for our assumptions according to Lemma 6.

We can see from Table 5 that there are considerably fewer
safeable counterexamples than safe ones, hundreds of mil-
lions instead of tens of billions. Theorem 5 (safeable regions)
is designed to detect points of no return. As with safe re-
gions, we see that the number of counterexamples tend to
have an inverse relationship with pilot response delay al-
though an exception to this trend occurs when delay is ex-

actly 0. We believe this exception is caused by the fact that
many states are resolvable when there is no pilot response
delay, i.e., when the pilot responds immediately to the is-
sued advice. Once a moderate response delay is assumed,
there are many fewer resolvable initial states, resulting in
fewer total counterexamples, albeit still a few hundred mil-
lion. These safeable counterexamples are also being used to
generate stressing short-time encounters that may be used
for robustness testing.

Safety Analysis. The comparison of the system to safe con-
dition D−1expl (valid by Theorem 2) gave insight into possible
improvements for ACAS X. Our analysis led to the identifi-
cation of unexpected behavior in the ACAS X run 13 (i.e.,
version 13) lookup tables. In some cases, the ACAS X advi-
sory seems to induce an NMAC, i.e., if the initial advisory is
followed and not strengthened or reverted later, an NMAC
will occur when it would not have occurred if the aircraft
continued flying straight. A typical example, found during
checking against Corollary 1 (safe regions) with δ = 0 and
ad = g/2, is shown in Fig. 14. The ownship is flying from
the left and the intruder from the right. The time 0 corre-
sponds to the time of closest horizontal approach. As time
progresses, the intruder flies towards the ownship and an
NMAC happens near the time t = 0. The original path of the
ownship does not lead to an NMAC. However, ACAS X is-
sues a Do-Not-Climb advisory. If the pilot follows this advi-
sory immediately and stops climbing, and if the initial advi-
sory is not subsequently strengthened or reversed, an NMAC
will occur.

In other cases of counterexamples to Corollary 1 (safe
regions), the advisory does not seem to have any benefit.
In those cases, flying at the vertical rates disallowed by the
advisory would actually avoid NMAC, while not all allowed
vertical rates of the advisory are safe.

Some safe counterexamples are tolerated, as ACAS X
tries to minimize alerting the pilot unless it has to do so;
for these cases, ACAS X will issue or strengthen an advi-
sory later to avoid issuing a disruptive alert immediately.
Additionally, the assumption of straight vertical flight is not
always valid. E.g., aircraft may actually be more likely to
level-off than continue at high vertical rates in some cases.
The particular unexpected behavior shown in Fig. 14 was in-
dependently identified by the ACAS X team using simulation-
based testing, and is being addressed in a subsequent revi-
sion of the system.

Safeable Analysis. In Fig. 15, we see an automatically dis-
covered safeable counterexample. The pilot is assumed to
start complying with the initially issued advisory at 5 sec-
onds and will only begin complying with a potential subse-
quent advisory after 7 seconds from the initial time (the first
advisory will thus be followed for 2 seconds). For this state,
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Fig. 14 Safe Counterexample. Original ownship path (cyan) and intruder path (red) vs. ownship responding to a do-not-climb (DNC) advisory
issued by the ACAS X tables in starting state: r = 4,000 ft, rv = 200 ft/s, θv = 180◦, h = 600 ft, v = 1,980 ft/min, vI = −1,500 ft/min.Time is
shown counting from -20 s to time 0; the time of closest horizontal approach. The 2D projection of the NMAC cylinder is shown centered around
the ownship as a dashed rectangle; the intruder intersecting with the NMAC region is shown by a red circle.

(a) Illustration of a Safeable Counterexample

(b) The Counterexample Under a Safeable First Advisory

Fig. 15 Safeable counterexample, where “delay 1” (δ) = 5 s, “delay 2” (ε) = 7 s, ad = g/106, and ∆a = 0. Action issued is “maintain” for
the initial state r = 1, 500 ft, rv = 90 ft/s, θv = 2.88 rad, h = 300 ft, v = −33.33 ft/s, vI = −50 ft/s, previous advisory = None. Plots
show absolute altitude of ownship vs. time and intruder vs. negative time; ownship travels left to right and the intruder right to left. Time is shown
counting from -16 s to time 0; the time of closest horizontal approach. The delay times are shown in vertical dashed lines. The 2D projection of
the NMAC cylinder is shown centered around the ownship as a dashed rectangle. When the intruder intersects with the NMAC region, it is shown
by a red circle, and when the intruder misses the NMAC region it is shown as a red dot.
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the ACAS X tables issue the advisory MDES, maintain de-
scent. The upper panel shows the most extreme upper and
lower paths that a subsequent advisory can restrict the own-
ship’s motion to. Neither of these can avoid NMAC with
the intruder. This is a relatively close range, slow closing
encounter, as the initial horizontal separation is 1,500 feet
and horizontal relative closing speed is only 90 feet/second.
Both aircraft begin descending at moderate rates, offset ver-
tically by 300 feet. The problem occurs because the most
extreme descend advisory available has a rate of only 2500
feet/minute and with the ownship already descending at 2000
feet/minute the increase in descent rate cannot avoid the in-
truder. In this slow closing geometry, the two aircraft will be
in horizontal conflict range for an extended period, which at
this geometry lasts for 7 seconds starting at t = −3.5 to t =
3.5 seconds. In this case, Lemma 6 tells us that safeable ac-
tions include Do-Not-Descend and Climb-1500. The lower
panel of Fig. 15 shows that if the ownship were, instead, told
to climb at the maximum rates allowed by a sequence of up-
sense advisories, this situation would have been resolved,
and so is indeed a counterexample.

The smaller number of safeable counterexamples are of
special interest to system verification, as they are situations
that cannot even be corrected by subsequent advisories. To
aid in robustness testing and tuning of the actual system,
we have created a set of short-time encounters based on the
counterexamples found using the safeable analysis and are
sharing these encounters with the ACAS X designers.

Overall, we have begun analyzing ACAS X using our
theorem and are identifying numerous valuable outcomes.
These results either help us characterize tradeoffs being made
or help us identify undesirable behaviors in the system. As
one of our next steps, we aim to prove that ACAS X gives
safe advice for continuous regions of the state space. When
comparisons are extended to check contiguous regions of
the state space, our approach will have the potential for a
complete analysis of the system over all potential encounter
configurations, thereby reducing vulnerability to the sam-
pling of encounter scenarios.

9 Related Work

Kochenderfer and Chryssanthacopoulos [13] describe the de-
sign of the ACAS X lookup-tables. Their principled approach,
based on optimizing an MDP, guarantees the selection of op-
timal advisories according to a cost model. The state space
and dynamics are discretized. Their notion of optimality de-
pends on costs assigned to various events.

Holland et al. [11] and Chludzinski [1] simulate large
numbers of encounters, including tracks from recorded flight
data, to evaluate the performance of ACAS X. These simu-
lations account for high-fidelity details of an encounter, but

they only cover a finite set of the continuous state space with
no formal guarantees.

Von Essen and Giannakopoulou [3] use probabilistic model-
checking to analyze an MDP based on [13]. They investigate
the probability of several undesirable events occurring. Be-
cause they ostensibly analyze an MDP, their work inherits
many of the assumptions of ACAS X, including errors due
to discretized dynamics. Their analysis depends heavily on
the MDP considered and thus needs to be redone on every
version of ACAS X.

Lygeros and Lynch [18] use hybrid techniques to for-
mally verify the TCAS conflict resolution algorithms. They
assume—rather than prove—that TCAS ends up in a state
where one aircraft has a climbing advisory and the other
a descending advisory. They then prove (by hand) a lower
bound on the vertical separation of both aircraft at the point
of closest approach. In contrast, we do prove as opposed to
assume that and when advisories are safe.

Tomlin et al. [24], Platzer and Clarke [23], Loos et al. [17]
and Ghorbal et al. [10] use hybrid systems approaches to
design safe horizontal maneuvers for collision avoidance.
Dowek et al. [2] and Galdino et al. [9] describe and ver-
ify in the PVS theorem prover a collision avoidance system
of their design called KB3D.

Overall, our approach is different from previous comple-
mentary work in that:

– unlike [3,13], we rely on an independent model from the
one used to design ACAS X;

– unlike [2,9,10,17,23,24] we analyze an independent in-
dustrial system and not a safe-by-design system;

– unlike [2,3,9] our analysis uses realistic, continuous dy-
namics;

– unlike [18,24] we provide universal safe regions that can
be reused for new versions of ACAS X or new systems;

– unlike [1,11,14,18,24], we provide mechanized rigor-
ous proofs of correctness of our model.

10 Conclusion and Future Work

We developed a general strategy for analyzing the safety
of complicated, real-world aircraft collision avoidance sys-
tems, and applied it to ACAS X. Our strategy identifies safe
regions where an advisory is proved to always keep the air-
craft clear of NMAC, under some assumptions. We identi-
fied states where ACAS X is provably safe, and delivered
others showing unexpected behaviors back to the ACAS X
development team. The identified safe regions are indepen-
dent from the version of ACAS X and can thus be reused for
future versions. In future work, we plan to extend our hybrid
model to account for curved trajectories of both aircraft as
well as vertical acceleration of the intruder.
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