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Abstract

This paper studies sound proof rules for checking positive invariance of algebraic
and semi-algebraic sets, that is, sets satisfying polynomial equalities and those
satisfying finite boolean combinations of polynomial equalities and inequalities,
under the flow of polynomial ordinary differential equations. Problems of this
nature arise in formal verification of continuous and hybrid dynamical systems,
where there is an increasing need for methods to expedite formal proofs. We
study the trade-off between proof rule generality and practical performance and
evaluate our theoretical observations on a set of benchmarks. The relationship
between increased deductive power and running time performance of the proof
rules is far from obvious; we discuss and illustrate certain classes of problems
where this relationship is interesting.
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1. Introduction

In safety verification of dynamical systems, one is typically concerned with
ensuring that by initializing a system in some set of states X0 ⊆ X (where X is
the state space), the system will never evolve into an unsafe state (belonging to
some Xu ⊆ X). When the system is given by ordinary differential equations, one
may attempt to solve the safety verification problem by showing that the solution
to the initial value problem for any initial value x0 ∈ X0 cannot enter the unsafe
region, that is x(x0, t) /∈ Xu for all t ≥ 0, where x(x0, t) is the state of the system
at time t w.r.t. the initial value x0. The safety verification problem is in this case
equivalent to showing that the intersection of the reachable set {x(x0, t) ∈ X |
t ≥ 0} with the set of unsafe states is empty. However, solutions to ordinary
differential equations will rarely be available in closed form1; even when they are,
their description will often be much more involved than that of the differential
equations themselves. Instead, it is possible to work with the differential equations
directly (Sankaranarayanan et al., 2008; Platzer, 2010, 2012a; Tiwari, 2008).

A fundamental notion in safety verification is that of a (positively) invariant
set. In fact, exact reachable sets of any given state x0 of the system are the smallest
positively invariant sets one can hope to find that include x0. However, obtaining
and working with exact descriptions of reachable sets is not always practical or
even possible. This does not mean that system safety cannot be established by
other means - if one finds a larger positively invariant set, I ⊆ X , with a simpler
(preferably algebraic, or semi-algebraic) description and which (i) contains the set
of initial states (i.e. X0 ⊆ I) and (ii) does not intersect the set of unsafe states (i.e.
I ∩Xu = ∅), then one can soundly conclude that the system is safe.

We focus on methods for checking whether a given set defines a positively
invariant region, i.e. one from which no system trajectory can escape in posi-
tive time (t ≥ 0). In particular, we consider the important case of algebraic and
semi-algebraic sets, i.e. sets that can be defined by polynomial equations and fi-
nite boolean combinations of polynomial equations and inequalities, respectively.
We review previously reported methods and introduce extensions to automatically
check positive invariance of semi-algebraic sets. Our work aims at identifying
sweetspots in the various methods in order to suggest efficient strategies for in-
variant checking inside a deductive prover.

Contributions. We extend our earlier analysis presented in (Ghorbal et al.,
2015) to include proof rules that are concerned with checking positive invariance

1That is explicitly given in terms of elementary functions and usual operators.
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of semi-algebraic sets. In addition to recalling proof rules reported previously, we
introduce in Section 5.2 a new sufficient condition that we term NSSBC for Non-
smooth Strict Barrier Certificate. NSSBC is able to prove positive invariance in a
special class of closed semi-algebraic sets and can be seen as a generalization of
strict barrier certificates introduced by Prajna (Prajna et al., 2007). We also inves-
tigate in Section 7.4 the effect of square-free decomposition—which generalizes
the square-free reduction—on the deductive power of proof rules. Finally, we
complement our theoretical results with a practical assessment of the proof rule
performance on a set of benchmarks and explore interesting connections between
the deductive power and the practical running time performance (Section 8.2).

2. Preliminaries

We consider autonomous2 polynomial vector fields (see Def. 1 below).
Let x = (x1, . . . , xn) ∈ Rn, and x(t) = (x1(t), . . . , xn(t)), where xi :

R → R, t 7→ xi(t). The ring of polynomials over the reals will be denoted
by R[x1, . . . , xn].

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate poly-
nomials of the polynomial ring R[x1, . . . , xn]. A polynomial vector field, p, is an
explicit system of ordinary differential equations with polynomial right-hand side:

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

Since polynomial functions are smooth (C∞, i.e. they have derivatives up to
any order), they are locally Lipschitz-continuous. By the Cauchy-Lipschitz the-
orem (a.k.a. Picard-Lindelöf) (Lindelöf, 1894), there exists a unique maximal
solution to the initial value problem (ẋ = p, x(0) = x0) defined for t in some
non-empty open interval; it is often denoted by x(t), or more explicitly as ϕt(x0).

For S ⊆ Rn, if ϕt(x0) ∈ S for all t ≥ 0 and x0 ∈ S, we say that the set S
is a (positive) invariant under the flow of p. If S is described by a quantifier-free
formula of real arithmetic (i.e. is a semi-algebraic set satisfying a finite boolean
combination of polynomial equalities and inequalities), positive invariance of S

2That is, the rate of change of the system over time explicitly depends only on the system’s
state, not on time. Non-autonomous polynomial systems with time-dependence can be made
autonomous by extending the state of the system with an extra clock variable that reflects the
progress of time and replacing every instance of the time variable with the new clock variable.
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is semantically equivalent to the validity of the following formula in differential
dynamic logic (Platzer, 2008):

S → [ẋ = p] S. (2)

A result about positive invariance of closed sets under the flow of locally
Lipschitz-continuous ODEs, known as the Nagumo theorem (Nagumo, 1942; Wal-
ter, 1998, Chapter 10, XV–XVI, pp. 117-119), gives a powerful (but generally in-
tractable) geometric characterization of positively invariant closed sets. Nagumo’s
theorem requires the geometric notion of sub-tangential vectors to a set.

Definition 2 (Sub-tangent vector). A vector v ∈ Rn is sub-tangential to a set
S ⊆ Rn at x ∈ S if

lim inf
λ→0+

dist (S,x+ λv)

λ
= 0,

where dist denotes the Euclidean set distance, i.e. dist(S,x) ≡ infy∈S‖x − y‖.
The set of all sub-tangent vectors to a set S at x ∈ S is known as the contingent
cone to S at x and is denoted Kx(S).

Theorem 3 (Nagumo’s Theorem). Given a continuous system ẋ = p(x) and
assuming that solutions exist and are unique inside some open set O ⊆ Rn, let
S ⊂ O be a closed set. Then, S is positively invariant under the flow of the system
if and only if p(x) is sub-tangential to S (or equivalently, p(x) ∈ Kx(S), where
Kx(S) is the set of all sub-tangential vectors to S at x, known as the contingent
cone) for all x ∈ bdr(S), where bdr(S) is the boundary of S.3

Using Nagumo’s Theorem, the following proof rule is sound and complete
when S is a closed semi-algebraic set:

(Nagumo)
∀ x ∈ bdr(S). p(x) ∈ Kx(S)

S → [ẋ = p] S
.

More recently, a different characterization of positively invariant sets (de-
scribed in detail in subsequent sections) was reported in (Liu et al., 2011).

In the important special case where a closed set S is described by the equation
h = 0, with h ∈ R[x1 . . . , xn], positive invariance of h = 0 is semantically
equivalent to the validity of the formula:

(h = 0)→ [ẋ = p](h = 0). (3)

3The border of a set S is often denoted by ∂S. We will use bdr(S) instead to avoid confusion
with partial derivatives.
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Geometrically, the equation h = 0 represents the set of real roots of the polyno-
mial h. Such a set is known as real algebraic set or a real variety and will be
henceforth denoted by VR(h). Algebraic sets are intimately related to sets of poly-
nomials with special algebraic properties called ideals. Ideals are closed under
addition and external multiplication; that is, if I is an ideal, then for all h1, h2 ∈ I ,
the sum h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I , for all q ∈ R[x1 . . . , xn]. To
say that the real variety VR(h) of the ideal generated by h is invariant under the
flow of the vector field p is equivalent to the statement that the equation h = 0 is
invariant.

We will use ∇h to denote the gradient of h : Rn → R, that is the vector of its
partial derivatives

(
∂h
∂x1
, . . . , ∂h

∂xn

)
. The Lie derivative of h along the vector field p

gives the rate of change of h along the flow of ẋ = p(x) and is formally defined
as the scalar product of∇h and p.

Lp(h)
def
= ∇h · p . (4)

Higher-order Lie derivatives are defined recursively as L(k+1)
p (h) = Lp(L

(k)
p (h)),

with L
(0)
p (h) = h.

3. Proof Rules for Algebraic Sets

We recall five important proof rules for checking invariance of polynomial
equalities, or equivalently the validity of Equation 3. In Figure 1, FI refers to in-
variant polynomial functions.4 The premise of the Polynomial-scale consecution
proof rule (Sankaranarayanan et al., 2008), P-c in Figure 1, requires Lp(h) to be in
the ideal generated by h. The condition given in the premise is only sufficient (but
is eminently suitable for generating invariant varieties (Matringe et al., 2010)). We
also consider the constant-scale consecution proof rule (Sankaranarayanan et al.,
2008; Tiwari, 2008), denoted by C-c. The premise of proof rule C-c requires that
Lp(h) = λh, where λ is a scalar, not a polynomial as in P-c. It is therefore a
simple special case of P-c. When λ = 0, one obtains the premise of the proof
rule FI. It is worth noting that the condition in the premise of P-c, including
its special case C-c, was mentioned as early as 1878 (Darboux, 1878) and used
extensively in the study of integrability of dynamical systems (e.g. see second in-
tegrals in (Goriely, 2001, Chapter 2)). It serves as a natural extension to invariant
functions, also known as first integrals, which are covered by the proof rule FI.

4We used the notation DI= for the same proof rule in (Ghorbal et al., 2015).
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(FI)
Lp(h) = 0

(h = 0)→ [ẋ = p](h = 0)
(C-c)

∃λ ∈ R, Lp(h) = λh

(h = 0)→ [ẋ = p](h = 0)

(Lie)
h = 0→ (Lp(h) = 0 ∧∇h 6= 0)

(h = 0)→ [ẋ = p](h = 0)
(P-c)

Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p](h = 0)

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

(h = 0)→ [ẋ = p](h = 0)

Figure 1: Proof rules for checking the invariance of h = 0 w.r.t. p: FI, C-c and P-c
(Sankaranarayanan et al., 2008, Lemma 2), Lie (Olver, 2000, Theorem 2.8), DRI (Ghor-
bal and Platzer, 2014, Theorem 2)

The proof rule Lie gives Lie’s criterion (Lie, 1893; Olver, 2000) for invariance of
h = 0; this proof rule will be discussed in more depth and extended to handle
tricky cases in Section 4. The last rule, DRI in Fig. 1, was recently introduced
and characterizes (i.e. gives necessary and sufficient conditions for) invariant real
varieties under the flow of polynomial vector fields (Ghorbal and Platzer, 2014).
The number N in the premise of DRI is the maximum length of the ascending
chain of polynomial ideals 〈h〉 ⊂ 〈h,Lp(h)〉 ⊂ 〈h,Lp(h),L

(2)
p (h)〉 ⊂ · · · , which

is finite and computable (Ghorbal and Platzer, 2014).

4. Extending Lie’s Criterion

One immediate deficiency of the proof rule Lie (Fig. 1) is its inability to prove
invariance properties for isolated points (e.g. system equilibria) for the simple
reason that a description of such a point a = (a1, . . . , an) ∈ Rn, e.g. given by the
sum-of-squares equation h(x) = (x1 − a1)2 + · · ·+ (xn − an)2 = 0, will have an
extremum at a, i.e. h(a) = 0 and

h(x) > 0 for all x ∈ Rn \ {a}. Functions whose real roots characterize
isolated points have vanishing gradient at these roots, in this case a, and thus the
formula h = 0 → ∇h = 0 holds. This violates the regularity condition in the
premise of the proof rule Lie, namely:

h = 0 −→ ∇h 6= 0 . (5)

In fact, h = 0 → Lp(h) = 0 is a necessary condition when h = 0 is an invariant
equation. Note that simply removing Eq. (5) from the premise of the proof rule Lie
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is unsound (see e.g. (Platzer, 2012a)); that is, the condition h = 0 → Lp(h) = 0
alone is insufficient to prove the invariance property for h = 0. Unsoundness in
the above naı̈ve attempt at a generalization is a consequence of singularities that
may be present in the variety VR(h). Singularities of VR(h) are points x ∈ VR(h)
where the gradient of h vanishes, i.e. ∇h(x) = 0.

Definition 4 (Singular Locus). Let h ∈ R[x1, . . . , xn], the singular locus of h = 0,
henceforth denoted SL(h), is the set of singular points, that is, points x satisfying

h = 0 ∧ ∂h

∂x1
= 0 ∧ · · · ∧ ∂h

∂xn
= 0 .

Points that are not singular are called regular. At singular points, the Lie derivative
of h along any vector field is 0 · p = 0. To avoid these degenerate cases, the
regularity condition (Eq. (5)) rules out singularities altogether. In the next section
we present two extensions of Lie’s criterion that, in a similar vein to (Taly and
Tiwari, 2009), partially overcome the strong regularity condition by treating the
points on the singular locus separately.

4.1. Handling Singularities
Equilibria are points in the state space where the vector field vanishes (p =

0) so that there is no motion. However, as seen above, Lie’s criterion cannot
generally be applied to prove invariance properties of isolated equilibria because
their description involves singularities. One simple way to resolve this issue is
to drop the non-vanishing gradient condition and replace it with the proviso that
there be no flow (that is p = 0) in the variables of the invariant candidate on
the singular locus; this will allow singularities in the invariant candidate and will
provide a sound proof method in which there is no need to check for non-vanishing
gradient. Below we present two extensions to the proof rule Lie and justify their
soundness after recalling some basic geometric notions.

Definition 5 (Lie◦: Lie + Equilibria).

(Lie◦)
h = 0→

(
Lp(h) = 0 ∧

(
SL(h)→

∧
xi∈vars(h) pi = 0

))
(h = 0)→ [ẋ = p](h = 0)

,

where vars(h) denotes the set of state variables xi occurring in the polynomial h.

The Lie◦ proof rule can be generalized further at the expense of adding an
extra variable by replacing the “no flow” condition (pi = 0) for points on the
singular locus with ∀λ. h(x+ λp(x)) = 0, where λ is a fresh symbol.
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Definition 6 (Lie∗: Lie + Vanishing Sub-tangent).

(Lie∗)
h = 0→

(
Lp(h) = 0 ∧ (SL(h)→ h(x+ λp) = 0)

)
(h = 0)→ [ẋ = p](h = 0)

.

To prove soundness of Lie◦ and Lie∗, we appeal to the Nagumo theorem. Let
us observe that given x ∈ bdr(S), if x + λp(x) ∈ S for all λ ∈ R, then
dist (S,x+ λp(x)) = 0 and so p(x) is sub-tangential to S at x. This obser-
vation is important for algebraic sets, for which bdr(S) = S, and the condition
x+ λp(x) ∈ S translates to h(x+ λp(x)) = 0. This is the main idea behind the
soundness of the proof rule Lie∗.

Proposition 7. The proof rule Lie∗ is sound.

Proof. A point on the variety is either regular or singular. For regular points
(these form an open subset of the variety), since Lp(h)(x) = 0, the vector p(x)
is sub-tangent to the variety at x (in fact, it is even tangent, so the condition
we check is exactly that which is used in Lie). At singular points x ∈ VR(h)
if h(x + λp(x)) = 0 holds for all λ then dist(VR(h),x + λp(x)) = 0 for all
λ, from which it follows that lim infλ→0+

dist(VR(h),x+λp(x))
λ

= 0 and thus p(x) is
sub-tangential to VR(h) at x. Assuming solutions exist and are unique, the variety
VR(h) is positively invariant under the vector field p by Nagumo’s theorem.

The case p(x) = 0 for all x in the singular locus is a special case of the proof
rule Lie∗. Therefore, the soundness of Lie◦ is an immediate corollary of Prop. 7.

Corollary 8. The proof rule Lie◦ is sound.

Remark 9. It is worth remarking that the proof rules presented in this section,
as well as Lie and FI, also work for non-polynomial vector fields and invariant
candidates which themselves are not polynomial but sufficiently smooth. However,
in such cases the resulting arithmetic may no longer be decidable (Richardson,
1968).

5. Proof rules for semi-algebraic sets

In this section we will discuss three different methods for proving positive
invariance of semi-algebraic sets, that is sets described by boolean combinations
of polynomial equalities and inequalities.
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5.1. Differential Invariants
Differential induction with differential invariants (henceforth DI) was intro-

duced in (Platzer, 2010, Theorem 1).

Theorem 10 (Differential Invariants (DI)). Given a polynomial system ẋ = p and
a quantifier-free formula of real arithmetic S in the state variables (describing
some semi-algebraic set), the following rule of inference is sound:

(DI)
D(S)pẋ

S → [ẋ = p] S
.

In DI, S is a quantifier-free first-order formula in the theory of real arithmetic
and D is the derivation operator (Platzer, 2012a, Definition 3.2), which is defined
as follows:

D(r) = 0 for numbers,
D(x) = ẋ for variables,

D(a+ b) = D(a) +D(b),

D(a · b) = D(a) · b+ a ·D(b),

D
(a
b

)
=
D(a) · b− a ·D(b)

b2
,

D(S1 ∧ S2) ≡ D(S1) ∧D(S2),

D(S1 ∨ S2) ≡ D(S1) ∧D(S2), (∧ here is important for soundness)
D(a ≤ b) ≡ D(a) ≤ D(b), accordingly for ≥, >,< .

(6)

The formula D(S)pẋ is obtained by replacing each ẋi in D(S) with the corre-
sponding right hand side in the system of differential equations, i.e. by pi(x).

Remark 11. Note that if S has the form h ≤ 0 for a polynomial h, then the
requirements in the premise of DI are exactly the conditions that a barrier certifi-
cate (Prajna and Jadbabaie, 2004) has to satisfy. Thus, for this case, differential
invariants include barrier certificates as a special case (Platzer, 2010). Barrier
certificates are, however, also accompanied with interesting techniques for gener-
ating such invariant regions.

Remark 12. When S ≡ h = 0, the premise of DI is equivalent to the premise
of FI. Thus, DI lifts FI to formulas following the arithmetic of the D operator in
Eq. (6).
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In practice, although differential invariants allow one to work with sets that
are expressed using formulas with boolean operators, the conditions are very con-
servative (because they are required to hold everywhere in the state space, rather
than only on the boundary of the set defined by S) and may fail to hold even for
seemingly simple positively invariant sets. That is why differential invariants are
used in conjunction with differential cuts (Platzer, 2010, 2012b), a process of suc-
cessively augmenting the system dynamics with provable invariants, which we do
not consider here.

5.2. Non-Smooth Strict Barrier Certificate
Another criterion, which we term non-smooth strict barrier certificate, may

be seen as a generalization of the strict barrier certificates criterion (Prajna and
Jadbabaie, 2004; Prajna et al., 2007) (limited to closed sets of the form h ≤ 0) to
generic closed semi-algebraic sets. Notice that our generalization only concerns
the sufficient conditions for checking the invariance of supplied candidates. In
particular, we do not extend nor adapt the computation techniques (convex op-
timization) underlying the barrier certificates generation to the new criterion we
present in the sequel.

Given a closed semi-algebraic set S ≡
∨k
i=1

∧m(i)
j=1 hij ≤ 0 with polynomials

hij ∈ R[x1, . . . , xn], we can equivalently rewrite S by a sub-level set of a contin-
uous function, namely

S ≡
k∨
i=1

m(i)∧
j=1

hij ≤ 0 ≡ min
i=1,...,k

max
j=1,...,m(i)

hij ≤ 0 .

Before stating the proof rule, we first define the Lie derivation for minmax
functions as follows. The set Lp(max(h1, h2, . . . , hm)) < 0 is defined inductively
by Lp(h1) < 0 if m = 1, and for m ≥ 2 by

(h1 > max(h2, . . . , hm)→ Lp(h1) < 0)
∧ (h1 < max(h2, . . . , hm)→ Lp(max(h2, . . . , hm)) < 0)
∧ (h1 = max(h2, . . . , hm)→ Lp(h1) < 0 ∧ Lp(max(h2, . . . , hm)) < 0)

(7)
For instance, for m = 2, one gets:

Lp(max(h1, h2)) < 0
def
=

(h1 > h2 → Lp(h1) < 0)
∧ (h1 < h2 → Lp(h2) < 0)
∧ (h1 = h2 → Lp(h1) < 0 ∧ Lp(h2) < 0)

10



We similarly define the set Lp(min(g1, . . . , gm)) < 0 by Lp(g1) < 0 if m = 1,
and for m ≥ 2,

(g1 < min(g2, . . . , gm)→ Lp(g1) < 0)
∧ (g1 > min(g2, . . . , gm)→ Lp(min(g2, . . . , gm)) < 0)
∧ (g1 = min(g2, . . . , gm)→ Lp(g1) < 0 ∨ Lp(min(g2, . . . , gm)) < 0)

. (8)

where gi is of the form max(hi,1, . . . , hi,m). For instance,

Lp(min(max(h1, h2), h3)) < 0 ≡
(max(h1, h2) < h3 → Lp(max(h1, h2)) < 0)

∧ (max(h1, h2) > h3 → Lp(h3) < 0)
∧ (max(h1, h2) = h3 → Lp(max(h1, h2)) < 0 ∨ Lp(h3) < 0)

(9)

We are now ready to state the non-smooth strict barrier certificate proof rule.

Proposition 13 (Non-smooth strict barrier certificates (NSSBC)). Given a con-
tinuous system ẋ = p and a closed semi-algebraic set S ≡

∨k
i=1

∧m(i)
j=1 hij ≤ 0,

where hij ∈ R[x1, . . . , xn], then, the following proof rule is sound:

(NSSBC)

(
min
i=1,...,k

max
j=1,...,m(i)

hij = 0

)
→ Lp

(
min
i=1,...,k

max
j=1,...,m(i)

hij

)
< 0(∨k

i=1

∧m(i)
j=1 hij ≤ 0

)
→ [ẋ = p]

(∨k
i=1

∧m(i)
j=1 hij ≤ 0

) .

Proof. Consider an arbitrary point x0 ∈ Rn such that

min
i=1,...,k

max
j=1,...,m(i)

hij

∣∣∣∣
x0

= 0,

then it is necessarily the case that for those active max arguments with indices i∗
in I∗ ⊆ {1, . . . , k} such that

max
j=1,...,m(i∗)

hi∗j

∣∣∣∣
x0

= 0

for all i∗ ∈ I∗, the condition

Lp

(
max

j=1,...,m(i∗)
hi∗j

)∣∣∣∣
x0

< 0
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needs to hold for at least some i∗ ∈ I∗ (otherwise the premise of the proof rule is
not satisfied). Without loss of generality, assume that at x0 there is one such i∗.
The condition guarantees that for all polynomial arguments of the max function,
their Lie derivative is strictly negative at x0. Since Lie derivatives of polynomials
under polynomial vector fields are also polynomial functions (and thus continu-
ous), there exists an open neighbourhood around x0 inside which Lp(hi∗j) < 0
is true for all j ∈ {1, . . . ,m(i∗)}. Thus, if the system is initialized at x0, it is
guaranteed to enter the region where

max
j=1,...,m(i∗)

hi∗j < 0

and remain there for some non-empty time interval (0, ε), where ε > 0, by follow-
ing the solution ϕt(·), which implies that

min
i=1,...,k

max
j=1,...,m(i)

hij(ϕt(x0)) ≤ 0

for all t ∈ [0, ε
2
]. The closed set S is thus locally positively invariant and therefore

positively invariant.

5.3. Nagumo-like Conditions for Closed Semi-algebraic Sets
Nagumo’s theorem gives a necessary and sufficient condition for positive in-

variance of arbitrary closed sets (cf. Theorem 3); however, one needs to be careful
when applying this result to sets defined by formulas with logical connectives. It
is often tempting to apply the sub-tangency condition element-wise to sets defined
by atomic formulas, but in certain degenerate cases this leads to incorrect con-
clusions. To appreciate this problem, we first require some basic facts about the
closure properties of the contingent cone (i.e. the set of all sub-tangent vectors to
a set at a given point).

Proposition 14. Let S1, S2 ⊆ Rn, then for all x ∈ S we have

Kx(S1) ∪Kx(S2) ⊆ Kx(S1 ∪ S2).

Proof. Since dist(S, ·) ≥ 0 and S1 ⊆ S1 ∪ S2, we have

0 ≤ inf
x∈S1∪S2

‖x− x0‖ ≤ inf
x∈S1

‖x− x0‖ for any x0, and

0 ≤ dist(S1 ∪ S2,x0) ≤ dist(S1,x0) by definition.
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Substituting x0 + tv for x0 and dividing by t > 0 we get

0 ≤ dist(S1 ∪ S2,x0 + tv)

t
≤ dist(S1,x0 + tv)

t
and by assumption

0 ≤ lim inf
t→0+

dist(S1 ∪ S2,x0 + tv)

t
≤ lim inf

t→0+

dist(S1,x0 + tv)

t
= 0.

from which it follows that if v is sub-tangential to S1 at x0, then it is also
sub-tangential to S1 ∪ S2. Thus, Kx(S1) ⊆ Kx(S1 ∪ S2) for all x ∈ S1; by the
same argument one shows Kx(S2) ⊆ Kx(S1 ∪ S2) for all x ∈ S2, from which
one concludes that the inclusion Kx(S1) ∪Kx(S2) ⊆ Kx(S1 ∪ S2) holds for all
x ∈ S1 ∪ S2.

Proposition 15. Let S1, S2 ⊆ Rn, then in general

Kx(S1) ∩Kx(S2) * Kx(S1 ∩ S2).

Proof. Consider S1 ≡ {x | x2 + x21 = 0} and S2 ≡ {x | x2 − x21 = 0}. The two
sets intersect at 0 ∈ R2. At the origin, the intersection of the contingent cones
is given by the real line, i.e. K0(S1) ∩K0(S2) = {x | x2 = 0}, whereas the
contingent cone to the intersection of the two sets is given by the zero vector,
K0(S1 ∩ S2) = {0}. See Figure 2 for an illustration and (Wu, 2010) for an
overview this problem.

In general, given a closed set S which is presented as a finite union of inter-
sections of closed sets Sij , i.e.

k⋃
i=1

m(i)⋂
j=1

Sij,

one would like to determine if p(x) ∈ Kx(S) by only checking p(x) ∈ Kx(Sij).
If one has

k⋃
i=1

m(i)⋂
j=1

Kx(Sij) ⊆ Kx(
k⋃
i=1

m(i)⋂
j=1

Sij). (10)

for all x on the boundary of S, then Nagumo’s criterion for vector field member-
ship in the contingent cone for the whole set can be applied component-wise, i.e.
the condition becomes

∀x ∈ bdr

 k⋃
i=1

m(i)⋂
j=1

Sij

 . p(x) ∈
k⋃
i=1

m(i)⋂
j=1

Kx(Sij).
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x1

x 2

(a) x2 + x21 = 0 ∧ x2 − x21 = 0

x1
x 2

(b) ẋ1 = 1, ẋ2 = 0

Figure 2: Closure properties of the contingent cone at an intersection of two closed sets. The
intersection of the contingent cones to the two sets is shown in red. The contingent cone to the
intersection itself is {0}.

It is possible to formulate inference rules based on Nagumo’s theorem which
allow one to prove positive invariance of a large class of closed semi-algebraic
sets. This has previously been investigated in (Taly and Tiwari, 2009), where a
number of inference rules are presented for checking positive invariance of closed
sets of the form h ≥ 0. For instance, it is shown that the following is a sound
inference (similar to Lie):

h = 0→ Lp(h) ≥ 0 ∧∇h 6= 0

h ≥ 0→ [ẋ = p] h ≥ 0
,

along with other rules with more general premises, all of which seek to check
membership of p(x) in the contingent cone Kx(h ≥ 0). The lifting of the condi-
tions to formulas with boolean connectives (leading to a potential proof rule for
closed semi-algebraic sets) described in (Taly and Tiwari, 2009, p. 393) essen-
tially requires each Sij to be of the form hij ≥ 0 and assumes the soundness-
critical property (10). Soundness issues may arise when this assumption fails
to hold (as in Fig. 2). This deficiency can be fixed by e.g. requiring the matrix
of partial derivatives of active components on the boundary to be full rank, i.e.
rk(∇h1,∇h2, . . . ,∇hk) = k whenever the polynomials h1, h2, . . . , hk evaluate
to 0 on the boundary (this need only apply to conjunctive components). A num-
ber of other possible sufficient conditions for removing this source of unsound-
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ness has been studied in non-smooth analysis (Wu, 2010) (see also practical sets
in (Blanchini and Miani, 2008)). However, in practice, even ensuring the full-
rank property for a matrix with polynomial entries is computationally expensive.
Furthermore, even with conditions for soundness in place, the result may not be
applied to reason about positive invariance of semi-algebraic sets that are neither
closed nor open.

5.4. Liu, Zhan & Zhao Decision Procedure
In (Liu et al., 2011), it was shown that checking whether a given semi-algebraic

set is positively invariant under the flow of a polynomial vector field is decidable.
The conditions one is required to check are phrased in terms of set inclusion of
semi-algebraic sets, which can be determined using a decision procedure for real
arithmetic. The result builds on ideas described earlier in (Taly and Tiwari, 2009)
and crucially depends on the property of solutions to differential equations with
analytic right-hand sides being themselves analytic. In the remainder of this sec-
tion, we rephrase and provide a detailed illustration of the main components of
the result presented in (Liu et al., 2011).

Theorem 16. Let h : Rn → R be an analytic function and ẋ = p be an ana-
lytic system of ODEs. If x0 ∈ Rn is such that h(x0) = 0, then one has three
possibilities at x0:

1. ∃ N > 0. L
(N)
p (h) < 0

∧N−1
i=1 L

(i)
p (h) = 0,

2. ∃ N > 0. L
(N)
p (h) > 0

∧N−1
i=1 L

(i)
p (h) = 0,

3. ∀ N > 0.
∧N
i=1 L

(i)
p (h) = 0.

If x(0) = x0, then in case 1 one has h(x(t)) < 0 for all t ∈ (0, ε) for some ε > 0;
case 2 is analogous, but with h(x(t)) > 0 for all t ∈ (0, ε). In case 3, one is
guaranteed that h(x(t)) = 0 for all t ∈ (0, ε).

Proof. Since both h and the solution to the analytic ODE are analytic functions,
the Taylor series expansion of h(ϕt(x0)) around t = 0 is given by

h(x0) +
∞∑
i=1

(
ti

i!
· d

ih

dti

∣∣∣∣
x0

)
=
∞∑
i=1

(
ti

i!
· L(i)

p (h)
∣∣
x0

)
and converges on some non-empty open interval of t containing zero. Thus, the
most significant term to become sign-definite will determine the sign of the entire
sum on some sufficiently small interval. See (Liu et al., 2011, Proof of Proposition
9). See also (Taly and Tiwari, 2009, Proof of Theorem 7), which employed very
much the same ideas as (Liu et al., 2011).
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The following theorem is a simple corollary to (Liu et al., 2011, Theorem 19).

Theorem 17 (Liu, Zhan & Zhao (Liu et al., 2011)). Given a polynomial system
ẋ = p(x), and a semi-algebraic set S ⊆ Rn, define

Inp(S) ≡ {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). x(t) ∈ S},
In(−p)(S) ≡ {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). x(−t) ∈ S},

where x(t) is the solution to the initial value problem (ẋ = p(x),x(0) = x0) at
time t. The set S is positively invariant under the flow of the system if and only
if the inclusions In(−p)(S) ⊆ S ⊆ Inp(S) hold, which implies soundness (and
relative completeness) of the following rule of inference:

(LZZ)

(
In(−p)(S)→ S

)
∧ (S → Inp(S))

S → [ẋ = p] S
.

To develop some intuition for the construction of Inp(S), let us first consider
the case where S is characterized by a single non-strict inequality h ≤ 0. When-
ever h is an analytic function, one may use Theorem 16 to give a characterization
of Inp(h ≤ 0) as the set of states in Rn that satisfy the following infinite set of
conditions (cf. (Taly and Tiwari, 2009, Theorem 7, Theorem 8)):

h < 0 ∨
(h = 0 ∧ Lp(h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ L(3)

p (h) < 0) ∨
...

The decidability of checking the conditions in Proposition 17 (i.e. the premise
of LZZ) hinges on the ability to construct semi-algebraic sets Inp(S) whenever S
is semi-algebraic. In (Liu et al., 2011) the authors make the crucial observation
that whenever h is a polynomial and ẋ = p(x) is a system of polynomial ODEs,
then the Lie derivatives L(i)

p (h) up to any order i are also polynomials. Using the
fact that the ring of multivariate polynomials with coefficients in some Noetherian
ring is also Noetherian (by Hilbert’s basis theorem), the set Inp(h ≤ 0) can be
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characterized by a finite disjunction (Liu et al., 2011):

h < 0 ∨
(h = 0 ∧ Lp(h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) < 0) ∨

...

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) < 0) ∨
(h = 0 ∧ Lp(h) = 0 ∧ L(2)

p (h) = 0 ∧ · · · ∧ L(N−1)
p (h) = 0 ∧ L(N)

p (h) ≤ 0).

The ascending chain property of Noetherian rings guarantees that there is a finite
positive integer N such that for all N ′ > N we have the following ideal member-
ship:

L(N ′)
p (h) ∈ 〈h,Lp(h), . . . ,L

(N)
p (h)〉.

The integer N may be found using Gröbner bases to successively check for ideal
membership of L

(N)
p (h) in the ideal generated by the Lie derivatives of orders

lower than N for N = 1, 2, 3, . . . until the ideal saturates (as with DRI). Once N
is found, if the formula

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) = 0 ∧ L(N)
p (h) = 0)

holds, then for any N ′ ≥ N we have

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) = 0 ∧ L(N)
p (h) = 0 ∧ · · ·

∧ L(N ′)
p (h) = 0),

which removes the need to consider disjuncts with Lie derivatives of orders higher
than N , as all the (infinitely many) formulas

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) = 0 ∧ L(N)
p (h) = 0 ∧ · · ·

∧ L(N ′)
p (h) < 0),

with N ′ > N are guaranteed to be false.

Remark 18. The ascending chain property is crucial in making it possible to rea-
son about sign conditions of infinitely many higher-order Lie derivatives by only
considering a finite number of sign conditions. The same idea was independently
pursued in (Ghorbal and Platzer, 2014) to give a necessary and sufficient cri-
terion for invariance of real algebraic sets under the flow of polynomial ODEs
(summarized in the proof rule DRI; discussed earlier).

17



Thus, by computing N for a given polynomial h and a system ẋ = p(x),
one may construct a semi-algebraic set Inp(h ≤ 0). In Fig. 3d we detail the
computation forN = 3 and depict the different “pieces” involved to form Inp(h ≤
0), which is, in this particular case, the same as h ≤ 0 as shown in Fig. 4b.

Likewise in the case of strict polynomial inequalities h < 0, the set Inp(h < 0)
is semi-algebraic and is characterized by the following formula:

h < 0 ∨
(h = 0 ∧ Lp(h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) < 0) ∨

...

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) < 0) ∨
(h = 0 ∧ Lp(h) = 0 ∧ L(2)

p (h) = 0 ∧ · · · ∧ L(N−1)
p (h) = 0 ∧ L(N)

p (h) < 0).
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x1

x 2

(a) L(0)
p (h) < 0 (i.e. h < 0)

x1
x 2

(b) h = 0 ∧ Lp(h) < 0

x1

x 2

(c) h = Lp(h) = 0 ∧ L
(2)
p (h) < 0

x1

x 2

(d) h = Lp(h) = L
(2)
p (h) = 0 ∧ L

(3)
p (h) ≤ 0

Figure 3: Sign conditions on Lie derivatives in the construction of Inp(h ≤ 0) with N = 3.
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x1

x 2

(a) h ≤ 0

x1
x 2

(b) Inp(h ≤ 0)

Figure 4: Constructing Inp(h ≤ 0) using higher-order Lie derivatives.

In order to construct Inp(·) for semi-algebraic sets with boolean structure,
an important distribution property, proved in (Liu et al., 2011, Theorem 20), is
required. For convenience, the property is stated below.

Theorem 19 ((Liu et al., 2011)). Given a polynomial system ẋ = p(x) and a
semi-algebraic set S ≡

∨k
i=1

∧m(i)
j=1 hij ∼ 0 where ∼∈ {<,≤}, we have

Inp(S) ≡
k∨
i=1

m(i)∧
j=1

Inp(hij ∼ 0).

Finally, In(−p)(S) is constructed in exactly the same way as Inp(S), except
the Lie derivatives are computed with respect to the vector field induced by the
system in which time is reversed, i.e. ẋ = −p(x). This is possible because

d

dt
x(−t) = −p(x(−t)),

and the solution to ẋ = −p(x) is given by x(−t), where x(t) is the solution to
ẋ = p(x). Once all the semi-algebraic sets in the premise of LZZ are constructed,
the validity of the premise can be decided using a decision procedure for real
arithmetic (Tarski, 1951).
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6. Hierarchy

In this section, we compare the deductive power of the existing (Fig. 1) as
well as the newly-introduced proof rules (Lie◦ and Lie∗ in Section 4, and NSSBC
in Section 5.2) for checking the invariance of algebraic and semi-algebraic sets.
This study should be complemented by another comparison that considers the in-
teraction between the different proof rules in the context of a formal proof system
in a similar vein to (Platzer, 2012b). We leave this for future work.

Given two proof rules R1 and R2 of the form

(R1)
P1

(S1 : T1) −→ [ẋ = p](S1 : T1)
(R2)

P2

(S2 : T2) −→ [ẋ = p](S2 : T2)
(11)

where Pi refers to the premise of the proof ruleRi, and the conclusion has the form
(S1 : T1) −→ [ẋ = p](S1 : T1), where Si : Ti denotes that the set Si is of type Ti
(the typical types we are considering in this work are algebraic and semi-algebraic
sets).

Definition 20 (Partial order over proof rules). Let R1 and R2 be two proof rules
of the form of Eq. (11). We say that R2 generalizes R1 and write R2 < R1 (or
R1 4 R2), if the premise of R1 implies the premise of R2 (P1 → P2), and T1
is a subtype of T2 (for instance, the type algebraic set is a subtype of the type
semi-algebraic set).

Intuitively, if the proof rule R1 proves that S1 : T1 is an invariant for the vector
field p, then R2 can be also applied to discharge the invariance of S1. If R1 4 R2

and R1 < R2, we say that R1 and R2 are equivalent, and denote this by R1 ∼ R2.
Observe that two equivalent proof rules operate necessarily on equivalents type of
sets so T1 and T2 are equivalent. In a similar vein, R1 64 R2 (or R2 6< R1) denotes
that R1 is not generalized by R2. So in the absence of other rules, a proof rule that
operates on algebraic sets cannot generalize a proof rule for semi-algebraic sets.
Finally, we also write R1 ≺ R2 when R1 4 R2 and R1 6< R2. That is, the rule R2

increases the deductive power of R1.
It is easy to see that the order 4 is a partial order (with ∼ acting as equality):

it is reflexive, R 4 R (the premise of R implies itself); it is anti-symmetric (by
definition), and transitive: if R1 4 R2 and R2 4 R3, then the premise of R1

implies the premise of R3 by transitivity of the implication, so R1 4 R3. Finally,
if R1 64 R2 and R1 6< R2, we will write R1 ≺� R2 and say that the proof rules R1

and R2 are incomparable. This means that for both R1 and R2 there are problems
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that one rule can prove and the other cannot. Notice that a proof rule for invariance
of a certain class of semi-algebraic sets does not automatically generalize a proof
rule for invariance of algebraic sets, even though the subtype condition is satisfied.
Such proof rules are likely to be incomparable.

In what follows we use the partial order (4) to illustrate the lattice structure of
the proof rules under consideration. We use 4 to compare the deductive power of
the proof rules. On one hand, the proof rules for algebraic sets:

{FI,C-c,P-c,Lie,Lie◦,Lie∗,DRI},

and, on the other hand, the proof rules for semi-algebraic sets:

{NSSBC,Nagumo,DI,LZZ} .

For convenience, the propositions of this section are summarized in the compar-
ison matrices in Fig. 6 and Fig. 8. For instance, Prop. 25 proves that FI ≺� Lie.
Cells without numbers are proved by transitivity of the partial order. For instance,
FI ≺ DRI can be proved using FI ≺ C-c (Prop. 21) and C-c ≺ P-c (Prop. 22)
and P-c ≺ DRI (Prop. 24). The Hasse diagram (Fig. 5) gives the lattice structure
where arrows represent strictly increasing deductive power; every missing edge in
the graph represents ≺�, as shown in the comparison matrix.

6.1. Proof Rules for Algebraic Sets
We begin by comparing Darboux-based proof rules, i.e. {FI,C-c,P-c} and

then proceed to the Lie-based proof rule family, i.e. {Lie,Lie◦,Lie∗}. Next, we
demonstrate the deductive superiority of the necessary and sufficient conditions
in the premise of the proof rule DRI. Finally, we show that Darboux-based proof
rules and Lie-based proof rules form two distinct proof rule families; that is, any
proof rule from one family is deductively incomparable to any proof rule from the
other family.

Proposition 21. FI ≺ C-c.

Proof. The premise of the rule C-c requires the existence of some λ ∈ R, such
that Lp(h) = λh. In particular, λ = 0 gives the premise of FI. Thus, FI 4 C-c.
To see that FI 6< C-c, consider the one-dimensional vector field p = (x), we
have Lp(x) = 1x, and hence C-c (λ = 1) concludes that x = 0 is an invariant.
However, FI cannot prove the invariance of x = 0 because x is not a conserved
quantity in the system.
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LZZ

Nagumo

NSSBC DRI

Lie∗

Lie◦

Lie

P-c

DI

C-c

FI

(Algebraic Sets)

(Darboux)(Lie)

(Semi-algebraic Sets)

(Closed Semi-algebraic Sets)

Figure 5: Hasse diagram. An arrow R1 → R2 means R1 ≺ R2; absence of connecting arrow(s)
means (≺�).

Proposition 22. C-c ≺ P-c.

Proof. The premise of the rule P-c requires the existence of some α ∈ R[x],
such that Lp(h) = αh (equivalently, Lp(h) ∈ 〈h〉). In particular, the constant
polynomial gives the premise of C-c. Thus, C-c 4 P-c. To prove that C-c 6< P-c,
consider the two-dimensional vector field p = (xy, x), we have Lp(x) = xy (or
equivalently Lp(x) ∈ 〈x〉 ⊂ R[x, y]) and hence conclude, using P-c, that x = 0 is
an invariant. However, C-c fails to prove this invariant as the required cofactor is
not a scalar.

Proposition 23. Lie ≺ Lie◦ and Lie◦ ≺ Lie∗.

Proof. We already established that Lie 4 Lie◦ (Prop. 8) and Lie◦ 4 Lie∗ (Prop. 7);
we give two counterexamples to establish the strict inclusion. (I) Lie 64 Lie◦.
Whenever the variety has a singularity, the proof rule Lie will fail. Lie◦ is tai-
lored to prove invariance of equilibrium points in addition to regular points of the
variety. For instance, for p = ((−1 + x1)x2, x2(1 + x2)), Lie fails to prove that
h = (−1+x1)2+(1+x2)

2 = 0 is invariant as the gradient∇h vanishes at (1,−1)
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FI C-c P-c Lie Lie◦ Lie∗ DRI

FI ∼ ≺
21

≺ ≺�
25

≺�
28

≺�
27

≺

C-c �
21

∼ ≺
22

≺�
29

≺�
30

≺�
30

≺

P-c � �
22

∼ ≺�
29

≺�
30

≺�
30

≺
24

Lie ≺�
25

≺�
29

≺�
29

∼ ≺
23

≺ ≺

Lie◦ ≺�
28

≺�
30

≺�
30

�
23

∼ ≺
23

≺

Lie∗ ≺�
27

≺�
30

≺�
30

� �
23

∼ ≺
24

DRI � � � � � � ∼

Figure 6: Comparison matrix for proof rules for algebraic sets (the numbers refer to the respective
propositions).

and h((1,−1)) = 0. However, at (1,−1) we also have p1 = p2 = 0, and hence
the premise of Lie◦ is satisfied, and h = 0 is proved to be an invariant under the
flow of p. (II) Lie◦ 64 Lie∗. In addition to equilibria, Lie∗ goes one step further
and handles all singular points, x, where the vector x+λp is in the variety VR(h)
for all λ ∈ R (that is h(x + λp) = 0, for all λ). For instance, consider the poly-
nomial h = x1x2x3, its singular locus is given by the three axes x1 = x2 = 0,
x1 = x3 = 0 and x2 = x3 = 0. For the vector field p = (x1, x2, x3), the equi-
librium point is at the origin (0, 0, 0), which obviously does not contain the entire
singular locus of h. Thus, Lie◦ fails but Lie∗ succeeds because h(x + λp) = 0
when x is a point of one of the axes.

Proposition 24. P-c ≺ DRI and Lie∗ ≺ DRI.

Proof. DRI is both necessary and sufficient (Ghorbal and Platzer, 2014), so we
know that P-c 4 DRI and Lie∗ 4 DRI. To prove the claim it is left to show
that (I) P-c 6< DRI. Consider the following two-dimensional vector field: p =
((−1 + x1)(1 + x1), (−1 + x2)(1 + x2)). The candidate invariant (given by the
roots of the Motzkin polynomial) h = 1 − 3x21x

2
2 + x41x

2
2 + x21x

4
2 = 0 cannot

be proved using P-c, as Lp(h) 6∈ 〈h〉. However, the invariance property may be
proved using DRI. For this, we need to consider the second-order Lie derivative
of h and we prove that L(2)

p (h) ∈ 〈h,Lp(h)〉. Thus, the premise of DRI holds
for N = 2. (II) Lie∗ 6< DRI. Consider the following three-dimensional vector
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field p = (−x2 + x1(1− x21 − x22), x1 + x2(1− x21 − x22), x3). We want to prove
that h = (−1 + x21 + x22)

2 + x23 = 0 is an invariant. In this case, the variety
VR(h) is exactly equal to the singular locus of h which is the two-dimensional
unit circle −1 + x21 + x22 = 0. However, at all points of this unit circle, the vector
field p is equal to (−x2, x1, 0) 6= 0, which prevents us from using Lie∗ (because
h((x1, x2, 0) + λ(−x2, x1, 0)) 6= 0 for some λ ∈ R). The rule DRI proves the
invariance of h = 0 with N = 2.

To appreciate the difference between FI and Lie, let us note that while the con-
dition in the premise of FI may seem strong (i.e. too conservative), singularities
in the invariant candidate do not present a problem for FI, whereas the premise
of Lie rules out such candidates altogether (see Fig. 7). Indeed, the proof rule Lie
cannot prove that 0 = 0 (the whole space is invariant), whereas this is the most
trivial case for FI.

x1

x 2

(a) Positive invariance of the variety
VR(x

2
1+x31−x22) provable using FI (but

not Lie since (0, 0) is a singular point).

x1

x 2

(b) Smooth invariant limit cycle
VR(x

2
1 + x22 − 1) provable using Lie

(but not FI since x21 + x22 − 1 is not an
invariant function).

Figure 7: Invariant functions and invariant equations.

Proposition 25 (FI and Lie are incomparable.). FI ≺� Lie.

Proof. (I) FI 64 Lie. For the vector field p = (−2x2,−2x1 − 3x21), the equation
x21 + x31 − x22 = 0 is provable with FI but not Lie, see Fig. 7 (left). (II) FI 64 Lie.
For the vector field p = (x1−x31−x2−x1x22, x1+x2−x21x2−x32), the invariance
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of the limiting cycle x21 + x22 − 1 = 0 is provable with Lie but not FI, see Fig. 7
(right).

We now prove that Lie-based proof rules {Lie,Lie◦,Lie∗}, and Darboux-based
proof rules {FI,C-c,P-c} are two distinct families of proof rules; that is, any Lie-
based proof is deductively incomparable to any Darboux-based proof rule. The
following lemma follows from the transitivity of the partial order.

Lemma 26. If R1 4 R2 and R3 ≺� R1, then R2 64 R3.

Proof. Consider three proof rulesR1,R2 andR3. IfR2 4 R3, usingR1 4 R2, one
gets by transitivity R1 4 R3, which contradicts the assumption R3 ≺� R1.

Proposition 27. FI ≺� Lie∗.

Proof. Since Lie 4 Lie◦ (Prop. 8) and Lie◦ 4 Lie∗ (Prop. 7), Lie 4 Lie∗. By
Lem. 26, from Lie 4 Lie∗ and FI ≺� Lie (Prop. 25), we obtain Lie∗ 64 FI. The
following example proves that FI 64 Lie∗: Consider the three-dimensional vector
field p = (x2,−x1, 0). The invariance of the equation x23+(−1+x21+x22+x23)2 = 0
cannot be established using Lie∗ (the singular locus is a circle in R3), but is easily
provable using FI as Lp(h) vanishes.

Proposition 28. FI ≺� Lie◦.

Proof. By Lem. 26, from Lie 4 Lie◦ (Prop. 8) and FI ≺� Lie (Prop. 25), we
get Lie◦ 64 FI. On the other hand, if FI 4 Lie◦ then, by transitivity FI 4 Lie∗

(since Lie◦ 4 Lie∗ by Prop. 7), which contradicts FI ≺� Lie∗ (Prop. 27). Thus,
FI 64 Lie◦, and the proposition follows.

Similarly, by substituting FI by Lie, Lie∗ by P-c, and Lie◦ by C-c in Prop. 27
and Prop. 28 as well as their respective proofs, we show that:

Proposition 29. Lie ≺� P-c and Lie ≺� C-c.

Proof. To complete the proof, we still need an example showing that Lie 64 P-c.
Consider the vector field p = (3(−4+x2), 3+xy−y2), the proof rule Lie fails to
prove that the equation h = −3+x2+2xy+6y2+2xy3+y4 = 0 is invariant as the
singular locus of h contains (−2, 1) and (2,−1). However, Lp(h) = (6x − 4y)h
and therefore P-c proves that h = 0 is an invariant equation.

The remaining cases follow from the results established above.
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NSSBC Nagumo DI LZZ

NSSBC ∼ ≺
32

≺�
34

≺

Nagumo �
32

∼ ≺�
35

≺
33

DI ≺�
34

≺�
35

∼ ≺
33

LZZ � �
33

�
33

∼

Figure 8: Comparison matrix for proof rules for semi-algebraic sets (the numbers refer to the
propositions).

Proposition 30. For d ∈ {C-c,P-c}, ` ∈ {Lie◦,Lie∗}, d ≺� `.

Proof. Since FI ≺ d, if d 4 `, then FI 4 `. However, FI ≺� ` (Prop. 27 and
Prop. 28). Thus d 64 `. Similarly, since l � Lie, if d < `, then d < Lie which
contradicts d ≺� Lie (Prop. 29). Hence d 6< ` and the proposition follows.

Remark 31. Provided that the invariant candidate has no singular points, Lie’s
criterion is known to be both necessary and sufficient to prove invariance prop-
erties of level sets (Olver, 2000, Theorem 2.8). Also, FI characterizes invariant
functions (Platzer, 2012a) but not all invariant equations. On the other hand,
for algebraic differential equations, the differential radical criterion in DRI fully
characterizes all invariant algebraic sets (Ghorbal and Platzer, 2014). Thus, as
established in Prop. 24, DRI increases the deductive power of both Darboux-
based rules {FI,C-c,P-c} and Lie-based rules {Lie,Lie◦,Lie∗}, which form dif-
ferent families.

6.2. Proof Rules for Semi-Algebraic Sets
In this section, we compare the deductive power of the proof rules

{NSSBC,Nagumo,DI,LZZ},

as well as their relationships to the proof rules for checking the invariance of
algebraic sets.

Proposition 32. NSSBC ≺ Nagumo.
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Proof. The Nagumo theorem characterizes closed positively invariant sets under
the flow of locally Lipschitz ODEs. In particular, this covers closed semi-algebraic
sets and polynomial ODE. Hence NSSBC 4 Nagumo. To see why the inequal-
ity is strict, consider any vector field with an invariant algebraic set (recall that
algebraic sets are special closed semi-algebraic sets with empty interior). The
proof rule NSSBC cannot work for such invariant sets precisely because it re-
quires Lp(h) < 0 whenever h = 0. In fact, h = 0 → Lp(h) = 0 is a necessary
condition for any invariant algebraic set.

Proposition 33. Nagumo ≺ LZZ and DI ≺ LZZ.

Proof. For semi-algebraic sets, the proof rule LZZ characterizes (arbitrary) invari-
ant semi-algebraic sets for polynomial ODE. The Nagumo theorem only charac-
terizes closed semi-algebraic sets. Hence the strict inequality. Similarly, DI gives
only a sufficient condition and is therefore strictly less powerful than LZZ.

Proposition 34. NSSBC ≺� DI.

Proof. DI 6< NSSBC. Consider the system

p(x) =
(
−
(
x31 + x22x1 − x1 − x2

)
,−
(
x32 + x21x2 − x2 + x1

))
and let S1 ≡

(
x1 − 1

3

)
2 + x22 − 2 ≤ 0 ∧

(
x1 +

1
3

)
2 + x22 − 2 ≤ 0, which is a

positively invariant set under the flow of the system (see Fig. 9a). The invariance
property cannot be proved using the rule DI, but is easily proved using NSSBC
(and LZZ).

NSSBC 6< DI. Consider the system p(x) = (x22, 2) and let S2 ≡ x2 ≥ 0 ∧
x1 ≥ 0. Positive invariance of S2 is proved easily using either DI (and LZZ), but
cannot be proved using NSSBC. Intuitively, this can be seen because at the origin
the vector p(0) does not point strictly into the interior of S2 ≡ max(−x2,−x1) ≤
0, since Lp(−x1) = −x22|0 = 0 (see Fig. 9b).
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x1

x 2

(a) S1 ≡
(
x1 − 1

3

)
2 + x22 − 2 ≤ 0 ∧(

x1 +
1
3

)
2 + x22 − 2 ≤ 0

x1
x 2

(b) S2 ≡ x2 ≥ 0 ∧ x1 ≥ 0

Figure 9: Positive invariance of the semi-algebraic set S1 (left) provable using NSSBC (but not
DI) and a positive invariant S2 (right) provable using DI (but not NSSBC).

Proposition 35. Nagumo ≺� DI.

Proof. By Prop. 34 and Lem. 26, Nagumo 64 DI. In addition, the proof rule DI
cannot be generalized by Nagumo since it can be applied to sets that are not
necessarily closed or open, which is not the case with Nagumo.

In Fig. 5, one can see that the proof rules for algebraic sets are incomparable
with NSSBC. This is precisely because invariant algebraic sets are ruled out all
together by the premise of NSSBC which requires the vector field to point inward
on the boundaries. Furthermore, because only algebraic sets are allowed in the
conclusion of those proof rules, they cannot generalize NSSBC nor DI which can
be apply more generally. Thus:

Proposition 36. Let ` ∈ {FI,C-c,P-c,Lie,Lie◦,Lie∗,DRI}, then ` ≺� NSSBC
and ` 6< DI.

The proof rule DI cannot generalize C-c, P-c, Lie ,Lie◦, Lie∗, and DRI. For
the same reason FI cannot generalize those proof rules (cf. Section 6.1). Thus:

Proposition 37. Let ` ∈ {C-c,P-c,Lie,Lie◦,Lie∗,DRI}, then ` ≺� DI.
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DRI

Lie∗

Lie◦

Lie

P-c

C-c

FI ≺� SFFI

≺� SFC-c

∼ SFP-c

∼ SFDRI

SFLie�

SFLie◦�

SFLie∗�

(a) Algebraic Sets

LZZ

Nagumo

NSSBC

DI

SFEQLZZ∼

≺� SFEQDISFEQNagumo∼

SFEQNSSBC�

(b) Semi-algebraic Sets

Figure 10: Square-free Reduction (Summary)

The generalization FI ≺ DI is a straightforward consequence of DI: in fact,
by definition, the proof rule DI lifts, in a conservative way, the simplest condition
for a differentiable function to be positive or negative—namely by checking if its
derivative is positive or negative respectively—to a finite boolean formula of such
functions. Said differently, the premise of FI is identical to the premise of DI
when used for an atomic formula of the form h = 0.

Remark 38. The premises of the proof rules for algebraic sets could be used to
work with a larger class of invariant sets, namely those of the form h ≥ 0 in
addition to algebraic sets. For instance, if Lp(h) ∈ 〈h〉, then necessarily h ≥
0 is an invariant of the system. In fact, the invariance of h = 0 implies the
invariance of h ./ 0 for ./∈ {≤, <,≥, >}. Such extra proof rules do not bring any
additional insight to the realm of proof rules depicted in Fig. 5 and are therefore
not represented.

7. Square-free Reduction

In this section we assess the utility of performing square-free reduction of in-
variant candidates as a means of (i) increasing the deductive power of certain proof
rules to be identified and (ii) simplifying problems passed to decision procedures
for real arithmetic. Our results are summarized in Fig. 10 for convenience.

7.1. Square-free Reduction with Lie-based Proof Rules
While Lie uses a powerful criterion that captures a large class of practically

relevant invariant sets, it will fail for some seemingly simple invariant candidates.
For instance, the condition in the premise of Lie will not hold when the goal is
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to prove that h = x2 − 6x + 9 = 0 is invariant, no matter what vector field one
considers. The reason for this is simple: x2− 6x+9 factorizes into (x− 3)2. The
problem here lies in the polynomial h itself, rather than the real variety VR(h). In
fact, VR(h) is exactly the singular locus of h and the proof rule Lie fails because
all points inside VR(h) are singular points. More generally, the chain rule implies
∇hk · p = khk−1∇h · p, which has the consequence that any polynomial h which
is not square-free will have vanishing gradient at the real roots of factors with
multiplicity greater than 1.

One can eliminate such annoying instances by reducing h to square-free form,
which is a basic pre-processing step used in computer algebra systems. The
square-free reduction of a polynomial h may be computed as follows:

SF(h) =
h

gcd
(
h, ∂h

∂x1
, . . . , ∂h

∂xn

) . (12)

Intuitively, in performing square-free reduction we hope to shrink the singular
locus of the original polynomial. If SL(SF(h)) is the empty set (which is the case
for h = x2 − 6x + 9 in the example given above), the proof rule Lie applies to
SF(h) but not to h. In general, SF(h) may satisfy the assumptions of the proof
rules Lie◦ or Lie∗, where h fails to do so. It is always sound to conclude that h = 0
is invariant from the knowledge that SF(h) = 0 is invariant, since real varieties
remain unaltered under square-free reduction of their defining polynomials (Cox
et al., 1997), i.e. VR(h) ≡ VR(SF(h)). Thus, replacing h with SF(h) in the
premise of Lie, Lie◦ and Lie∗ does not compromise soundness (it us a use of the
generalization proof rule (Platzer, 2008)) and enlarges the class of polynomials
that these proof rules can work with.

Proposition 39. For all ` ∈ {Lie,Lie◦,Lie∗}, ` ≺ SF `.

This result is unsurprising when one understands that Lie-based proof rules
use geometric concepts to prove invariance properties of sets. In fact, the square-
free reduction removes some purely algebraic oddities that prevent the geometric
condition from holding true when checked syntactically by a machine.

In addition to increasing the deductive power, the square-free reduction re-
duces the total degree of the polynomial in the invariant candidate and hence
serves to reduce the complexity of deciding the conditions in the premise (cf.
discussion in Section 8). In our implementation, we adopt the convention that in-
variant candidates supplied to Lie and its generalizations are square-free reduced
in a pre-processing step.
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7.2. Square-free Reduction with Darboux-based proof rules
Unlike Lie-based proof rules, it is perhaps surprising that using square-free

reduction as a pre-processing step for the proof rules FI and C-c, denoted SFFI
and SFC-c respectively, does not, in general, increase the deductive power and
may even lead to properties that are no longer provable.

Proposition 40. FI ≺� SFFI.

Proof. (I) FI 6≺ SFFI. The polynomial h = x2y is an invariant function for
the vector field p = (∂h

∂y
,−∂h

∂x
) = (x2,−2xy), thus FI proves the invariance of

h = 0. However, SF(h) is not an invariant function for the same vector field, since
Lp(SF(h)) = Lp(xy) = −x2y 6= 0, thus SFFI fails to prove the invariance of
h = 0. (II) SFFI 6≺ FI. Similarly, the polynomial h = xy is an invariant function
for the vector field p = (∂h

∂y
,−∂h

∂x
) = (x,−y), thus SFFI proves the invariance

of x2y = 0, since SF(x2y) = h. However, FI fails to prove the invariance of
x2y = 0, because Lp(x

2y) = x2y 6= 0.

Prop. 40 may at first seem counter-intuitive. However, the criterion in the
premise of FI is different as it proves that the candidate h is an invariant func-
tion. In performing square-free reduction on h, one in general obtains a different
function, SF(h), which need not be conserved in the system if h is conserved or,
conversely, may be conserved even if h is not.

The same observation holds for C-c as the SF reduction does not preserve the
constant rate exponential decrease (or increase).

Proposition 41. C-c ≺� SFC-c.

Proof. (I) C-c 6≺ SFC-c. The proof rule C-c proves the invariance of h = x2y =
0 for the vector field p = (x2, y(1 − 2x)) as Lp(h) = 1h. However, C-c cannot
prove SF(h) = 0, since Lp(SF(h)) = Lp(xy) = (1 − x) SF(h). (II) SFC-c 6≺
C-c. For the same h, C-c proves the invariance of SF(h) = 0 for the vector field
p = (x2, y(1−x)) as Lp(SF(h)) = Lp(xy) = 1 SF(h). However, without the SF
reduction C-c alone fails to prove the invariance of h = 0 for the considered p, as
Lp(h) = (x+ 1)h.

After Prop. 40 and 41, one expects P-c to be incomparable with its square-
free counterpart. Surprisingly, the proof rules P-c and SFP-c (which applies P-c
after the square-free reduction) are in fact equivalent. This follows from the fact
that a polynomial is Darboux for a vector field p if and only if all its factors are
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also Darboux for the same vector field. Our findings are stated in Prop. 42 and its
corollary Prop. 43.5

Proposition 42. Let h = qm1
1 · · · qmr

r denote the decomposition of the polynomial
h into irreducible (over the reals) factors, qi. Then, h is Darboux for p if and only
if, for all i, qi is Darboux for p.

Proof. If, for all i, the polynomial qi is Darboux for p, then qi divides Lp(qi), i.e.
Lp(qi)

qi
∈ R[x1, . . . , xn]. Therefore, using the chain rule,

Lp(h) = Lp(q
m1
1 · · · qmr

r ) (13)

=
r∑
i=1

(
miLp(qi)q

mi−1
i

∏
j 6=i

q
mj

j

)
(14)

=
r∑
i=1

miLp(qi)q
mi−1
i

h

qmi
i

(15)

= h
r∑
i=1

mi
Lp(qi)

qi
(16)

∈ 〈h〉, (17)

and h is also Darboux for p.
If h is Darboux for p, then h divides Lp(h) and Lp(h)

h
is a polynomial. Recall

that SF(h) = q1 · · · qr. Using Eq. (16), one gets

Lp(h)

h
SF(h) =

r∑
i=1

mi
Lp(qi)

qi
SF(h) . (18)

For a fixed i, qi divides SF(h), it thus divides the left hand side of Eq. (18). More-
over, qi divides SF(h)

qj
, for all j 6= i. It thus necessarily divides mi

SF(h)
qi

Lp(qi).

If qi divides SF(h)
qi

, then there exists j 6= i such that qi divides qj , which contra-
dicts the fact that all factors q1, . . . , qr are irreducible. Thus, qi divides Lp(qi) and
Lp(qi) ∈ 〈qi〉.

Proposition 43. P-c ∼ SFP-c.

5See (Dumortier et al., 2006, Proposition 8.4) for a similar proposition over the complex num-
bers.
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Proof. The proof rule P-c proves the invariance of h = 0 for p if and only if
the polynomial h is Darboux. However, by Prop. 42, h is Darboux if and only if
SF(h) is also Darboux. Therefore, SFP-c could be used equivalently to prove the
invariance of h = 0.

Remark 44. The condition Lp(h) ∈ 〈SF(h)〉—which is weaker than Lp(h) ∈
〈h〉—is not sufficient to prove the invariance of h = 0. It is therefore an unsound
proof rule. Consider the polynomial h = (−1 + x2)2 and the 1-dimensional
vector field ẋ = x. Although Lp(h) = 4(−1 + x2)x2 ∈ 〈−1 + x2〉 = 〈SF(h)〉,
the equation h = 0 is not invariant, however, because x(t) = ±et. Notice that
the proof rule P-c (with or without the square-free reduction) is unable to prove
or disprove the invariance of h = 0.

7.3. Square-free Reduction On Differential Radical Invariants (DRI)
Square-free reduction cannot increase the deductive power of the proof rule

DRI because its premise is necessary and sufficient to prove invariance of real
algebraic sets, which is unaffected by applying SF reduction. However, the com-
putational impact of using square-free reduction with DRI remains an interesting
question. Empirically, we observed a better performance of DRI when the SF
reduction is applied first. In addition to lowering the degrees of the involved poly-
nomials (as it did for Lie-based proof rules), we observed that the order NSF for
SF(h) is always lower than the orderN for h. We, therefore, conjectureNSF ≤ N .
However, we identified an example (cf. Ex. 45 below) for which square-free re-
duction resulted in a significant (×100) computational overhead due to the ideal
membership checking (which we perform using Gröbner bases with reverse lex-
icographic monomial ordering). In our implementation of DRI, called DRIopt in
the sequel, we use the square-free reduction only as a pre-processing step for the
quantifier elimination problems in the premise of DRI.
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Example 45. Consider the following vector field p:

ẋ1 = −24 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x4x5

(
x27 + x2 − 12341

)
16

(
x4x

2
5 − 12x6x8

)
11,

ẋ2 = 144 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x27 + x2 − 12341

)
16x8

(
x4x

2
5 − 12x6x8

)
11,

ẋ3 = −32 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x7

(
x27 + x2 − 12341

)
15

(
x4x

2
5 − 12x6x8

)
12,

ẋ4 = 144 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x6

(
x27 + x2 − 12341

)
16

(
x4x

2
5 − 12x6x8

)
11,

ẋ5 = (x1 + x3)
(
2x1x

4
2 + 4x31x

2
2 − 6x1x

2
3x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16

+
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16,

ẋ6 = (x1 + x3)
(
2x2x

4
1 + 4x32x

2
1 − 6x2x

2
3x

2
1

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16

+ 16 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
15,

ẋ7 = (x1 + x3)
(
6x53 − 6x21x

2
2x3

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16

+
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16,

ẋ8 = 12 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x25

(
x27 + x2 − 12341

)
16

(
x4x

2
5 − 12x6x8

)
11,

and let

h1 =
(
x4x

2
5 − 12x6x8

)
12

h = (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x27 + x2 − 12341

)
16h1.

Attempting to prove that h = 0 is invariant under the flow of this system using
DRI we observe running time of under 2 seconds. Reducing h to be square-free
results in DRI running for over 8 minutes before it is able to prove the result. In
this case, square-free reduction introduces a performance penalty when checking
for polynomial ideal membership (which is performed using Gröbner bases with
reverse lexicographic monomial ordering). We see that one needs to be careful
when using square-free reduction with DRI because even though it is reason-
able to expect better performance due to lower degrees in square-free reduced
polynomials, performing this step may make the Gröbner basis computation more
difficult for some problems.

Remark 46. Notice that Prop. 42 does not have an analogue for DRI. In other
words, if a polynomial equation h = 0 is invariant for p, its irreducible factors
need not define invariant equations themselves. Geometrically, this means that if
a variety is invariant under the flow of p, its irreducible components need not be
invariants under the flow of p. For instance, consider the irreducible polynomials
q1 = y − 1 and q2 = x2 + (y − 1)2. The equation q1q2 = 0 which is equivalent
to y = 1, is invariant for p = (1, 0), since the premise of the proof rule DRI
holds true for N = 3. However, the equation q2 = 0, which is equivalent to
x = 0 ∧ y = 1, is not an invariant equation for p. The reason for the invariance
of q1q2 = 0, which is equivalent to q1 = 0 ∨ q2 = 0, stems from q1 not from q2.
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7.4. Order parity decomposition
Similar to square-free reduction for invariant polynomial equations, one may

sometimes remove roots of multiplicities greater than 1 from polynomial inequal-
ities p ≤ 0, thereby simplifying their description and removing singularities on
their boundary. To do this, we will require some definitions, due to Dolzmann and
Sturm (see (Dolzmann and Sturm, 1995)).

Definition 47 (Square-free decomposition (Dolzmann and Sturm, 1995)). Given
a polynomial h ∈ Z[x1, . . . , xn], the square-free decomposition is given by

(h1, . . . , hn) s.t.
n∏
i=1

hii = h,

where all hi are square-free and relatively prime, i.e. gcd(hi, hj) = 1.

Note that while superficially similar to square-free reduction, the square-free
decomposition is quite different. To see this, note that the exponent in the product
matches the index. Thus, the order in a square-free decomposition encodes the
exponent to which the factor hi is raised in the original polynomial h, i.e. the fac-
tors raised to odd powers will have odd index in the decomposition; respectively
for even exponents.

Definition 48 (Parity decomposition (Dolzmann and Sturm, 1995)). Given a poly-
nomial h ∈ Z[x1, . . . , xn] with square-free decomposition (h1, . . . , hn), the parity
decomposition is given by (∏

odd i

hi,
∏

even i

hi

)
.

Proposition 49 (Square-free equivalent (Dolzmann and Sturm, 1995)). Let h ∈
Z[x1, . . . , xn] and let (ho, he) be the parity decomposition of h. Then the following
equivalences hold:

1. h = 0 ≡R SF(h) = 0,
2. h 6= 0 ≡R SF(h) 6= 0,
3. h > 0 ≡R hoh

2
e > 0 ≡R ho > 0 ∧ he 6= 0,

4. h ≥ 0 ≡R hoh
2
e ≥ 0 ≡R ho ≥ 0 ∨ he = 0,

5. h < 0 ≡R hoh
2
e < 0 ≡R ho < 0 ∧ he 6= 0,

6. h ≤ 0 ≡R hoh
2
e ≤ 0 ≡R ho ≤ 0 ∨ he = 0.
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The resulting (rightmost) equivalent formulas are guaranteed to only feature
square-free polynomials and are called square-free equivalents.

For a semi-algebraic set S given by a quantifier-free formula of real arithmetic,
we define SFEQ[S] to be the square-free equivalent formula obtained by apply-
ing the equivalences in Proposition 49 to each atomic formula in S. Using the
SFEQ reduction as a pre-processing step for the proof rule NSSBC is denoted
SFEQNSSBC and accordingly for SFEQDI and SFEQNagumo.

Theorem 50. SFEQNSSBC � NSSBC.

Proof. If Lp(h) < 0 is true when h is an active component (h = 0), it is nec-
essarily the case that h is square-free. Thus SFEQ(h) = h (which then equals
SF(h)) and, therefore, SFEQNSSBC < NSSBC. Let ẋ = p(x) = (−x1,−x2)
and consider the set S ≡ (x21 + x22− 1)3 ≤ 0. Applying NSSBC fails to prove the
positive invariance property. Computing the order parity decomposition, we get
SFEQ(S) ≤ 0 ≡ (x21 + x22− 1) ≤ 0, for which positive invariance under the flow
of p(x) is proved easily using NSSBC.

Example 51 (Positive invariant defined by polynomial inequality). Let us con-
sider a system with an unstable limit cycle around a stable origin:

ẋ1 = −x1 − x2 + x1x
2
2 + x31,

ẋ2 = x1 − x2 + x21x2 + x32.

Suppose we wanted to show that the set of states satisfying the following inequality
is positively invariant:

(x21 + x22 − 1)2(x21 + x22 −
1

2
)3 ≤ 0.

Let us refer to this set as h ≤ 0. As can be seen from the phase portrait in Figure
11, the set h ≤ 0 is indeed positively invariant under the flow; however, h is not
square-free, but h ≤ 0 has the following square-free equivalent:

SFEQ[(x21 + x22 − 1)2(x21 + x22 −
1

2
)3 ≤ 0] ≡(

x21 + x22 −
1

2
≤ 0 ∨ x21 + x22 − 1 = 0

)
.

This is an example of a positively invariant set described by a non-strict poly-
nomial inequality where applying NSSBC will fail. In fact, the barrier certificate

37



x1

x 2

Figure 11: Positively invariant set given by h ≤ 0 (in red).

approach (Prajna et al., 2007) breaks down completely, i.e. no barrier certificate
exists for showing positive invariance of this set.

It is perhaps remarkable is that the output of SFEQ(h) ≤ 0 yields two sub-
problems, both of which we can solve using only sufficient proof rules: one is
a non-strict inequality x21 + x22 − 1

2
≤ 0 for which one can apply the method of

strict barrier certificates to prove its positive invariance; the other is a polynomial
equality defining a smooth invariant curve x21 + x22 − 1 = 0, which can also be
handled (using e.g. the proof rule Lie).

By performing the above steps one proves that both disjuncts are positively
invariant under the flow, and hence their disjunction is also positively invariant,
concluding the proof that h ≤ 0 describes a positively invariant set. A formal
proof of this property within a proof calculus needs an inference rule such as
NSSBC, some appropriate rule for equational invariants, such as e.g. Lie, P-c
or DRI, as well as the following special case of the generalization rule (Platzer,
2008):

(Inv∨)
S1 → [ẋ = p(x)] S1 S2 → [ẋ = p(x)] S2

S1 ∨ S2 → [ẋ = p(x)] (S1 ∨ S2)
.

Theorem 52. SFEQDI ≺� DI

Proof. Corollary to Proposition 40, since FI is a special case of DI and SFEQ[h =
0] ≡ SF(h) = 0.
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Theorem 53. SFEQNagumo ∼ Nagumo.

Proof. Nagumo is necessary and sufficient for proving positive invariance of
closed sets and SFEQ returns a description of an equivalent set (over the reals).
Thus, a closed set S is positively invariant using Nagumo if and only if an equiv-
alent closed set SFEQ[S] is positively invariant using Nagumo.

Theorem 54. SFEQLZZ ∼ LZZ.

Proof. Elementary, since LZZ is necessary and sufficient for proving positive in-
variance and SFEQ[S] gives an equivalent set in Rn.

8. Experimental Comparison

To complement the theoretical deductive power comparison with a practical
provability study, we empirically compare the running time performance of all the
proof rules discussed in this paper on a heterogeneous collection of benchmarks
(76 for algebraic sets and 20 for semi-algebraic sets).

Many premises of the considered proof rules are universally quantified sen-
tences over the theory of real arithmetic. The purely existential fragment of real
quantifier elimination has been shown to exhibit singly exponential time com-
plexity in the number of variables (Basu et al., 1996). However, in practice this
has not yet led to an efficient decision procedure, so typically it is much more
efficient to use CAD (Collins, 1975; Collins and Hong, 1991), which has doubly-
exponential running time in the number of variables. Theoretically, the upper
bound on the complexity of deciding a sentence in the universal theory of R is
given by (sd)O(n), where s is the number of polynomials in the formula, d their
maximum degree and n the number of variables (Basu et al., 1996).

Notice, in addition, that the proof rules, C-c, P-c, DRI and LZZ involve rea-
soning about multivariate polynomial ideal membership, which is an EXPSPACE-
complete problem over Q (Mayr, 1989). Gröbner basis algorithms allow us to
perform membership checks in ideals generated by multivariate polynomials. Sig-
nificant advances have been made in algorithms for computing Gröbner bases
(Faugère, 2002) which in practice can be expected to perform very well. Our ex-
perimentation relies on the implementation of the CAD algorithm in Mathematica
(version 10.0.1).

The examples we used originate from a number of sources—many come from
textbooks on Dynamical Systems; some from the literature on formal verification
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of hybrid systems; others have been hand-crafted to tease out sweetspots of cer-
tain proof rules. The most interesting experimental question we seek to address
here is whether the greater generality of the more deductively powerful proof rules
also comes at a substantially higher computational cost when assessed across the
entire spectrum of examples. As a complement to the theoretical deductive power
relationships between the different proof rules (Section 6), we also seek to iden-
tify some nuances in the complexity of the conditions in the premises, which the
coarse-grained complexity bounds miss, being highly sensitive to the number of
variables.

The proof rule Nagumo is intractable since it requires computing the contin-
gent cone to a given semi-algebraic set. All algebraic sets are of the form h = 0,
for which LZZ and DRI will ultimately result in the same conditions; only DRI
and its optimized implementation DRIopt (see Section 7.3) will be considered in
the benchmarks.6 We have also established that NSSBC cannot discharge any
invariant algebraic set and that DI applied to candidates of the form h = 0 is
equivalent to FI. Thus, two comparisons are of interest: the set of proof rules
for algebraic sets (Section 8.1) and the set of poof rules for semi-algebraic sets
(Section 8.2).

From our experiments it emerges that the proof rules exhibit different (and at
times surprising) trade-offs between generality and efficiency.

8.1. Running Time Performance for Algebraic Sets
In this section, the prefix SF is implicit for all Lie-based proof rules. We con-

sider 4 equally sized classes of invariant sets: (1) 24 smooth invariants, where
Lie is both necessary and sufficient, (2) 17 isolated equilibria as trivial (for hu-
mans, not machines) equational invariants for which both Lie◦ and Lie∗ provide
necessary and sufficient conditions, (3) 17 other singularities and high integrals,
(4) 18 functional invariants, where FI is necessary and sufficient. Figure 12 com-
pares the number of invariant varieties that each rule could prove within 60 sec-
onds. The vertical axis shows cumulative time spent on the problems. All runs
were performed on an Intel Core i5 1.7GHz machine with 4Gb RAM. Gener-
ally, we observe DRI performing very well across the entire spectrum of problem
classes. This is very encouraging, but also at first sight appears to defy intuition
since it implies that one does not necessarily sacrifice performance when opting

6We refer the reader to (Ghorbal et al., 2014) for a more detailed discussion of the differences
and similarities between the Liu, Zhan & Zhao characterization (Liu et al., 2011) and the differen-
tial radical characterization (Ghorbal and Platzer, 2014).
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Figure 12: Experimental performance of proof rules: problems solved per time (log scale)

to use a more deductively powerful rule. In this graph, we also see that over-
all Lie◦ appears to offer an interesting compromise between deductive power and
efficiency—it is able to prove a significant body of problems that are out of scope
for Lie, while avoiding the complexity penalty which affects Lie∗ (due to intro-
ducing an extra variable).

A more careful analysis of the benchmarks reveals interesting relationships
that are obscured in the “big picture”; to see them, one needs to consider the
individual classes of invariants for which some of the sufficient conditions in the
rules are in fact necessary and sufficient. Together with DRI, this yields two
decision procedures for each class and allows us to focus only on running time
performance and assess the practicality of each proof rule. In Fig. 13, we observe
the rules Lie◦ and Lie∗ performing very well in proving invariance of isolated
equilibria. This is to be expected as Lie◦ in particular was formulated with this
problem class in mind. It is interesting that DRI remains highly competitive here;
though its performance is slightly worse in our set of benchmarks.

It is clear that because proof rules Lie◦ and Lie∗ generalize Lie, they will be
able to prove every problem in the smooth invariant benchmarks. The running
time performance of the three rules is almost identical, with Lie offering a slight
speed-up over its generalizations. The premises of Lie◦ and Lie∗ impose condi-
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Figure 13: Number of problems solved per class (log scale).

tions on states in the singular locus, which is the empty set for smooth invariants;
this, in practice, appears to be slightly more expensive than checking an equiva-
lent property that the gradient is non-vanishing on the variety (as in the premise
of Lie).

The proof rules FI and P-c, corresponding to conditions with historical ori-
gins in the study of integrability of dynamical systems, can be seen to perform
very well in proving functional invariants, while performing very poorly in bench-
marks for isolated equilibria. In proofs of smooth invariants their behaviour is
radically different, with FI proving only a handful of examples and P-c succeed-
ing in proving most of the problems very efficiently. This can be explained by the
fact that P-c generalizes FI and is therefore more deductively powerful. P-c ap-
pears slightly slower at proving functional invariants, but shows very impressive
running time performance for some problems from the smooth invariant bench-
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marks, where it is the fastest proof rule for many of problems where it succeeds.
Comparing running time performance with DRI, we see that DRI is only slightly
slower at proving functional invariants than FI and P-c. Again, the performance
gap between DRI and the two rules appears to be insignificant for most problems.
Theoretically, when P-c proves an invariant, DRI applies conditions that are iden-
tical to the premise of P-c. Hence, although DRI is a generalization, this does
not come at a significant extra cost for the classes where P-c shows good running
time performance. The slightly greater running time of DRI compared to that of
P-c can be accounted for by the fact that in our implementation DRI computes the
Gröbner basis for every order N including for N = 1 where such computation is
unnecessary.

For functional invariants, FI (i.e. the equality fragment of DI) benefits from the
fact that the condition in its premise, which requires to show that the Lie derivative
evaluates to zero everywhere, is equivalent to showing that the Lie derivative is the
zero polynomial, which can be checked very efficiently by symbolic computation,
without a decision procedure for real arithmetic.

In the examples featuring singularities and high integrals in the benchmarks
we see DRI as the clear winner, simply because there was no other rule that was
tailored to work on this class. Indeed, the structure of these invariant sets can be
rather involved, making it difficult to characterize in a single proof rule; however,
sometimes it is possible to exploit the structure of high integrals inside a proof
system and arrive at efficient proofs that outperform DRI (Ghorbal et al., 2014).

It is not surprising that DRI should ultimately overtake all the other rules in
terms of deductive power (it is, after all, necessary and sufficient); what is re-
markable is that the performance we observe for DRI is often very competitive
to that of the sufficient rules when they also succeed at a proof. This observation
suggests a possible strategy for proof search in a proof system: give precedence
to DRI and switch to other sufficient rules if DRI takes longer than some time-out
value. The rationale behind this decision is our empirical observation that DRI
performs consistently well on all problem classes we considered, but it is also
sometimes possible to save time by using a proof rule which is less deductively
powerful. It is important to note here that the overall proof system benefits from
including the sufficient proof rules, rather than relying solely upon DRI.

8.2. Running Time Performance for Semi-algebraic Sets
In Fig. 14 we compare the running time performance of the proof rule LZZ

versus the sufficient conditions DI (Fig. 14a) and NSSBC (Fig. 14b). Two dif-
ferent sets of 10 benchmarks each were selected to exploit the sweetspots of DI
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Figure 14: Number of problems solved in each class (times on log scale).

and NSSBC respectively. We observe that whenever DI can prove invariance in
the problem at hand, it is much faster than LZZ. This is expected: the quantifier
elimination problems required by the proof rule LZZ are much more involved than
those found in the premise of DI. This should be balanced by the fact that DI is
more restrictive. In the set of benchmarks for NSSBC, one can observe that DI
does not prove any of the problems. In Fig. 14b, one can also notice that LZZ still
performs well compared to NSSBC. Indeed, the premise of the proof rule NSSBC
can involve complicated real arithmetic problems that are sometimes even more
difficult than those appearing in the premise of the proof rule LZZ. Generally,
the size of the conditions in the premise of NSSBC grows rapidly with the size
of the formula describing the invariant candidate. The distribution property in
Theorem 19 avoids this problem in LZZ.

9. Conclusion

This article investigated an important aspect of deductive safety verification
of continuous and hybrid dynamical systems. Namely, given the abundance of
existing sufficient conditions for invariant checking and the recently developed
necessary and sufficient conditions for real algebraic (Ghorbal and Platzer, 2014)
and semi-algebraic (Liu et al., 2011) invariants, it is crucial to know whether the
gains in deductive power come at the price of greater computational complexity
and poor running time performance that would hinder practical applications. The
work presented in this article leads us to arrive at the following conclusions:

• Empirically, we observe that the deductively powerful rule for algebraic
invariants (DRI) performs very well in checking invariance of polynomial
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equalities.

• P-c is made redundant by DRI (DRI strictly increases the deductive power
of P-c while being equally efficient).

• Reducing polynomials to square-free form is always beneficial to the proof
rule Lie and its generalizations, where it yields improvements in both the
deductive power and the running time performance.

• Using the square-free reduction with the proof rules FI and C-c yields new
incomparable proof rules, whereas SF with P-c is as powerful as P-c alone.

• Performing square-free reduction of an invariant candidate may introduce
a performance penalty for DRI and therefore cannot be regarded as an op-
timization, even though there are instances for which it yields a speed-up.
The same can be said of order parity decomposition applied to an invariant
candidate supplied to LZZ.

• Sufficient rules DI and NSSBC can afford a speed-up on certain problems,
but the overall running time performance of the decision procedure LZZ is
observed to be good.

• Using a decision procedure LZZ appears to be more efficient than using the
sufficient condition NSSBC when the positively invariant candidate set is
described by a large formula.

Our next step is to use these highlighted insights to build efficient proof strategies
that intelligently combine different proof methods to efficiently construct formal
proofs, e.g., by favoring the most deductively complete rules that come without
significant practical performance penalties on the most common cases of invari-
ants.
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entialgleichungen (in German). In: Proceedings of the Physico-Mathematical
Society of Japan. Vol. 24. pp. 551–559.

Olver, P. J., 2000. Applications of Lie Groups to Differential Equations. Springer.

Platzer, A., 2008. Differential dynamic logic for hybrid systems. J. Autom. Rea-
soning 41 (2), 143–189.

Platzer, A., 2010. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput. 20 (1), 309–352.

Platzer, A., 2012a. A differential operator approach to equational differential in-
variants - (invited paper). In: ITP. Vol. 7406 of LNCS. Springer, pp. 28–48.

Platzer, A., 2012b. The structure of differential invariants and differential cut elim-
ination. Logical Methods in Computer Science 8 (4), 1–38.

Prajna, S., Jadbabaie, A., 2004. Safety verification of hybrid systems using barrier
certificates. In: In Hybrid Systems: Computation and Control. Springer, pp.
477–492.

Prajna, S., Jadbabaie, A., Pappas, G., 2007. A framework for worst-case and
stochastic safety verification using barrier certificates. Automatic Control, IEEE
Transactions on 52 (8), 1415–1428.

47



Richardson, D., 12 1968. Some undecidable problems involving elementary func-
tions of a real variable. Journal of Symbolic Logic 33 (4), 514–520.

Sankaranarayanan, S., Sipma, H. B., Manna, Z., 2008. Constructing invariants for
hybrid systems. Form. Methods Syst. Des. 32 (1), 25–55.

Taly, A., Tiwari, A., 2009. Deductive verification of continuous dynamical sys-
tems. In: FSTTCS. Vol. 4 of LIPIcs. pp. 383–394.

Tarski, A., 1951. A decision method for elementary algebra and geometry. Bull.
Amer. Math. Soc. 59.

Tiwari, A., 2008. Abstractions for hybrid systems. Form. Methods Syst. Des.
32 (1), 57–83.

Walter, W., 1998. Ordinary Differential Equations. Springer New York.

Wu, Z., 2010. Tangent cone and contingent cone to the intersection of two closed
sets. Nonlinear Analysis: Theory, Methods & Applications 73 (5), 1203 –
1220.

48


