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Abstract: In learning approaches for classification problem, the misclassification error types may have different 
impacts. To take into account this notion of misclassification cost, cost sensitive learning algorithms have 
been proposed, in particular for the learning of multilayer perceptron. Moreover, data are often corrupted 
with outliers and in particular with label noise. To respond to this problem, robust criteria have been 
proposed to reduce the impact of these outliers on the accuracy of the classifier. This paper proposes to 
associate a cost sensitivity weight to a robust learning rule in order to take into account simultaneously these 
two problems. The proposed learning rule is tested and compared on a simulation example. The impact of 
the presence or absence of outliers is investigated. The influence of the costs is also studied. The results 
show that the using of conjoint cost sensitivity weight and robust criterion allows to improve the classifier 
accuracy.  

1 INTRODUCTION 

Learning approaches have been extensively used 
for knowledge Discovery in Data problems, in 
general, and more particularly in classification 
problems. Different tools may be used to design 
classifiers including logic based algorithms (decision 
trees, rule based classifiers…) statistical learning 
algorithms (naïve Bayes classifiers, Bayesian 
network…) instance approaches (k-nearest 
neighbours) support vector machine and neural 
networks (multilayer perceptron, radial basis 
function networks) (Kotsiantis 2007).  

This paper focuses on multilayer perceptron 
(MLP) which is able to approach different classifiers 
of diverse complexity: Euclidian distance, 
regularized and standard Fisher, robust minimal 
empirical error, and maximum margin (support 
vectors) (Raudys and Raudys 2010). 

With the goal of classification of data into 
different classes comes the notion of 
misclassification cost. The problem of cost-
sensitivity in learning classification applications has 
received important attention during the last years 
(Geibel et al. 2004, Raudys and Raudys 2010, Castro 
and Braga 2013). 

The main goal of classifier construction by using 
learning approach is to minimize the mean square of 
the error on a training data set. However, the 
misclassification of a pattern in one class may not 
have the same impact that another misclassification 
of another pattern in another class. As example in 
medical diagnosis, the cost of non-detection (false 
negative) and of false alarm (false positive) don’t 
have the same impact on the patient live, and so 
don’t have the same cost.  

Moreover, in case of an imbalanced training set, 
such approaches may lead to models which are 
biased toward the overrepresented class (Castro and 
Braga 2013), and in many cases (quality monitoring, 
medical diagnosis, credit risk prediction…) the 
overrepresented class is often the less important one 
(Zadrozny et al. 2003).  

To take into account this problem different cost-
sensitive approaches have been proposed. Zadrozny 
et al. (2003) classified these approaches in three 
main classes: 

• Making particular classifier learners 
cost-sensitive (Drummond and Holte 
2000, Garcia et al. 2013, Castro and 
Braga 2013), 

• Using Bayes risk theory to assign each 
example to its lower risk class 



 

(Domingos 1999, Margineantu 2002, 
Zadrozny and Elkan 2001), 

• Using of meta-models for converting 
classification learning dataset into cost-
sensitive ones (Domingos 1999, Fan et 
al. 1999, Zadrozny et al. 2003).  

This work is relevant to the first category 
because its aim is to propose a cost-sensitive 
learning algorithm for multilayer perceptron. A 
misclassification cost is introduced in the criterion to 
minimize in order to take into account cost 
sensitivity during learning.  

Cost sensitivity problem in classifier design is 
not the only one to be addressed. The problem to the 
corruption of data by outliers may lead to biased 
models.  

Different outlier definitions has been proposed in 
the literature (Hawkins 1980, Barnett and Lewis 
1994, Moore and McCabe 1999…). All of them are 
accordingly to say that outlier is a different data than 
the other data of the complete dataset (Cateni et al. 
2008). In classification problem, outliers may be the 
consequence of two types of noise (Zhu and Wu 
2004): 

• Attribute noise (addition of a small 
Gaussian noise to each attribute during 
data collection), 

• Class noise (modification of the label 
assigned to the pattern). 

Different studies have shown that class noise has 
a greater impact on the model design (Zhu and Wu 
2004, Sàez et al. 2014). Frénay and Verleysen 
(2014) have performed a review of classification 
approaches in presence of label noise. They have 
proposed to classify these approaches into three 
classes: 

• Label-noise robust approaches 
(Manwani and Sastry 2013) 

• Label noise cleansing approaches (Sun 
et al. 2007) 

• Label noise tolerant approaches (Swartz 
et al. 2004). 

The considered approach is more related to the 
first one. Classically, the learning algorithm is based 
on the use of the classical ordinary least-squares 
criterion (L2 norm) also called Mean Squared Error 
(MSE). To limit the impact of outliers on the 
resulting model, an M-estimator is used which is 
initially developed in robust statistics but was 
introduced for neural network learning by many 
authors (Chen and Jain 1991, Bloch et al. 1994, 
1997, Liano 1996). It can be noticed that, contrary to 
popular belief, neural network are not intrinsically 
robust to outliers (Thomas et al. 1999).  

The main goal of this paper is to associate a cost-
sensitivity weight and robust norm in the criterion to 
minimize in order to derive the learning algorithm of 
MLP for classification problem.  

In the next part, the structure of the considered 
MLP is recalled and the proposed learning algorithm 
presented. In part 3, the simulation example used to 
test the proposed algorithm is presented and the 
results obtained are shown and discussed before to 
conclude.  

2 MULTILAYER PERCEPTRON 

2.1 Structure 

Multilayer neural network including only one 
hidden layer (using a sigmoidal activation function) 
and an output layer is able to approximate all 
nonlinear functions with the desired accuracy 
(Cybenko 1989, Funahashi 1989). For a seak of 
simplicity of presentation, only the single output 
case is considered here, the multi outputs case may 
easily derivated from this case. The structure of such 
MLP is given by: 
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where ix  are the ni inputs, 1

hiw  are connecting 
weights between input and hidden layers, 1

hb  are the 
hidden neurons biases, gh(.) is the activation function 
of the hidden neurons (hyperbolic tangent), 2

hw  are 
connecting weights between hidden and output 
layers, b is the bias of the output neuron, go(.) is the 
activation function of the output neuron, and ŷ  is 
the network output.  

Due to the fact that the considered problem is a 
classification one, go(.) is chosen as a sigmoidal 
function. 

Due to the fact that learning of a MLP is 
performed by using a local search of minimum, the 
choice of the initial parameters set is crucial for the 
model accuracy. Different initialization algorithms 
have been proposed in the past (Thomas and Bloch 
1997). A modification of the Nguyen and Widrow 
(NW) algorithm (Nguyen and Widrow 1990) is used 
here, which allows a random initialization of 
weights and biases to be associated with an optimal 
placement in the input space (Demuth and Beale 
1994). 

 



 

2.2 Learning algorithm 

The main goal for the learning algorithm in 
classifaction problem is to design a model able to 
associate the good class to each pattern. This model 
is directly extracted from a learning dataset. To do 
that, the mean root square error performed between 
the predicted output of the model and the real 
desired one must be minimized. So the classical 
quadratic criterion to minimize is: 
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where θ comprises all the unknown network 
parameters (weights and biases), n is the size of the 
learning dataset and ε is the prediction error given 
by: 

 
 ˆ( , ) ( ) ( , )k y k y kε θ θ= −  (3) 

 
where y(k) is the real desired class of the pattern k 
and ˆ( , )y k θ   is the predicted one by the network.  

Such criterion to minimize is not able to take into 
account the fact that learning dataset may be 
polluted by outliers or the fact that the cost 
associated to each type of missclassification error 
may be different. To do that two weights may be 
introduced into the criterion in order to take into 
account these facts.  

To take into account the presence of outliers in 
the dataset, a robust criterion to minimize is used. It 
is based on a robust identification method proposed 
by Puthenpura and Sinha (1990), itself derived from 
the Huber’s model of measurement noise 
contamined by outliers (Huber 1964) which 
assimilates the noise distribution e to a mixture of 
two Gaussian density functions of mean 0 and 
variance 2

1σ  for the first Gaussian which represents 

the normal noise distribution and variance 2
2σ  for 

the second Gaussian which represents the outliers 
distribution such that 2 2

1 2σ σ< : 
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where µ is the large error occurence probabily. 

Generally, the probabilty µ and the two variances 
2
1σ  and 2

2σ  are unknow and must be estimated. To 

do that, the preceding model (4) is replaced by: 
 

 2 2
1 2( , ) ~ (1 ( )) (0, ) ( ) (0, )k k N k Nε θ δ σ δ σ− + (5) 

 
where ( ) 0kδ =  when ( , )k Mε θ ≤  and ( ) 1kδ =  

otherwise. M is a bound which is taken equal to 13σ
(Aström 1980). The estimations of variance 2

1σ  and 
2
2σ  are calculated at each iteration i and are given by 

(Ljung 1987): 
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where MAD is the median of { }( , )kε θ ε− ɶ  with εɶ  

as the median of { }( , )kε θ . 

This definition of the prediction error of the 
network allows to define the robust criterion to 
minimize:  
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Where 2 ( )kσ  is the robust weight (estimated 

variance) associated to the predicted error of the kth 
pattern:   

 
 2 2 2
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To divide the predicted error by its variance 

allows to limit the impact of too large errors on the 
learning processus. Moreover, the use of such 
criterion gives a regularization effect on the learning 
(Thomas et al. 1999).  

This criterion to minimize is able to take into 
account the presence of outliers in the dataset. To 
take into account the different costs of the different 
missclassification types, a second weight (Castro 
and Braga 2013) must be included in this criterion 
(7) which becomes: 
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Where Cost(k) is the misclassification cost of the 

predicted error for the kth pattern which is given by 
table 1.  



 

Table 1: Cost of misclassification. 

 

The 2nd order Taylor series expansion of the 
criterion to minimize (9) leads to the classical 
Gauss-Newton algorithm: 
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where ˆiθ  is the set of network parameters estimated 

at iteration i, ' ˆ( )iV θ  is the gradient of the criterion 

given by: 
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where ( , )kψ θ  is the gradient of ˆ( , )y k θ  with 

respect to θ. 
ˆ( )iH θ  is the Hessian matrix which can be 

estimated by using the Levenberg-Marquardt update 
rule:  
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where I is the identity matrix and β a small non 
negative scalar which must be adapted during the 
learning process.  

3 SIMULATION EXAMPLE 

3.1 Simulation example 

To illustrate the proposed learning algorithm, a 
simple simulation example is used; it is derived from 
the example proposed by Lin et al. (2000). This 
example considers a population consisting of two 
subpopulations. The positive subpopulation follows 
a bivariate normal distribution with mean (0, 0)T and 
covariance matrix diag(1, 1), whereas the negative 
subpopulation follows two bivariate normal 
distributions with mean (2, 2)T with covariance 
diag(2, 1) for the first subpopulation and with mean 

(-2, -2)T with covariance diag(2, 1) for the second 
subpopulation. The population is unbalanced: The 
positive and negative subpopulations account for 
80% and 20% of the total population, respectively. 
The negative subpopulation is balanced and follows 
two different laws in order to ensure that the two 
classes cannot be linearly separable.  

Figure 1 shows the repartition of the two classes 
in the space of the two inputs. The red circles 
represent the class0, when the blue triangles 
represent the class1. It can be noticed that these two 
classes are partially confused. This fact implies that 
even the best classifier is not able to perform its task 
without generatingmisclassification.  

 

Figure 1: Distribution of the two classes. 

3.2 Experimental protocol 

In the first step, a dataset comprising 2000 
patterns is constructed which follows the distribution 
described above. This dataset is split into two 
datasets of 1000 patterns each, one for the learning 
and the other for the validation. A classifier is 
designed using a MLP with 2 inputs and 10 hidden 
neurons which appears sufficient to learn the model. 

The main goal of classifers is to reduce the 
number of misclassified patters. The classical 
criterion used to evaluate classifiers is the 
misclassification rate (error rate or “zero-one” score 
function (Hand et al. 2001): 
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Two others indicators must be determined, the 
false alarm rate (FA) and the non-detection rate 
(ND): 

 

 

FP
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  (14) 

 
where FP stands for the number of false positives, 
TN for the number of true negatives, FN the number 
of false negatives, and TP the number of true 
positives.   

The last indicator used takes into account the 
costs of misclassification defined Table 1 and is 
given by: 

 
 01 10. .Cost C FP C FN= +   (15) 

 
In order to evaluate the impact of the proposed 

approach, two experiments are performed. The first 
one learns a MLP classifier on a dataset free of 
outliers when the second one uses a dataset where 
10% of data in the learning dataset are noise label 
(switching of the label of the considered pattern). 
Four learning algorithms are tested and compared: 

- Levenberg-Marquardt (LM) without cost 
weight and without robust criterion,  

- LM without cost weight and with robust 
criterion (LMR), 

- LM with cost weight and without robust 
criterion (LMC), 

- LM with cost weight and with robust 
criterion (LMRC). 

To evaluate the impact of choice of the 
misclassification costs, two cost matrices have been 
used given by tables 2 and 3.  

Table 2: Cost of misclassification 2-5. 

 

Table 3: Cost of misclassification 2-10. 

 

3.3 Results on outliers free dataset 

The table 4 gives the results obtained with the 
four learning algorihtms on the outliers free dataset 
with the two types of costs.  

By studying these results, the first remark we can 
do is, that the using of the weight cost tends to 
improve the ND rate at the expense of the FA rate. 
As example, the using of a cost 2-5 in the LM 
algorithm improves the ND rate of 29% when the 
cost 2-10 leads to an improvement of 40%. In the 
same time the FA rate is degraded of 12% in the first 
case and of 58% in the second one.  

In the same time, even in absence of label noise, 
the robust learning rule allows to improve the results 
both for FA rate (12%) and ND rate (17%) 
comparing to the classical LM algorithm. This fact is 
due to the regularisation effect of the robust criterion 
and of the fact that the two classes are partially 
confused. 

 

 

Table 4: Results obtained on the outliers free dataset. 

 

Class 0 Class1

Class 0 1 2

Class 1 5 1

predicted class

re
a

l 
cl

a
ss

Class 0 Class1

Class 0 1 2

Class 1 10 1re
a

l 
cl

a
ss

predicted class

Cost S01 FA rate ND  rate

Without Robust Without Cost 346 9.50% 5.40% 25.49%
With Robust Without Cost 291 8.10% 4.77% 21.08%
Without Robust With Cost 281 8.50% 6.03% 18.14%

With Robust With Cost 290 8.80% 6.28% 18.63%

Without Robust Without Cost 606 9.50% 5.40% 25.49%
With Robust Without Cost 506 8.10% 4.77% 21.08%
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With Robust With Cost 396 10.60% 10.43% 11.27%
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Table 5: Results obtained on the outliers corrupted dataset. 

 

 

The conjoint use of cost sensitive weight and 
robust criterion slightly deteriorates the results 
obtained with the cost 2-5. This degradation is of 4% 
for the FA rate and of 3% for the ND rate. It can be 
noticed that with the cost 2-10, this approach 
deteriorates slightly the FA rate (22%) but for an 
improvement of the ND rate (26%). So, in absence 
of label noise, the conjoint use of weight sensitive 
cost and robust criterion gives equivalent results 
than the use of weight sensitive cost alone. These 
results are confirmed when the Cost values are 
studied. For the cost 2-5, the using of robust 
criterion alone, weigth sensitive alone or both give 
equivalent results when for the cost 2-10, the using 

of both robust criterion and cost-sensitive weight 
gives the best results.  

3.4 Results on outliers polluted dataset 

In a second step, the learning dataset is corrupted 
by 10% of noise label. The same algorithms are used 
and the results obtained are presented table 5. When 
the misclassification rate S01 obtained whith the 
outliers free learning dataset and the corrupted 
dataset, are compared, it can be noticed that only the 
classical LM algorithm without cost sensitive weight 
and robust criterion sees its accuracy slightly 
degraded (4%).  

 

 

Figure 2: Classes bounds obtained on the outliers polluted dataset. LM in magenta - LM robust in black – LM cost sensitive 
in red – LM robust cost sensitive in green. 
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However, by studying the ND rates, this rate is 
deteriorate when no robust criterion is used up to 
49% when the cost 2-5 is used with the LM 
algorithm with cost without robust. On the contrary, 
this ND rate remains more stable when robust 
criterion is used with even an improvement of 4% 
with the LM algorithm with cost weight and robust 
criterion for cost 2-10. The using of robust criterion 
associated to cost sensitive weight improves the ND 
rate comparing to those obtained with the cost –
sensitive weight alone (improvement of 20% for cost 
2-5 and of 41% for cost 2-10).  

When the Cost values are studied the conjoint 
use of cost sensitive weight and robust criterion 
allows to maintain the results accuracy even in 
presence of noise label.  

The figure 2 presents the bounds obtained on the 
outliers polluted learning dataset. This figure shows 
that classical LM algorithm gives bounds very 
tortuous comparing to those obtained with other 
appraoches. This fact shows that robust criterion as 
cost sensitive weight approaches have both a 
regularisation effect on the learning process. This 
figure shows also that the using of a cost sensitive 
weight (with or without robust criterion) favoures 
the class 1 over the class 0.  

4 CONCLUSION 

This paper deals with the problem of 
misclassification cost in learning of MLP classifiers. 
It studies the impact of outliers on the classifier 
accuracy and proposes to associate a cost sensitive 
weight (to take into account the different cost of 
misclassification) to a robust criterion (to avoid the 
impact of outliers on classifier accuracy) in a 
classical Levenberg-Marquadt learning algorithm. 
The proposed learning algorithm is tested and 
compared with three other ones on a simulation 
example. The impact of the choice of 
misclassification costs and of the presence of 
outliers is investigated. The results show that the 
conjoint use of cost-sensitive weight and robust 
criterion improves the classifier accuracy.  

In our future works, this approach will be tested 
on other benchmark datasets in order to confirm the 
results. The impact of imbalanced repartition in the 
dataset will be also investigated. Last this approach 
will be extended to the multiclass case.  
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