Computing Chebyshev knot diagrams - Archive ouverte HAL
Journal Articles Journal of Symbolic Computation Year : 2018

Computing Chebyshev knot diagrams

Abstract

A Chebyshev curve $\mathcal{C}(a,b,c,\phi)$ has a parametrization of the form $ x(t)=T_a(t)$; \ $y(t)=T_b(t)$; $z(t)= T_c(t + \phi)$, where $a,b,c$ are integers, $T_n(t)$ is the Chebyshev polynomial of degree $n$ and $\phi \in \mathbb{R}$. When $\mathcal{C}(a,b,c,\phi)$ is nonsingular, it defines a polynomial knot. We determine all possible knot diagrams when $\phi$ varies. Let $a,b,c$ be integers, $a$ is odd, $(a,b)=1$, we show that one can list all possible knots $\mathcal{C}(a,b,c,\phi)$ in $\tilde{\mathcal{O}}(n^2)$ bit operations, with $n=abc$.
Fichier principal
Vignette du fichier
kprt_noels3.pdf (549.14 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01232181 , version 1 (23-11-2015)
hal-01232181 , version 2 (12-05-2017)

Identifiers

Cite

Pierre-Vincent Koseleff, Daniel Pecker, Fabrice Rouillier, Cuong Tran. Computing Chebyshev knot diagrams. Journal of Symbolic Computation, 2018, 86, pp.21. ⟨10.1016/j.jsc.2017.04.001⟩. ⟨hal-01232181v2⟩
341 View
270 Download

Altmetric

Share

More