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LYAPUNOV EXPONENTS FOR RANDOM CONTINUOUS-TIME
SWITCHED SYSTEMS AND STABILIZABILITY

FRITZ COLONIUS∗ AND GUILHERME MAZANTI†

Abstract. For linear systems in continuous time with random switching, the Lyapunov ex-
ponents are characterized using the Multiplicative Ergodic Theorem for an associated system in
discrete time. An application to control systems shows that here a controllability condition implies
that arbitrary exponential decay rates for almost sure stabilization can be obtained.
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1. Introduction. Linear systems with switching coefficients are of considerable
interest in theory and applications. The present paper considers systems in continuous
time with random switching and develops methods to describe the exponential growth
rates, i.e., the Lyapunov exponents. This is used to analyze stabilizability properties
of control systems with random switching.

Systems with deterministic switching have been extensively studied, cf., e.g., the
monograph Liberzon [20] and the surveys Lin and Antsaklis [21], and Shorten, Wirth,
Mason, Wulff, and King [27]. An important motivation for our work comes from
the theory of persistently excited control systems where switching means that the
control is put on or off. These deterministic systems have been studied in a number
of papers, with many results in special situations, cf. Chaillet, Chitour, Loŕıa, and
Sigalotti [5], Chitour and Sigalotti [10]. In particular, it is known that here, contrary
to the situation for autonomous linear control systems, controllability does not imply
stabilizability with arbitrary decay rates.

The analysis of random switched systems in the present paper is based on the
classical Multiplicative Ergodic Theorem due to Oseledets (cf. Arnold [1]). It turns
out that a direct application of this theorem to systems in continuous time with
random switching is not feasible, since in general they do not define random dynamical
systems in the sense of [1] (cf. Example 2.6). Instead, we apply the Multiplicative
Ergodic Theorem to an associated system in discrete time and then deduce results for
the Lyapunov exponents of the continuous-time system. We remark that Lyapunov
exponents for continuous-time systems with random switching are also considered
by Li, Chen, Lam, and Mao in [19]. They assume from the beginning that they
have random dynamical systems and hence use the classical Multiplicative Ergodic
Theorem.

The considered linear equations with random switching form Piecewise Determin-
istic Markov Processes (PDMP). These processes were introduced in Davis [12] and
have since been extensively studied in the literature. For an analysis of their invariant
measures, in particular, their supports, cf. Bakhtin and Hurth [2] and Benäım, Le
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Borgne, Malrieu, and Zitt [3], also for further references. An important particular
case which also attracts much research interest is that of Markovian jump linear sys-
tems (MJLS), in which one assumes that the random switching signal is generated
by a continuous-time Markov chain. For more details, we refer to Bolzern, Colaneri,
and De Nicolao [4], Fang and Loparo [13], and to the monograph Costa, Fragoso, and
Todorov [11]. The case of nonlinear switched systems with random switching signals
has also been considered in the literature, cf. e.g. Chatterjee and Liberzon [6], where
multiple Lyapunov functions are used to derive a stability criterion under some slow
switching condition that contains as a particular case switching signals coming from
continuous-time Markov chains. We also remark that several different notions of sta-
bility for systems with random switching have been used in the literature; see, e.g.,
Feng, Loparo, Ji, and Chizeck [14] for a comparison between the usual notions in the
context of MJLS. The one considered in this paper is that of almost sure stability.

The main results of this paper are (i) a Multiplicative Ergodic Theorem, Theorem
4.1, for linear continuous-time switching systems. This is based on a careful analysis of
the relations between the Lyapunov exponents for an associated discrete-time system
— which does define a random dynamical system — and those for the system in
continuous time; and (ii) Theorem 6.1 showing that arbitrary decay rates may be
achieved for linear control systems with random switching by choosing appropriate
linear feedback laws. This is in contrast to the situation for deterministic switching
by persistent excitations, as mentioned above.

The contents of this paper is as follows:
Section 2 constructs the random signals acting on the coefficients of the con-

tinuous-time system. Example 2.6 shows that, in general, one does not obtain a
random dynamical system and Remark 2.7 discusses the relation to previous works
in the literature. Section 3 introduces an associated system in discrete time, shows
that it defines a random dynamical system, and discusses the relations between the
Lyapunov exponents for continuous and discrete time. This leads to the formulation
of a Multiplicative Ergodic Theorem for the continuous-time system in Section 4.
Section 5 derives a formula for the maximal Lyapunov exponent. Finally, Section
6 presents the application to almost sure stabilization with arbitrary decay rate of
linear control systems with random switching signals.

Notation: The sets N∗ and N are used to denote the positive and nonnegative
integers, respectively. For N ∈ N∗ we let N := {1, ..., N} and R+ := [0,∞),R∗+ :=
(0,∞).

2. Continuous-time linear switched system and random switching sig-
nals. Let N, d ∈ N∗ and A1, . . . , AN ∈Md(R). This paper considers the continuous-
time linear switched system

ẋ(t) = Aα(t)x(t), (2.1)

where the switching signal α belongs to the set P defined by

P := {α : R+ → N piecewise constant and right continuous} .

Recall that a piecewise constant function has only finitely many discontinuity points
on any bounded interval. Given an initial condition x0 ∈ Rd and α ∈ P, system (2.1)
admits a unique solution defined on R+, which we denote by ϕc(·;x0, α). In order
to simplify the notation, for i ∈ N , we denote by Φi the linear flow defined by the
matrix Ai, i.e., Φit = eAit for every t ∈ R.
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We consider in this paper that the signal α is randomly generated according to a
Markov process which we describe now. Let M ∈MN (R) be a stochastic matrix, i.e.,

M has nonnegative entries and
∑N
j=1Mij = 1 for every i ∈ N . Let p be a probability

vector in RN , i.e., p ∈ [0, 1]N and
∑N
i=1 pi = 1. When necessary, we will regard p as

a row vector p = (p1, . . . , pN ). We assume in this paper that p is invariant under M ,
i.e., that pM = p. Finally, let µ1, . . . , µN be probability measures on R∗+ with the
Borel σ-algebra B and with finite expectation, i.e.,

∫
R∗+
tdµi(t) <∞ for every i ∈ N .

Whenever necessary, we will use that µ1, . . . , µN define probability measures on R+

with its Borel σ-algebra, that we also denote by B for simplicity.
The random model for the signal α can be described as follows. We choose an

initial state i ∈ N according to the probability law defined by p. Then, at every time
the system switches to a state i, we choose a random positive time T according to
the probability law µi and stay in i during the time T , before switching to the next
state, which is chosen randomly according to the probability law corresponding to the
i-th row (Mij)

N
j=1 of the matrix M . Let us perform this construction more precisely.

Recall the construction of product σ-algebras (see, e.g., Halmos [17, §38, §49]).
Definition 2.1. Let Ω = (N × R+)N

∗
and provide Ω with the product σ-algebra

F = (P(N)×B)N
∗
. Endow (Ω,F) with the probability measure P defined, for n ∈ N∗,

i1, . . . , in ∈ N , and U1, . . . , Un ∈ B by

P
(
{i1} × U1 × {i2} × U2 × · · · × {in} × Un × (N × R+)N

∗\n
)

= pi1µi1(U1)Mi1i2µi2(U2) · · ·Min−1inµin(Un).

For a given measurable space X, we denote by Pr(X) the set of all probability
measures on X. The next result shows that the construction from Definition 2.1 is
actually a Markov chain in the state space N × R+. For the definitions of Markov
process and its transition probability, initial law, and transition operator, we refer to
Hairer [16].

Proposition 2.2. For n ∈ N∗, let xn : Ω = (N × R+)N
∗ → N × R+ denote the

canonical projection onto the n-th coordinate. Then (xn)∞n=1 is the unique Markov
process in N × R+ with transition probability P : N × R+ → Pr(N × R+) defined by

P (i, t)({j} × U) = Mijµj(U), ∀i, j ∈ N, ∀t ∈ R+, ∀U ∈ B, (2.2)

and with initial law ν1 given by

ν1({j} × U) = pjµj(U), ∀j ∈ N, ∀U ∈ B. (2.3)

The transition operator T : Pr(N × R+)→ Pr(N × R+) of this chain is given by

Tν({j} × U) =

N∑
i=1

ν({i} × R+)Mijµj(U), ∀j ∈ N, ∀U ∈ B. (2.4)

Proof. Observe that N × R+ is a complete separable metric space. Then by
[16, Proposition 2.38], it suffices to show that, for every n ∈ N∗, i1, . . . in ∈ N , and
U1, . . . , Un ∈ B,

P
(
{i1} × U1 × {i2} × U2 × · · · × {in} × Un × (N × R+)N

∗\n
)

=

∫
{i1}×U1

∫
{i2}×U2

· · ·
∫
{in−1}×Un−1

P (in−1, tn−1)({in} × Un)

dP (in−2, tn−2)(in−1, tn−1) · · · dP (i1, t1)(i2, t2)dν1(i1, t1). (2.5)
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The definitions (2.2) and (2.3) of P and ν1 immediately give∫
{i1}×U1

∫
{i2}×U2

· · ·
∫
{in−1}×Un−1

P (in−1, tn−1)({in} × Un)

dP (in−2, tn−2)(in−1, tn−1) · · · dP (i1, t1)(i2, t2)dν1(i1, t1)

=

∫
U1

∫
U2

· · ·
∫
Un−1

Min−1inµin(Un)

Min−2in−1
dµin−1

(tn−1) · · ·Mi1i2dµi2(t2)pi1dµi1(t1)

= Min−1inµin(Un)Min−2in−1
µin−1

(Un−1) · · ·Mi1i2µi2(U2)pi1µi1(U1),

and thus (2.5) holds. The expression of the transition operator follows immediately
from its definition (see, e.g., [16, Definition 2.31]).

Remark 2.3. The canonical projection of N×R+ onto N transforms the Markov
chain from Proposition 2.2 into a discrete Markov chain in the finite state space N
with transition matrix M and initial distribution p.

To construct a random switching signal α from a certain ω = (in, tn)∞n=1 ∈ Ω,
we regard (in)∞n=1 as the sequence of states taken by α and tn as the time spent in
the state in. For this construction to be well-defined, one needs to check that the
switching times of such α tend to∞. The next proposition shows that this is the case
in a subset of Ω of full measure.

Proposition 2.4. The subset Ω0 of Ω defined by

Ω0 :=

{
(in, tn)∞n=1 ∈ Ω

∣∣∣∣∣
∞∑
n=1

tn =∞ and tn > 0 for every n ∈ N∗
}

satisfies P(Ω0) = 1.
Proof. We write Ω0 = Ω′ ∩ Ω′′, with

Ω′ =

{
(in, tn)∞n=1 ∈ Ω

∣∣∣∣∣
∞∑
n=1

tn =∞

}
,

Ω′′ = {(in, tn)∞n=1 ∈ Ω | tn > 0 for every n ∈ N∗} .

Then it follows that

P(Ω′′) = P

( ∞⋂
n=1

{(ij , tj)∞j=1 ∈ Ω | tn > 0}

)
= 1,

since for every n

P{(ij , tj)∞j=1 ∈ Ω | tn > 0} =
∑

(i1,...,in)∈Nn
pi1Mi1i2 · · ·Min−1inµin((0,∞)) = 1.

Denoting by Ω′c the complement of Ω′ in Ω, we have

Ω′c =

{
(in, tn)∞n=1 ∈ Ω

∣∣∣∣∣
∞∑
n=1

tn <∞

}
⊂
{

(in, tn)∞n=1 ∈ Ω
∣∣∣ lim
n→∞

tn = 0
}

=

∞⋂
k=1

∞⋃
r=1

∞⋂
m=r

{
(in, tn)∞n=1 ∈ Ω

∣∣∣∣ tm <
1

k

}
. (2.6)
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For k, r,K ∈ N∗ with K ≥ r, let

Er,kK =

K⋂
m=r

{
(in, tn)∞n=1 ∈ Ω

∣∣∣∣ tm <
1

k

}
= (N × R+)r−1 × (N × [0, 1/k))K−r+1 × (N × R+)N

∗\K

=
⋃

(i1,...,iK)∈NK

r−1∏
j=1

({ij} × R+)×
K∏
j=r

({ij} × [0, 1/k))× (N × R+)N
∗\K .

This union is disjoint, and thus

P
(
Er,kK

)
=

∑
(i1,...,iK)∈NK

pi1

K∏
j=2

Mij−1ij

K∏
j=r

µij ([0, 1/k)) ≤ µmax(k)K−r+1,

where µmax(k) = maxi∈N µi([0, 1/k)). Then µmax(k)→ 0 as k →∞, and hence there
exists k∗ ∈ N∗ such that µmax(k∗) < 1. Since, for every r, k ∈ N∗, the sequence of sets(
Er,kK

)∞
K=r

is decreasing, we obtain that

P

( ∞⋂
m=r

{
(in, tn)∞n=1 ∈ Ω

∣∣∣∣ tm <
1

k∗

})
= lim
K→∞

P
(
Er,k∗K

)
= 0.

This shows that P(Ω′) = 1 thanks to (2.6).
We now associate to each ω ∈ Ω0 a signal α ∈ P.
Definition 2.5. We define the map ααα : Ω0 → P as follows: for ω = (in, tn)∞n=1 ∈

Ω0, we set s0 = 0, sn =
∑n
k=1 tk for n ∈ N∗, and ααα(ω)(t) = in for every n ∈ N∗ and

t ∈ [sn−1, sn).
Notice that ααα is well-defined since

∑∞
n=1 tn = ∞ for every ω = (in, tn)∞n=1 ∈ Ω0.

When necessary, we regard ααα as a function ααα : Ω→ P defined almost everywhere.
In order to consider solutions of (2.1) for signals α chosen randomly according to

the previous construction, we use the solution map ϕc of (2.1) to define the map

ϕrc :

{
R+ × Rd × Ω0 → Rd

(t;x0, ω) 7→ ϕc(t;x0,ααα(ω)).
(2.7)

A natural idea to study the exponential behavior of the switched system with
random switching signals described by ϕrc would be to apply the continuous-time
Oseledets’ Multiplicative Ergodic Theorem (see, e.g., Arnold [1, Theorem 3.4.1]) to
obtain information on the Lyapunov exponents for ϕrc. To do so, ϕrc should define
a random dynamical system on Rd × Ω, i.e., one would have to provide a metric
dynamical system θ on Ω — a measurable dynamical system θ : R+ × Ω → Ω on
(Ω,F,P) such that θt preserves P for every t ≥ 0 — in such a way that ϕrc becomes
a cocycle over θ (for the precise definitions of random dynamical system, metric
dynamical system, and cocycle, see, e.g., [1]). However, in general the natural choice
for θ to obtain the cocycle property for ϕrc, namely the time shift, does not define
such a measure preserving map, as shown in the following example.

Example 2.6. For t ≥ 0, let θt : Ω → Ω be defined for almost every ω ∈ Ω
as follows. For ω = (ij , tj)

∞
j=1 ∈ Ω0, set s0 = 0, sk =

∑k
j=1 tj for k ∈ N∗. Let

n ∈ N∗ be the unique integer such that t ∈ [sn−1, sn). We define θt(ω) = (i∗j , t
∗
j )
∞
j=1 by
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i∗j = in+j−1 for j ∈ N∗, t∗1 = sn − t, t∗j = tn+j−1 for j ≥ 2. One immediately verifies
that θt corresponds to the time shift in P, i.e., that, for every t, s ≥ 0 and ω ∈ Ω0,
one has

ααα(θtω)(s) = ααα(ω)(t+ s).

However, the map θt in (Ω,F) does not preserve the measure P in general. Indeed,
suppose that µi = δ1 for every i ∈ N , where δ1 denotes the Dirac measure at 1. In
particular, a set E ∈ F has nonzero measure only if E contains a point (ij , tj)

∞
j=1 with

tj = 1 for every j ∈ N∗. For r ∈ N∗ and i1, . . . , ir ∈ N , let

E = {i1} × {1} × · · · × {ir} × {1} × (N × R+)
N∗\r

.

Then P(E) = pi1Mi1i2 · · ·Mir−1ir , and, for t ≥ 0, θ−1
t (E) is the set of points (i∗j , t

∗
j )
∞
j=1

such that, setting s∗0 = 0, s∗k =
∑k
j=1 t

∗
j for k ∈ N∗, and n ∈ N∗ the unique integer such

that t ∈
[
s∗n−1, s

∗
n

)
, one has s∗n − t = 1, t∗n+j−1 = 1 for j = 2, . . . , r, and i∗n+j−1 = ij

for j ∈ r. If t /∈ N, then s∗n = t+ 1 /∈ N, and thus there exists j ∈ n such that t∗j 6= 1.

We have shown that, if t /∈ N, then, for every ω = (i∗j , t
∗
j )
∞
j=1 ∈ θ

−1
t (E), there exists

j ∈ N∗ such that t∗j 6= 1, and thus P(θ−1
t (E)) = 0, hence θt does not preserve the

measure P.
Remark 2.7. For some particular choices of µ1, . . . , µN , the time-shift θt may

preserve P, in which case the continuous-time Multiplicative Ergodic Theorem can be
applied directly to (2.7). This special case falls in the framework of Li, Chen, Lam, and
Mao [19]. An important particular case where θt preserves P is when µ1, . . . , µN are
chosen in such a way that ααα becomes a homogeneous continuous-time Markov chain,
which is the case treated, e.g., in Bolzern, Colaneri, and De Nicolao [4], and in Fang
and Loparo [13]. Our stability results from Section 5 generalize the corresponding
almost sure stability criteria from [4, 13, 19].

3. Associated discrete-time system and Lyapunov exponents. Example
2.6 shows that in general one cannot expect to obtain a random dynamical system from
ϕrc in order to apply the continuous-time Oseledets’ Multiplicative Ergodic Theorem.
Our strategy to study the exponential behavior of ϕrc relies instead on defining a
suitable discrete-time map ϕrd associated with ϕrc, in such a way that ϕrd does define
a discrete-time random dynamical system — to which the discrete-time Oseledets’
Multiplicative Ergodic Theorem can be applied (see, e.g., Arnold [1, Theorem 3.4.1])
— and that the exponential behavior of ϕrc and ϕrd can be compared.

3.1. Associated discrete-time deterministic system. In this subsection we
define a discrete-time deterministic system from the continuous-time system (2.1)
determined by its solution map ϕc.

Definition 3.1. We say that an increasing sequence σ = (sn)∞n=0 of nonnegative
real numbers with s0 = 0 and limn→∞ sn = ∞ is compatible with a signal α ∈ P if
α|[sn,sn+1) is constant for every n ∈ N, and we denote

Q := {(α, σ) ∈ P × RN
+ | σ is compatible with α}.

For (α, σ) ∈ Q with σ = (sn)∞n=0, we consider the difference equation

xn+1 = eAα(sn)(sn+1−sn)xn. (3.1)

System (3.1) is obtained from (2.1) by taking the values of a continuous-time solution
at the discrete times sn. The sequence (sn)∞n=0 contains all the discontinuities of α
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and may also contain times with trivial jumps. The solution of (3.1) associated with
(α, σ) ∈ Q and with initial condition x0 ∈ Rd is denoted by ϕd(·;x0, α, σ). Notice
that the solution maps ϕc and ϕd satisfy, for every x0 ∈ Rd and (α, σ) ∈ Q,

ϕc(0;x0, α) = x0,

ϕc(t;x0, α) = Φ
α(sn)
t−sn (ϕc(sn;x0, α)), if t ∈ (sn, sn+1] for some n ∈ N, (3.2)

and

ϕd(0;x0, α, σ) = x0,

ϕd(n+ 1;x0, α, σ) = Φ
α(sn)
sn+1−sn(ϕd(n;x0, α, σ)), for n ∈ N. (3.3)

It follows immediately that, for every n ∈ N,

ϕc(sn;x0, α) = ϕd(n;x0, α, σ). (3.4)

We characterize the asymptotic behavior of systems (2.1) and (3.1) by considering
the associated Lyapunov exponents defined as follows.

Definition 3.2. Let (α, σ) ∈ Q and x0 ∈ Rd \ {0}. The Lyapunov exponent for
the continuous-time system (2.1) is

λc(x0, α) = lim sup
t→∞

1

t
log ‖ϕc(t;x0, α)‖ (3.5)

and the Lyapunov exponent for the discrete-time system (3.1) is

λd(x0, α, σ) = lim sup
n→∞

1

n
log ‖ϕd(n;x0, α, σ)‖ . (3.6)

The main difference between (3.5) and (3.6) lies in the terms 1
t and 1

n . In order
to be able to compare them asymptotically, one needs an additional hypothesis.

Definition 3.3. Let (α, σ) ∈ Q with σ = (sn)∞n=0. We say that (α, σ) is regular
if the limit

m(α, σ) := lim
n→∞

sn
n

(3.7)

exists and is a positive real number.
Theorem 3.4. Suppose that (α, σ) ∈ Q is regular. Then, for every x0 ∈ Rd\{0},

the Lyapunov exponents of the continuous- and discrete-time systems (2.1) and (3.1)
are related by

λd(x0, α, σ) = m(α, σ)λc(x0, α).

Proof. Write σ = (sn)∞n=0. Let us first show that λd(x0, α, σ) ≤ m(α, σ)λc(x0, α).
For every n ∈ N∗, one has, by (3.4),

1

n
log ‖ϕd(n;x0, α, σ)‖ =

sn
n

1

sn
log ‖ϕc(sn;x0, α)‖ .

One clearly has lim supn→∞
1
sn

log ‖ϕc(sn;x0, α)‖ ≤ lim supt→∞
1
t log ‖ϕc(t;x0, α)‖

and then the conclusion follows since sn
n → m(α, σ).
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We now turn to the proof of the inequality λd(x0, α, σ) ≥ m(α, σ)λc(x0, α). Let
C, γ > 0 be such that

∥∥Φitx
∥∥ ≤ Ceγt ‖x‖ for every i ∈ N , x ∈ Rd, and t ≥ 0. For

x0 ∈ Rd \ {0} and t > 0, let nt ∈ N be the unique integer such that t ∈ (snt , snt+1].
Then

1

t
log ‖ϕc(t;x0, α)‖ =

1

t
log
∥∥∥Φ

α(snt )
t−snt

(ϕc(snt ;x0, α))
∥∥∥

=
1

t
log
∥∥∥Φ

α(snt )
t−snt

(ϕd(nt;x0, α, σ))
∥∥∥ ≤ logC

t
+ γ

t− snt
t

+
1

t
log ‖ϕd(nt;x0, α, σ)‖ .

(3.8)

Since t ∈ (snt , snt+1], one has

0 ≤ t− snt
t

≤ snt+1

snt
− 1 −−−→

t→∞
0, (3.9)

where we use (3.7) to obtain that
snt+1

snt
→ 1 as t → ∞. We write 1

t = nt
t

1
nt

. Since

t ∈ (snt , snt+1], one has nt
t ∈

[
nt

snt+1
, ntsnt

)
. Now

lim
t→∞

nt
snt

=
1

m(α, σ)
and lim

t→∞

nt
snt+1

= lim
t→∞

(
nt + 1

snt+1
− 1

snt+1

)
=

1

m(α, σ)
,

and thus nt
t →

1
m(α,σ) as t → ∞. Using this fact and inserting (3.9) into (3.8), one

obtains the conclusion of the theorem by letting t→∞.

3.2. Discrete-time random dynamical system. We have constructed, in
Section 3.1, the discrete-time system (3.1) associated with the continuous-time system
(2.1). In this subsection, we use (3.1) and the probabilistic setting from Section 2
to construct a random dynamical system in discrete time, to which we will apply
Oseledets’ Multiplicative Ergodic Theorem in Section 4. Thanks to Theorem 3.4, this
will allow us also to get information on the Lyapunov exponents of the continuous-
time system. In order to perform this construction, one needs to choose, for each
ω ∈ Ω0, a sequence σ compatible with ααα(ω).

A sequence σ that is compatible with a certain α ∈ P corresponds to a sequence
of times where we observe the continuous-time solution map ϕc to define the discrete-
time map ϕd. A natural choice, considering the fact that the probabilistic model from
Definition 2.1 is a Markov chain, is to choose σ as the sequence of transition times of
this chain, as follows.

Definition 3.5. We define the map s : Ω0 → RN
+ as follows: for ω = (in,

tn)∞n=1 ∈ Ω0, we set s(ω) = (sn(ω))∞n=0 with s0(ω) = 0, sn(ω) =
∑n
k=1 tk for n ∈ N∗.

Notice that, for every ω ∈ Ω0, s(ω) is compatible with ααα(ω). We define the
random discrete-time system ϕrd by

ϕrd :

{
N× Rd × Ω0 → Rd

(n;x0, ω) 7→ ϕd(n;x0,ααα(ω), s(ω)).
(3.10)

We also define the random Lyapunov exponents λrc and λrd for x0 ∈ Rd \ {0} and
almost every ω ∈ Ω by

λrc(x0, ω) = λc(x0,ααα(ω)), λrd(x0, ω) = λd(x0,ααα(ω), s(ω)). (3.11)
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A natural way to define a discrete-time metric dynamical system on (Ω,F,P) is
to consider the shift operator. Let θ : Ω→ Ω be defined by

θ((in, tn)∞n=1) = (in+1, tn+1)∞n=1. (3.12)

Proposition 3.6. The measure P is invariant under θ.
Proof. It suffices to show that P(θ−1(E)) = P(E) for every set E of the form

E = {i1} × U1 × · · · × {in} × Un × (N × R+)N
∗\n

for some n ∈ N∗, i1, . . . , in ∈ N , and U1, . . . , Un ∈ B. For such a set E, we have

θ−1(E) =

N⋃
i=1

{i} × R+ × {i1} × U1 × · · · × {in} × Un × (N × R+)N
∗\n+1,

and the previous union is disjoint, so that

P(θ−1(E)) =

N∑
i=1

piµi(R+)Mii1µi1(U1)

n∏
j=2

Mij−1ijµij (Uj)

=

(
N∑
i=1

piMii1

)
µi1(U1)

n∏
j=2

Mij−1ijµij (Uj)

= pi1µi1(U1)

n∏
j=2

Mij−1ijµij (Uj) = P(E),

since pM = p.
Thanks to Proposition 3.6, θ is a discrete-time metric dynamical system in (Ω,F,

P). Moreover, since the shift operator θ : Ω→ Ω satisfies θ(Ω0) = Ω0, θ also defines a
metric dynamical system in (Ω0,F,P) (where F and P are understood to be restricted
to Ω0).

An important question regarding the metric dynamical system θ in (Ω,F,P) is
to determine whether it is ergodic. To characterize the cases where such ergodicity
holds, we start by providing the following definition.

Definition 3.7. Let (Ω,F) be the measurable space from Definition 2.1 and
ν ∈ Pr(N × R+). We define the probability measure Pν in (Ω,F) by requiring that,
for every n ∈ N∗, i1, . . . , in ∈ N , and U1, . . . , Un ∈ B,

Pν
(
{i1} × U1 × {i2} × U2 × · · · × {in} × Un × (N × R+)N

∗\n
)

= ν({i1} × U1)Mi1i2µi2(U2) · · ·Min−1inµin(Un). (3.13)

Remark 3.8. If ν({i} × U) = piµi(U) for every i ∈ N and U ∈ B, then Pν
coincides with the measure P from Definition 2.1. Moreover, as in Proposition 2.2,
for every ν ∈ Pr(N × R+), Pν is the probability measure associated with a Markov
process in N ×R+ with transition probability P given by (2.2), transition operator T
given by (2.4), and with initial law ν.

Lemma 3.9. The measure Pν is invariant under the shift θ if and only if ν({i}×
U) = ν({i} × R+)µi(U) for every i ∈ N , U ∈ B, and (ν({i} × R+))

N
i=1 is a left

eigenvector of M associated with the eigenvalue 1.
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Proof. Notice that Pν is invariant under θ if and only if Tν = ν. Hence Pν is
invariant under θ if and only if

ν({j} × U) =

N∑
i=1

ν({i} × R+)Mijµj(U), ∀j ∈ N, ∀U ∈ B. (3.14)

If (3.14) holds, we apply it to U = R+ to get that (ν({i} × R+))
N
i=1 is a left eigenvector

of M associated with the eigenvalue 1, and it then follows that ν({j}×U) = ν({j}×
R+)µj(U) for every j ∈ N and U ∈ B. The converse is immediate.

Let

V =

{
q ∈ [0, 1]N

∣∣∣∣∣
N∑
i=1

qi = 1 and qM = q

}
, (3.15)

which is a non-empty convex subset of RN . An element q ∈ V is said to be extremal
if it cannot be written as q = tq1 + (1 − t)q2 for some t ∈ (0, 1) and q1, q2 ∈ V with
q1 6= q2. With each q ∈ V , we associate a probability measure νq ∈ Pr(N × R+) by
setting

νq({i} × U) = qiµi(U), ∀i ∈ N, U ∈ B. (3.16)

As a consequence of Lemma 3.9, the map q 7→ νq is a linear bijection between V and
the set of all probability measures ν in N × R+ for which Pν is invariant under the
shift θ. Hence, one obtains immediately from Hairer [16, Theorem 5.7] the following
result.

Proposition 3.10. Let q ∈ V . Then the metric dynamical system θ is ergodic
in
(
Ω,F,Pνq

)
if and only if q is an extremal of V .

Remark 3.11. When M is irreducible, V contains only one point q and hence θ
is ergodic for the measure Pνq .

Now that we have defined the random discrete-time system (3.10) and provided
the metric dynamical system θ, we can show that the pair (θ, ϕrd) defines a random
dynamical system.

Proposition 3.12. (θ, ϕrd) is a discrete-time random dynamical system over
(Ω,F,P).

Proof. Since θ is a discrete-time metric dynamical system over (Ω,F,P), one is
only left to show that ϕrd satisfies the cocycle property

ϕrd(n+m;x0, ω) = ϕrd(n;ϕrd(m;x0, ω), θm(ω)), ∀n,m ∈ N, ∀x0 ∈ Rd, ∀ω ∈ Ω0.
(3.17)

Let ω = (in, tn)∞n=1 ∈ Ω0. Then it follows immediately from the definitions of ααα and
s that for n,m ∈ N,

sn(θm(ω)) =

n∑
k=1

tk+m =

m+n∑
k=m+1

tk = sn+m(ω)− sm(ω),

ααα(θm(ω))(sn(θm(ω))) = in+m = ααα(ω)(sn+m(ω)).

We prove (3.17) by induction on n. When n = 0, (3.17) is clearly satisfied for every
m ∈ N, x0 ∈ Rd, and ω ∈ Ω0. Suppose now that n ∈ N is such that (3.17) is satisfied
for every m ∈ N, x0 ∈ Rd, and ω ∈ Ω0. Using (3.3), we obtain

ϕrd(n+ 1;ϕrd(m;x0, ω), θm(ω))

10



= Φ
ααα(θm(ω))(sn(θm(ω)))
sn+1(θm(ω))−sn(θm(ω)) (ϕrd(n;ϕrd(m;x0, ω), θm(ω)))

= Φ
ααα(ω)(sn+m(ω))
sn+m+1(ω)−sn+m(ω) (ϕrd(n+m;x0, ω)) = ϕrd(n+m+ 1;x0, ω),

which concludes the proof of (3.17).
Since our goal is to compare the asymptotic behavior of (2.7) and (3.10) using

Theorem 3.4, we need to show that (ααα(ω), s(ω)) is regular for almost every ω ∈ Ω.
To do so, we first consider the structure of the matrix M , using classical notation for
Markov chains (see, e.g., Seneta [26]).

Definition 3.13. Let M ∈ MN (R) be a stochastic matrix. For i, j ∈ N , we
say that i leads to j if i = j or there exist r ∈ N∗ and i1, . . . , ir ∈ N such that
Mii1Mi1i2 · · ·Mirj > 0. We say that i and j communicate if i leads to j and i leads
to j. This is an equivalence relation and we decompose N into the corresponding
R′ ∈ N∗ equivalence classes C1, . . . , CR′ . For i, j ∈ R′, we say that Ci leads to Cj if
there exist i∗ ∈ Ci leading to some j∗ ∈ Cj. A class Ci is said to be essential if it
does not lead to another class, and inessential otherwise.

At least one essential class exists. Up to a permutation in the sets of indices N
and R′, we can assume that C1 = {1, 2, . . . , n1}, C2 = {n1 + 1, n1 + 2, . . . , n1 + n2},
. . . , CR′ = {n1 + · · ·+ nR′−1 + 1, . . . , n1 + · · ·+ nR′} for some n1, . . . , nR′ ∈ N∗, and
that M can be written as

M =



P1 0 0 · · · 0
0 P2 0 · · · 0
0 0 P3 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · PR
∗ Q


, (3.18)

where R is the number of essential classes, Pi is the square matrix corresponding
to the essential class Ci for i ∈ R, and Q is the square matrix corresponding to
all inessential classes. The following proposition gathers some classical properties of
stochastic matrices. Its proof can be found in textbooks on the subject, such as Seneta
[26, §4.2].

Proposition 3.14. Let M be a stochastic matrix decomposed as (3.18).
(i). For i ∈ R, Pi ∈ Mni(R) is an irreducible stochastic matrix with a unique

invariant probability pi ∈ Rni . We extend pi to a vector in RN by setting to
0 its components not in Ci, and write pi = (pij)

N
j=1;

(ii). Every probability vector q ∈ RN invariant under M can be decomposed as

q = α1p
1 + · · ·+ αRp

R for some α1, . . . , αR ∈ [0, 1] with
∑R
i=1 αi = 1.

Remark 3.15. If follows from this proposition that the set V defined in (3.15)
is the convex hull of {p1, . . . , pR}, and that q ∈ V is an extremal of V if and only if
q = pi for some i ∈ R.

For a probability vector q ∈ [0, 1]N , we define the probability measure Pq in the
measurable space (Ω,F) by setting Pq = Pνq , where νq is defined in (3.16) and Pνq
is given in Definition 3.7. Thanks to Lemma 3.9, Pq is invariant under θ if and only
if qM = q. Let α1q1 + · · · + αkqk be a convex combination of probability vectors
q1, . . . , qk ∈ [0, 1]N . Thanks to Definition 3.7 and (3.16), one obtains that, for every
E ∈ F,

Pα1q1+···+αkqk(E) = α1Pq1(E) + · · ·+ αkPqk(E). (3.19)
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As a consequence of Proposition 3.10 and Remark 3.15, one immediately obtains the
following result.

Corollary 3.16. Let q ∈ RN be a probability vector with qM = q and p1, . . . , pR

be as in Proposition 3.14(i). The map θ is ergodic for the measure Pq if and only if
q = pi for some i ∈ R.

We now provide a decomposition of the space Ω according to the essential classes
C1, . . . , CR. For i ∈ R, we set

Ωi = {ω = (in, tn)∞n=1 ∈ Ω | ∃n0 ∈ N∗ such that in ∈ Ci for n ≥ n0},

and

Ω0 = Ω \
R⋃
i=1

Ωi.

Then clearly Ω =
⋃R
i=0 Ωi and the union is disjoint. For i ∈ R, the set Ωi is the set of

all sequences (in, tn)∞n=0 such that (in)∞n=0 eventually enters the class Ci and remains
in this class.

Proposition 3.17. Let q = α1p
1 + · · ·+αRp

R ∈ V be as in Proposition 3.14(ii).
Then, for every i ∈ R, Pq(Ωi) = αi. In particular, Pq(Ω0) = 0.

Proof. Since the components of pj corresponding to indices not in Cj are all zero

and M has the form (3.18), one obtains that Ppj
(

(Cj × R+)
N∗
)

= 1, and thus

Pp
j

(Ωi) = Pp
j
(

Ωi ∩ (Cj × R+)
N∗
)

= δij , (3.20)

where δij denotes the Kronecker delta. The conclusion follows immediately from
(3.19) and (3.20).

We can now prove that (ααα(ω), s(ω)) is regular for almost every ω ∈ Ω.
Proposition 3.18. The map ω 7→ m(ααα(ω), s(ω)) is invariant under θ and, for

every i ∈ R such that P(Ωi) 6= 0 and almost every ω ∈ Ωi,

m(ααα(ω), s(ω)) =
∑
j∈Ci

pij

∫
R+

tdµj(t), (3.21)

where, for i ∈ R, pi =
(
pij
)N
j=1

are the probability vectors from Proposition 3.14(i).

In particular, (ααα(ω), s(ω)) is regular for almost every ω ∈ Ω.
Proof. Consider the map f : Ω0 → R∗+ given by f((in, tn)∞i=1) = t1. For every

k ∈ N, f ◦ θk((in, tn)∞n=1) = tk+1. By Birkhoff’s Ergodic Theorem (see, e.g., Petersen
[24, Chapter 2, Theorem 2.3]), there exists a function f∗ ∈ L1(Ω,R+), invariant under
θ, such that, for almost every ω ∈ Ω,

lim
n→∞

sn(ω)

n
= lim
n→∞

1

n

n−1∑
k=0

f ◦ θk(ω) = f∗(ω),

and, moreover, f∗ is the conditional expectation of f given the σ-algebra of invariant
sets over θ, i.e., for every set A ∈ F with θ−1(A) = A,∫

A

f(ω)dP(ω) =

∫
A

f∗(ω)dP(ω).
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Write p = α1p
1 + · · · + αRp

R as in Proposition 3.14. Since, for every i ∈ R, the set
Ωi is invariant under θ, we have∫

Ωi
f(ω)dP(ω) =

∫
Ωi
f∗(ω)dP(ω).

By Corollary 3.16, θ is ergodic with respect to Ppi for every i ∈ R, and thus f∗ is
constant Ppi -almost everywhere on Ω; since Ppi(Ωi) = 1 and the restriction of P to Ωi

is precisely αiPp
i

, one obtains that f∗ is constant P-almost everywhere in Ωi. Hence,
for every i ∈ R and almost every ω̃ ∈ Ωi,

αif
∗(ω̃) =

∫
Ωi
f(ω)dP(ω) = αi

∫
Ωi
f(ω)dPp

i

(ω) = αi
∑
j∈Ci

pij

∫
R+

tdµj(t),

which proves (3.21). Since its right-hand side is a positive real number and the sets
Ωi for which P(Ωi) 6= 0 cover Ω except for a set of measure zero, the regularity of
(ααα(ω), s(ω)) for almost every ω ∈ Ω follows.

An immediate consequence of Theorem 3.4 and Proposition 3.18 is the following.
Theorem 3.19. For every x0 ∈ Rd \ {0} and almost every ω ∈ Ω, the Lyapunov

exponents of the continuous- and discrete-time systems (2.7) and (3.10), given by
(3.11), are related by

λrd(x0, ω) = m(ααα(ω), s(ω))λrc(x0, ω).

As a final result in this section, we prove the following proposition, which evaluates
the average time spent in a certain state k.

Proposition 3.20. Let k ∈ N . For every i ∈ R such that P(Ωi) 6= 0 and almost
every ω ∈ Ωi,

lim
T→∞

L{t ∈ [0, T ] | ααα(ω)(t) = k}
T

=

ICi(k)pik

∫
R+

tdµk(t)

N∑
j∈Ci

pij

∫
R+

tdµj(t)

,

where L denotes the Lebesgue measure in R and ICi is the characteristic function of
the set Ci.

Proof. Fix k ∈ N . Let ϕk : Ω→ R+ be given by

ϕk((in, tn)∞n=1) =

{
t1, if i1 = k,
0, otherwise.

Then, by Birkhoff’s Ergodic Theorem, there exists a function ϕ∗k ∈ L1(Ω,R+) invari-
ant under θ such that, for almost every ω ∈ Ω,

lim
n→∞

1

n

n−1∑
j=0

ϕk(θjω) = ϕ∗k(ω), (3.22)

and, for every i ∈ R, ∫
Ωi
ϕk(ω̃)dP(ω̃) =

∫
Ωi
ϕ∗k(ω̃)dP(ω̃).
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As in the proof of Proposition 3.18, one shows that, for every i ∈ R, ϕ∗k is constant
almost everywhere on Ωi. Writing p = α1p

1 + · · ·+ αRp
R as in Proposition 3.14, we

get, for i ∈ R and almost every ω ∈ Ωi,

αiϕ
∗
k(ω) =

∫
Ωi
ϕk(ω̃)dP(ω̃) = αi

∑
j∈Ci

pij

∫
R+

tδjkdµj(t) = αiICi(k)pik

∫
R+

tdµk(t).

(3.23)
By definition of ααα, for every ω = (in, tn)∞n=1 ∈ Ω,

n−1∑
j=0

ϕk(θjω) =

n∑
j=1
ij=k

tj = L{t ∈ [0, sn(ω)] | ααα(ω)(t) = k}.

Hence, using Proposition 3.18 and combining (3.22) and (3.23), we obtain that, for
every i ∈ R with P(Ωi) 6= 0 and almost every ω ∈ Ωi,

lim
n→∞

L{t ∈ [0, sn(ω)] | ααα(ω)(t) = k}
sn(ω)

= lim
n→∞

n

sn(ω)

1

n

n−1∑
j=0

ϕk(θjω)

=
ICi(k)pik

∫
R+
tdµk(t)∑

j∈Ci p
i
j

∫
R+
tdµj(t)

. (3.24)

Let ω ∈ Ω be such that (3.24) holds and take T ∈ R+. Choose nT ∈ N such that
snT (ω) ≤ T < snT+1(ω). Then

1

T
L{t ∈ [0, T ] | ααα(ω)(t) = k} ≤ 1

snT (ω)
L{t ∈ [0, snT+1(ω)] | ααα(ω)(t) = k}

and

1

T
L{t ∈ [0, T ] | ααα(ω)(t) = k} ≥ 1

snT+1(ω)
L{t ∈ [0, snT (ω)] | ααα(ω)(t) = k}.

The conclusion of the proposition then follows since, by Proposition 3.18, sn+1(ω)
sn(ω) → 1

as n→∞ for almost every ω ∈ Ω.
Remark 3.21. The choice of the compatible sequence in this section is not unique,

and one might be interested in other possible choices. The times sn(ω) in the sequence
s(ω) correspond to the transitions of the Markov chain from Proposition 2.2. However,
if some of the diagonal elements of M are non-zero, then the discrete part of the
Markov chain, i.e., its component in N , may switch from a certain state to itself.
In practical situations, it may be possible to observe only switches between different
states, and another possible choice for the sequence s(ω) that may be of practical
interest is to consider only the times corresponding to such non-trivial switches. This
can be done if Mii 6= 1 for every i ∈ N , i.e., if the Markov chain in the discrete space
N has no absorbing states, in which case we have almost surely an infinite number of
switches between different states. Defining θ as the shift to the next different state, θ
defines a metric dynamical system if we suppose that, instead of having pM = p, we
have pM̃ = p, where M̃ij =

Mij

1−Mii
for i, j ∈ N with i 6= j and M̃ii = 0 for i ∈ N .

The counterparts of the previous results can be proved in this framework with no extra
difficulty.
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Remark 3.22. Even though we only consider in this paper the case where p is
invariant under M , our results can be generalized to the case of any probability vector
p by using the following three facts. First, for any probability vector q ∈ [0, 1]N , the

Cesàro mean of the sequence (qMn)∞n=0, namely 1
n

∑n−1
j=0 qM

j, converges as n→∞ to
an invariant probability vector (see, e.g., Meyer [23, Chapter 8]). Secondly, if (qn)∞n=1

is a sequence of probability vectors in [0, 1]N converging to some probability vector q ∈
[0, 1]N , then Pqn(E)→ Pq(E) uniformly in E ∈ F (which can be shown directly from

(3.13)). Finally, if q ∈ [0, 1]N is a probability vector and q0 = limn→∞
1
n

∑n−1
j=0 qM

j,
then Pq(E) = Pq0(E) for every set E ∈ F invariant under θ (which follows from
the fact that Pq(θ−1(E)) = PqM (E) for every E ∈ F). With these three properties,
when the probability vector p ∈ [0, 1]N is not invariant under M , it can be replaced
in the previous results by the invariant probability vector given by the Cesàro mean
q = 1

n

∑n−1
j=0 pM

j and the proofs can be adapted accordingly without much extra effort.

Remark 3.23. The fact that systems (2.1) and (3.1) are linear has been used only
in the proof of Theorem 3.4, where one uses an exponential bound on the growth of the
flows Φit = eAit, namely that there exist constants C, γ > 0 such that

∥∥eAit∥∥ ≤ Ceγt

for every t ≥ 0 and i ∈ N . If we consider, instead of system (2.1), the nonlinear
switched system

ẋ(t) = fα(t)(x(t)),

where f1, . . . , fN are complete vector fields generating flows Φ1, . . . ,ΦN , and modify
the discrete-time system (3.1) accordingly, all the previous results remain true, with
the same proofs, under the additional assumption that there exist constants C, γ > 0
such that

∥∥Φit(x)
∥∥ ≤ Ceγt ‖x‖ for every t ≥ 0, i ∈ N , and x ∈ Rd. However, the

results from the next sections do not generalize to the nonlinear framework.

4. Multiplicative Ergodic Theorem. In this section, we apply the discrete-
time Oseledets’ Multiplicative Ergodic Theorem (see, e.g., Arnold [1, Theorem 3.4.1])
in the one-sided invertible case to system (3.10) and we use Proposition 3.18 and
Theorem 3.19 to obtain that several of its conclusions also hold for the continuous-
time system (2.7).

Recall that, for i ∈ N , we consider Ai ∈ Md(R) and Φit = eAit. Let A :
Ω → Md(R) be the function defined for ω = (in, tn)∞n=1 by A(ω) = eAi1 t1 , so that
ϕrd(n;x0, ω) = A(θn−1ω)ϕrd(n − 1;x0, ω) for every x0 ∈ Rd, ω ∈ Ω0, and n ∈ N∗.
For ω ∈ Ω0 and n ∈ N, we denote Φ(n, ω) the linear operator defined by Φ(n, ω)x =
ϕrd(n;x, ω) for every x ∈ Rd, which is thus given by Φ(n, ω) = eAin tn · · · eAi1 t1 for
ω = (ij , tj)

∞
j=1 ∈ Ω0 and n ∈ N∗.

Theorem 4.1. There exists an invariant measurable subset Ω̂ ⊂ Ω of full P-
measure such that, for every ω ∈ Ω̂,

(i). the limit Ψ(ω) = limn→∞
(
Φ(n, ω)TΦ(n, ω)

)1/2n
exists and is a positive defi-

nite matrix;
(ii). there exist an integer q(ω) ∈ d and q(ω) vector subspaces V1(ω), . . . , Vq(ω)(ω)

with respective dimensions d1(ω) > · · · > dq(ω)(ω) such that

Vq(ω)(ω) ⊂ · · · ⊂ V1(ω) = Rd,

and A(ω)Vi(ω) = Vi(θ(ω)) for every i ∈ q(ω);

(iii). for every x0 ∈ Rd \ {0}, the Lyapunov exponents λrd(x0, ω) and λrc(x0, ω)
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exist as limits, i.e.,

λrd(x0, ω) = lim
n→∞

1

n
log ‖ϕrd(n;x0, ω)‖ ,

λrc(x0, ω) = lim
t→∞

1

t
log ‖ϕrc(t;x0, ω)‖ ;

(iv). there exist real numbers λd
1(ω) > · · · > λd

q(ω)(ω) and λc
1(ω) > · · · > λc

q(ω)(ω)

such that, for every i ∈ q(ω),

λrd(x0, ω) = λd
i (ω) ⇐⇒ λrc(x0, ω) = λc

i (ω) ⇐⇒ x0 ∈ Vi(ω) \ Vi+1(ω),

where Vq(ω)+1(ω) = {0};
(v). the eigenvalues of Ψ(ω) are eλ

d
1(ω) > · · · > eλ

d
q(ω)(ω);

(vi). q(θ(ω)) = q(ω) and, for i ∈ q(ω), di(θ(ω)) = di(ω), λd
i (θ(ω)) = λd

i (ω), and
λc
i (θ(ω)) = λc

i (ω);

(vii). if θ is ergodic, q is constant on Ω̂, and so are di, λ
d
i , and λc

i for i ∈ q.
Proof. Let us show that Oseledets’ Multiplicative Ergodic Theorem can be applied

to the random dynamical system (θ, ϕrd). Recall that there are C ≥ 1, γ > 0 such
that, for every i ∈ N and t ∈ R,

∥∥eAit∥∥ ≤ Ceγ|t|. Then, for ω = (in, tn)∞n=1 ∈ Ω0,

log+
∥∥A(ω)±1

∥∥ ≤ logC + γt1, so that

∫
Ω

log+
∥∥A(ω)±1

∥∥ dP(ω) ≤ logC + γ

N∑
i=1

pi

∫
R+

tdµi(t) <∞.

Then Oseledets’ Multiplicative Ergodic Theorem can be applied to (θ, ϕrd), yielding
all the conclusions for Ψ, q, di, Vi, λrd(x0, ω), and λd

i . The conclusions concerning
λrc(x0, ω) and λc

i (ω) in (iv), (vi), and (vii) follow from Theorem 3.19, with λc
i (ω) =

λd
i (ω)

m(ααα(ω),s(ω)) . One is now left to show that the Lyapunov exponent λrc(x0, ω) exists as

a limit.
Notice that

∥∥e−Aitx∥∥ ≤ Ceγt ‖x‖ for every i ∈ N , x ∈ Rd and t ≥ 0, and hence∥∥eAitx∥∥ ≥ C−1e−γt ‖x‖. Let t > 0 and choose nt ∈ N such that t ∈ (snt(ω), snt+1(ω)].
Then, proceeding as in (3.8), one gets

1

t
log ‖ϕrc(t;x0, ω)‖ ≥ − logC

t
− γ t− snt

t
+

1

t
log ‖ϕrd(nt;x0, ω)‖ .

Using (3.9), we thus obtain that

lim inf
t→∞

1

t
log ‖ϕrc(t;x0, ω)‖ ≥ 1

m(ααα(ω), s(ω))
λrd(x0, ω) = λrc(x0, ω),

which yields the existence of the limit.

5. The maximal Lyapunov exponent. We are interested in this section in
the maximal Lyapunov exponents for systems (2.7) and (3.10), i.e., the real numbers
λc

1(ω) and λd
1(ω) from Theorem 4.1(iv). We denote these numbers by λc

max(ω) and
λd

max(ω), respectively. Before proving the main results of this section, we state the
following lemma, which shows that the Gelfand formula for the spectral radius ρ holds
uniformly over compact sets of matrices. This follows from the estimates derived in
Green [15, Section 3.3]. For the reader’s convenience, we provide a proof.
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Lemma 5.1. Let A ⊂Md(R) be a compact set of matrices. Then the limit

lim
n→∞

‖An‖1/n = ρ(A)

is uniform over A.
Proof. Let ε > 0 and define a continuous function F : A →Md(R) by

F (A) =
1

ρ(A) + ε
A.

Then F (A) is compact and for every F (A) ∈ F (A) its spectral radius is ρ(F (A)) =
ρ(A)
ρ(A)+ε < 1. Fix A ∈ A. Then (see, e.g., Horn and Johnson [18, Lemma 5.6.10]) there

is a norm ‖·‖A in Rd with ‖F (A)‖A < 1+ρ(F (A))
2 . Then for all B in a neighborhood

U of A

‖F (B)‖A <
1 + ρ(F (A))

2
.

Since all norms on Md(R) are equivalent, there is βA > 0 such that for all B ∈ U

‖F (B)n‖ ≤ βA ‖F (B)n‖A ≤ βA ‖F (B)‖nA ≤ βA
(

1 + ρ(F (A))

2

)n
.

Then there is N ∈ N∗, depending only on A and ε, such that for all n ≥ N and all
B ∈ U ,

1

ρ(B) + ε
‖Bn‖1/n = ‖F (B)n‖1/n < 1,

implying ‖Bn‖1/n < ρ(B) + ε. Since this holds for every B in a neighborhood U of A

and ‖Bn‖1/n ≥ ρ(B) for every n ∈ N∗, one obtains the uniformity of the convergence
in U , and the assertion follows by compactness of A.

We can now prove our first result regarding the characterization of λc
max and λd

max.
Theorem 5.2. For almost every ω ∈ Ω, we have

λd
max(ω) = lim

n→∞

1

n
log ‖Φ(n, ω)‖ . (5.1)

If θ is ergodic, then λd
max is constant almost everywhere and its constant value satisfies

λd
max ≤ inf

n∈N∗
1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω) = lim
n→∞

1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω). (5.2)

Proof. Notice that (5.1) and (5.2) do not depend on the norm inMd(R). We fix in
this proof the norm induced by the Euclidean norm in Rd, given by ‖A‖ =

√
ρ(ATA).

Notice that, in this case,
∥∥ATA

∥∥ =
√
ρ((ATA)2) = ρ(ATA) = ‖A‖2.

By Theorem 4.1(v), eλ
d
max(ω) is the spectral radius ρ(Ψ(ω)) of Ψ(ω). Using the

continuity of the spectral radius and Theorem 4.1(i), one then gets that

eλ
d
max(ω) = lim

n→∞
ρ
[(

Φ(n, ω)TΦ(n, ω)
)1/2n]

.

By Gelfand’s Formula for the spectral radius,

eλ
d
max(ω) = lim

n→∞
lim
k→∞

∥∥∥(Φ(n, ω)TΦ(n, ω)
)k/2n∥∥∥1/k

. (5.3)
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The sequence of matrices
((

Φ(n, ω)TΦ(n, ω)
)1/2n)∞

n=1
converges to Ψ(ω), hence this

sequence is bounded in Md(R). By Lemma 5.1, the limit in Gelfand’s Formula is
uniform, which shows that one can take the limit in (5.3) along the line k = 2n to
obtain

eλ
d
max(ω) = lim

n→∞

∥∥Φ(n, ω)TΦ(n, ω)
∥∥1/2n

= lim
n→∞

‖Φ(n, ω)‖1/n .

Hence (5.1) follows by taking the logarithm.
If θ is ergodic, then, by Theorem 4.1(vii), λd

max is constant almost everywhere.
Let m ∈ N∗. By (5.1), for almost every ω ∈ Ω,

λd
max = lim

n→∞

1

nm
log ‖Φ(nm,ω)‖ . (5.4)

One has Φ(nm,ω) = Φ(m, θ(n−1)mω) · · ·Φ(m, θmω)Φ(m,ω), and thus

1

nm
log ‖Φ(nm,ω)‖ ≤ 1

nm

n−1∑
k=0

log
∥∥Φ(m, θmkω)

∥∥ . (5.5)

Since θm preserves P and log ‖Φ(m, ·)‖ ∈ L1(Ω,R), Birkhoff’s Ergodic Theorem shows
that

lim
n→∞

1

nm

n−1∑
k=0

log
∥∥Φ(m, θmkω)

∥∥ =
1

m

∫
Ω

log ‖Φ(m,ω)‖ dP(ω). (5.6)

Combining (5.4), (5.5), and (5.6), one obtains the inequality in (5.2). The sequence(∫
Ω

log ‖Φ(n, ω)‖ dP(ω)
)
n

is subadditive, since Φ(n + m,ω) = Φ(m, θnω)Φ(n, ω) for
n,m ∈ N and θ preserves P. This subadditivity implies that the equality in (5.2)
holds.

Under some extra assumptions on the probability measures µi, i ∈ N , one obtains
that the inequality in (5.2) is actually an equality.

Theorem 5.3. Suppose that θ is ergodic and that there exists r > 1 such that,
for every i ∈ N ,

∫
(0,∞)

trdµi(t) < ∞. Then λd
max is constant almost everywhere and

given by

λd
max = inf

n∈N∗
1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω) = lim
n→∞

1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω).

Proof. One clearly has, using (5.1), that

λd
max =

∫
Ω

λd
max(ω)dP(ω) =

∫
Ω

lim
n→∞

1

n
log ‖Φ(n, ω)‖ dP(ω).

The theorem is proved if we show one can exchange the limit and the integral in
the above expression, which we do by applying Vitali’s convergence theorem (see,
e.g., Rudin [25, Chapter 6]). We are thus left to show that the sequence of functions(

1
n log ‖Φ(n, ·)‖

)∞
n=1

is uniformly integrable, i.e., for every ε > 0, there exists δ > 0

such that, for every E ∈ F with P(E) < δ, one has 1
n

∣∣∫
E

log ‖Φ(n, ω)‖ dP(ω)
∣∣ < ε.

For ω = (in, tn)∞n=1 ∈ Ω0 and n ∈ N∗, one has Φ(n, ω) = eAin tn · · · eAi1 t1 . Let
C, γ > 0 be such that

∥∥eAit∥∥ ≤ Ceγt for every i ∈ N and t ≥ 0. Then

log ‖Φ(n, ω)‖ ≤ n logC + γ

n∑
j=1

tj = n logC + γsn(ω),
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where s(ω) = (sn(ω))∞n=0. Hence, it suffices to show that the sequence
(
sn
n

)∞
n=1

is
uniformly integrable.

For n ∈ N∗ and E ∈ F, we have, by Hölder’s inequality,∫
E

sn(ω)

n
dP(ω) =

1

n

n∑
j=1

∫
E

tjdP(ω) ≤ 1

n

n∑
j=1

(∫
Ω

trjdP(ω)

) 1
r

P(E)
1
r′ ≤ K 1

r P(E)
1
r′ ,

(5.7)
where 1

r + 1
r′ = 1 and K = maxi∈N

∫
(0,∞)

trdµi(t) < ∞. Equation (5.7) establishes

the uniform integrability of
(
sn
n

)∞
n=1

, which yields the result.
As an immediate consequence of Proposition 3.18, Theorem 3.19, Theorem 5.2,

and Theorem 5.3, we obtain the following result.
Corollary 5.4. Suppose that θ is ergodic. Then λc

max and λd
max are constants

almost everywhere satisfying

λd
max ≤ inf

n∈N∗
1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω), (5.8)

λc
max =

λd
max∑N

i=1 pi
∫
R+
tdµi(t)

.

In particular, if

there exists n ∈ N∗ such that

∫
Ω

log ‖Φ(n, ω)‖ dP(ω) < 0, (5.9)

then systems (2.7) and (3.10) are almost surely exponentially stable.
If we have further that there exists r > 1 such that

∫
R+
trdµi(t) < ∞ for every

i ∈ N , then (5.8) is an equality and (5.9) is equivalent to the almost sure exponential
stability of (3.10) and to the almost sure exponential stability of (2.7).

6. Application to stabilization of control systems with arbitrary decay
rate. In this section, we consider the linear control system

ẋ(t) = Ax(t) +Bα(t)uα(t)(t), (6.1)

where x(t) ∈ Rd, A ∈Md(R), α : R+ → N belongs to the class P of right continuous,
piecewise constant switching signals, and, for j ∈ N , uj(t) ∈ Rmj for some positive
integer mj and Bj ∈ Md,mj (R). System (6.1) is a switched control system with
dynamics given by the N equations ẋ = Ax+Bjuj , j ∈ N .

Our main motivation to consider (6.1) comes from the analysis of linear systems
of the form

ẋ(t) = Ax(t) + α(t)Bu(t) (6.2)

with persistently exciting signals α (see, e.g., Chaillet, Chitour, Loŕıa, and Sigalotti
[5], Chitour, Colonius, and Sigalotti [8], Chitour, Mazanti, and Sigalotti [9], Chitour
and Sigalotti [10], Mazanti, Chitour, and Sigalotti [22]). A (deterministic) measurable
signal α : R+ → [0, 1] is called a persistently exciting (PE) (T, µ)-signal with constants
T ≥ µ > 0 if, for every t ≥ 0 ∫ t+T

t

α(s)ds ≥ µ. (6.3)
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In this framework, one is interested in stabilizing the system by a linear feedback
u = Kx with K depending on A,B, T, µ but chosen uniformly with respect to the
(T, µ)-signal α. It is also of interest to determine the decay rates that can be achieved
by such feedback laws K. In particular, [10, Proposition 4.5] shows that there are (two
dimensional) controllable systems for which the achievable decay rates are bounded
below, even when we consider only PE signals α taking values in {0, 1} instead of
[0, 1]. Our main result, Theorem 6.1, implies that, in the probabilistic setting defined
below, one can get arbitrarily small (almost sure) decay rates for the generalization
(6.1) of system (6.2), which is in contrast to the situation for persistently excited
systems. An explanation for this fact is that the probability of having a signal α with
very fast switching for an infinitely long time, such as the signals used in the proof of
[10, Proposition 4.5], is zero, and hence such signals do not interfere with the behavior
of the (random) maximal Lyapunov exponent.

Let M ∈ MN (R) be an irreducible stochastic matrix, p be its unique invariant
probability vector, µ1, . . . , µN be probability measures on R∗+ with its Borel σ-algebra,
and consider the probability space (Ω,F,P) from Definition 2.1. We consider system
(6.1) in a probabilistic setting by taking random signals ααα(ω) as in Definition 2.5, i.e.,
the random control system ẋ(t) = Ax(t)+Bααα(ω)(t)uααα(ω)(t)(t). The problem treated in
this section is the arbitrary rate stabilizability of this system by linear feedback laws
uj = Kjx, j ∈ N . More precisely, consider the closed-loop random switched system

ẋ(t) =
(
A+Bααα(ω)(t)Kααα(ω)(t)

)
x(t). (6.4)

We wish to know if, given λ ∈ R, there exist matrices Kj ∈ Mmj ,d(R), j ∈ N ,
such that the maximal Lyapunov exponent λc

max of the continuous-time system (6.4),
defined as in Section 5, satisfies λc

max(ω) ≤ λ for almost every ω ∈ Ω. Notice that,
since we assume that M is irreducible, the discrete-time metric dynamical system θ
defined in (3.12) is ergodic (see Remark 3.11), and hence, by Corollary 5.4, λc

max is
constant almost everywhere in Ω.

For j ∈ N , let

Vj = Range
(
Bj ABj · · · Ad−1Bj

)
. (6.5)

Notice that, by Cayley–Hamilton theorem, for every n ∈ N, all columns of AnBj
belong to Vj . Some of the spaces Vj may have dimension zero.

Theorem 6.1. Let A ∈ Md(R), Bj ∈ Md,mj (R) for j ∈ N and some mj ∈ N∗,
and suppose that the spaces V1, . . . ,VN defined in (6.5) satisfy V1 ⊕ · · · ⊕ VN = Rd.
Then, for every λ ∈ R, there exist matrices Kj ∈ Mmj ,d(R), j ∈ N , such that the
maximal Lyapunov exponent λc

max of the closed-loop random switched system (6.4)
satisfies λc

max(ω) ≤ λ for almost every ω ∈ Ω.
Proof. For j ∈ N , let nj = dimVj . Up to a linear change of variables in

Rd, we can suppose that V1 = {e1, . . . , en1
},V2 = {en1+1, . . . , en1+n2

}, . . . ,VN =
{en1+···+nN−1+1, . . . , en1+...+nN }. In this case, for j ∈ N , the matrices A and Bj have
the block structure

A =



A1 0 · · · 0 · · · 0
0 A2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · Aj · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · AN


, Bj =



0
0
...
bj
...
0


, (6.6)
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with Aj ∈ Mnj (R) and bj ∈ Mnj ,mj (R). Whenever nj 6= 0, it follows immediately
from the definition of Vj that the pair (Aj , bj) is controllable. Denoting by Pj =
(en1+···+nj−1+1, . . . , en1+...+nj )

T ∈ Mnj ,d(R), we have that bj = PjBj and Aj =
PjAP

T
j .

Let C ≥ 1, β > 0 be such that, for every j ∈ N and every t ≥ 0,
∥∥eAjt∥∥ ≤ Ceβt.

Thanks to Cheng, Guo, Lin, and Wang [7, Proposition 2.1], we may assume that C is
chosen large enough such that the following property holds: there exists L ∈ N∗ such
that, for every γ ≥ 1 and j ∈ N , there exists a matrix kj ∈Mmj ,nj (R) with∥∥∥e(Aj+bjkj)t

∥∥∥ ≤ CγLe−γt, ∀t ∈ R+. (6.7)

Let Kj = kjPj ∈Mmj ,d(R). With this choice of feedback laws, we have

A+BjKj =



A1 0 · · · 0 · · · 0
0 A2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · Aj + bjkj · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · AN


,

and thus, for every t ∈ R,

e(A+BjKj)t =



eA1t 0 · · · 0 · · · 0
0 eA2t · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · e(Aj+bjkj)t · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · eAN t


.

Since M is irreducible and p is invariant under M , we have pj > 0 for every j ∈ N .
The irreducibility of M also provides the existence of r ≥ N and (i∗1, . . . , i

∗
r) ∈ N

r

such that {i∗1, . . . , i∗r} = N and Mi∗1i
∗
2
· · ·Mi∗r−1i

∗
r
> 0. In order to apply Corollary 5.4,

consider∫
Ω

log ‖Φ(r, ω)‖ dP(ω) =
∑

(i1,...,ir)∈Nr
pi1Mi1i2 · · ·Mir−1ir

·
∫

(0,∞)r
log
∥∥∥e(A+BirKir )tr · · · e(A+Bi1Ki1 )t1

∥∥∥ dµi1(t1) · · · dµir (tr). (6.8)

Since
∑N
j=1 P

T
j Pj = Idd and Pje

(A+BiKi)tPT
k = 0 if j 6= k, we have, for every

(i1, . . . , ir) ∈ Nr and (t1, . . . , tr) ∈ Rr+,

e(A+BirKir )tr · · · e(A+Bi1Ki1 )t1

=

 N∑
jr=1

PT
jrPjr

 e(A+BirKir )tr · · ·

 N∑
j1=1

PT
j1Pj1

 e(A+Bi1Ki1 )t1

 N∑
j0=1

PT
j0Pj0


=

N∑
j=1

PT
j Pje

(A+BirKir )tr · · ·PT
j Pje

(A+Bi1Ki1 )t1PT
j Pj .
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=

N∑
j=1

PT
j e

(Aj+δjir bjkj)tr · · · e(Aj+δji1bjkj)t1Pj . (6.9)

Since, for every j ∈ N and t ≥ 0, we have
∥∥eAjt∥∥ ≤ Ceβt and

∥∥e(Aj+bjkj)t
∥∥ ≤

CγLe−γt, we get, for every (i1, . . . , ir) ∈ Nr and (t1, . . . , tr) ∈ Rr+,∥∥∥e(A+BirKir )tr · · · e(A+Bi1Ki1 )t1
∥∥∥ ≤ NCrγrLeβ∑r

j=1 tj . (6.10)

When (i1, . . . , ir) = (i∗1, . . . , i
∗
r), we can obtain a sharper bound than (6.10). For

j ∈ N , denote by N(j) the nonempty set of all indices k ∈ r such that i∗k = j, and
denote by n(j) ∈ N∗ the number of elements in N(j). Then∥∥∥PT

j e
(Aj+δji∗r bjkj)tr · · · e(Aj+δji∗1

bjkj)t1Pj

∥∥∥ ≤ Crγn(j)Le−γ
∑
k∈N(j) tkeβ

∑
k∈r\N(j) tk ,

which shows, using (6.9), that

∥∥∥e(A+Bi∗rKi∗r )tr · · · e(A+Bi∗1
Ki∗1

)t1
∥∥∥ ≤ N∑

j=1

Crγn(j)Le−γ
∑
k∈N(j) tkeβ

∑
k∈r\N(j) tk

≤ NCrγrLe−γmink∈r tkerβmaxk∈r tk . (6.11)

Let

E0 = max
i∈N

∫
(0,∞)

tdµi(t),

Emin =

∫
(0,∞)r

min
k∈r

tkdµi∗1 (t1) · · · dµi∗r (tr) > 0,

Emax =

∫
(0,∞)r

max
k∈r

tkdµi∗1 (t1) · · · dµi∗r (tr) <∞.

Then, combining (6.10) and (6.11), we obtain from (6.8) that∫
Ω

log ‖Φ(r, ω)‖ dP(ω) ≤ Nr (log(NCr) + rL log γ + rβE0)

+ pi∗1Mi∗1i
∗
2
· · ·Mi∗r−1i

∗
r

(log(NCr) + rL log γ − γEmin + rβEmax) . (6.12)

The right-hand side of (6.12) tends to −∞ as γ →∞, which can be achieved by (6.7).
Hence it follows from Corollary 5.4 that the maximal Lyapunov exponent of (6.4) can
be made arbitrarily small.

Remark 6.2. By writing the matrices A and Bj, j ∈ N , in the form (6.6),
system (6.1) can be seen as N independent control systems such that, at each time,
only one of them is controlled, while the others follow their uncontrolled dynamics.

Remark 6.3. In order to establish a more precise link between Theorem 6.1
and the case of deterministic persistently excited systems treated in [5, 8, 9, 10, 22],
consider the case of (6.1) with α(t) ∈ {0, 1}, B0 = 0, B1 = B, and (A,B) controllable.
Moreover, in order to simplify, we assume that, in the probabilistic model of ααα, trivial
switches do not occur, which amounts to choosing

M =

(
0 1
1 0

)
,
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with unique invariant probability vector p =
(

1
2 ,

1
2

)
. In general, such signals ααα(ω)

cannot be persistently exciting. In fact, suppose that µ0 satisfies µ0((0, T ]) < 1 for
every T > 0. Then

P{ω ∈ Ω | ∃T ≥ µ > 0 such that ααα(ω) is a PE (T, µ)-signal} = 0. (6.13)

Indeed, since a (T, µ)-signal is also a (T ′, µ′)-signal for every T ′ ≥ T and 0 < µ′ ≤ µ,
we have

{ω ∈ Ω | ∃T ≥ µ > 0 such that ααα(ω) is a PE (T, µ)-signal}

=
⋃
T>0

⋃
µ∈(0,T ]

{ω ∈ Ω | ααα(ω) is a PE (T, µ)-signal}

=
⋃
T∈N∗

⋃
1
µ∈N∗

{ω ∈ Ω | ααα(ω) is a PE (T, µ)-signal}.

If α is a PE (T, µ)-signal, the PE condition implies that α cannot remain zero during
time intervals longer than T − µ, and thus

{ω ∈ Ω | ααα(ω) is a PE (T, µ)-signal}
⊂ {ω = (in, tn)∞n=1 ∈ Ω | ∀n ∈ N∗, in = 0 =⇒ tn ≤ T − µ}. (6.14)

Since in takes the value 0 infinitely many times for almost every ω ∈ Ω and µ0((0, T −
µ]) < 1, the right-hand side of (6.14) has measure zero, and thus (6.13) holds.

However, one can link the random signals ααα(ω) with a weaker, asymptotic notion
of persistence of excitation. A (deterministic) measurable signal α : R+ → [0, 1] is
said to be asymptotically persistently exciting with constant ρ > 0 if

lim inf
t→∞

1

t

∫ t

0

α(s)ds ≥ ρ.

It follows easily from (6.3) that every persistently exciting (T, µ)-signal is also asymp-
totically persistently exciting with constant ρ = µ

T . Proposition 3.20 implies that, for
almost every ω ∈ Ω,

lim
t→∞

1

t

∫ t

0

ααα(ω)(s)ds =

∫
R+
tdµ1(t)∫

R+
tdµ0(t) +

∫
R+
tdµ1(t)

,

and thus, in particular, almost every signal ααα(ω) is asymptotically persistently exciting

with constant ρ =

∫
R+

tdµ1(t)∫
R+

tdµ0(t)+
∫
R+

tdµ1(t)
> 0.
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[21] Hai Lin and Panos J. Antsaklis, Stability and stabilizability of switched linear systems: a

survey of recent results, IEEE Trans. Automat. Control, 54 (2009), pp. 308–322.
[22] Guilherme Mazanti, Yacine Chitour, and Mario Sigalotti, Stabilization of two-dimen-

sional persistently excited linear control systems with arbitrary rate of convergence, SIAM
J. Control Optim., 51 (2013), pp. 801–823.

[23] Carl Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000.

[24] Karl Petersen, Ergodic Theory, vol. 2 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, 1989. Corrected reprint of the 1983 original.

[25] Walter Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, New York,
third ed., 1987.

[26] Eugene Seneta, Non-Negative Matrices and Markov Chains, Springer Series in Statistics,
Springer, New York, 2006. Revised reprint of the second edition [Springer-Verlag, New
York, 1981].

[27] Robert Shorten, Fabian Wirth, Oliver Mason, Kai Wulff, and Christopher King,
Stability criteria for switched and hybrid systems, SIAM Rev., 49 (2007), pp. 545–592.

24


