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Abstract—A fusion center approach to estimate a constant
location parameter using quantized noisy measurements from
multiple sensors is presented. The asymptotic estimation per-
formance is obtained and simulations for different numbers of
sensors under Gaussian and Cauchy noise are used for validation.
A performance comparison under constrained communication
bandwidth between a fusion center approach with two low
resolution sensors and a high resolution single sensor approach is
presented to motivate the use of low resolution sensor networks.
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I. INTRODUCTION

Technological advances in sensing and communication de-

vices allowed wireless sensor networks to emerge as a new

domain of research. This new domain has direct applications

in military, health and commercial areas [1].

The deployment of a large quantity of sensors to track or

estimate parameters of physical models creates a new spectrum

of problems for the design of the system. Stringent constraints

on costs and energy must now be considered. In a sensor

network, these constraints can be viewed mainly as bandwidth

and complexity constraints.

A direct way of dealing with these constraints is to allow the

sensors to quantize their measurements. As in a sensing system

the objective is to estimate underlying parameters embedded in

noise, the quantization process must be designed to optimize

estimation performance. Optimal estimation performance of a

constant scalar parameter based on uniformly quantized noisy

measurements was studied in [2]. It was shown that a good

way of selecting the quantizer input offset was to use feed-

back information from the quantizer output. A fusion center

approach was also proposed, where the fusion center receives

the quantized information from all sensors and broadcast the

last estimate to the sensors, which use it as the quantizer input

offset. The use of estimates of the parameter as the input

offset was motivated by the fact that the asymptotic optimal

estimation variance, given by the Cramér–Rao bound (CRB),

was observed to be minimized by placing the bias exactly at

the threshold. In the binary measurement and Gaussian noise

case, it was observed that by placing the threshold in this

way, the CRB for quantized measurements were only π
2 times

the CRB for continuous measurements. The small loss due to

quantization lead many others [3]–[5] to study and develop

algorithms for estimation using multiple sensors and binary

quantizers.

In this paper a fusion center approach will also be devel-

oped. The estimator in the fusion center will be based on a

low complexity recursive algorithm for which the asymptotic

variance can be studied using stochastic approximation the-

ory. To check for the validity of the results, the theoretical

results will be compared to the simulation of the algorithm

for different number of sensors with Gaussian and Cauchy

distributed noise. At the end, a simulation comparing the

algorithm performance with one sensor and five quantization

bits and two sensors, one with two quantization bits and the

other with three bits, will show the superiority of the low

resolution multisensor approach when the total bandwidth is

fixed to a constant number of bits.

II. PROBLEM STATEMENT AND ESTIMATOR

A constant scalar parameter x is measured in N sensors.

Each sensor measures the parameter with additive noise

Y
(j)
k = x+ V

(j)
k , for j ∈ {1, · · · , N} , (1)

where V
(j)
k is the noise random variable (r.v.) for the sample

k obtained at the sensor j. The noise is supposed to be

independent between sensors and independent and identically

distributed (i.i.d) with respect to (w.r.t.) the sample index k.

The measurements at each sensor are quantized by scalar

quantizers with adjustable input offsets and gains and then they

are sent to a fusion center that will estimate the parameter.

The adjustable quantizers characteristics are their input

gains 1

∆
(j)
k

, input offsets b
(j)
k and the vectors of thresholds

(considered to be static) that define the N
(j)
I quantizer intervals
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Fig. 1. Scheme representing the sensor network. The last estimate is
broadcasted by the fusion center through a perfect channel to be used as
quantizer offset.

The set of quantizer outputs of the sensor j is I(j) =
{

−N
(j)
I

2 , · · · ,−1, 1, · · · , N
(j)
I

2

}

.

The following assumptions on the quantizer and on the

measurement noise will be considered:

• The marginal cumulative distribution function (CDF) for

the noise r.v. will be denoted by F j (v). V
(j)
k has a

probability density function (PDF) f (j) (v) that is an even

function.

• The quantizers have symmetric thresholds τ
(j)
i = −τ

(j)
−i

with τ
(j)
0 = 0 and τ

(j)
NI
2

= +∞.

• The fusion center will broadcast the last parameter esti-

mate X̂k−1 without noise to the sensors that will use it

as input offset:

b
(j)
k = X̂k−1. (3)

• The noise CDFs have known scale parameters δ(j), thus

the CDFs can be written as F (j) (v) = F
(j)
n

(

v
δ(j)

)

, where

Fn is the CDF for δ(j) = 1. The quantizer gain can

be used to normalize the input w.r.t. the noise scale

parameter

∆
(j)
k = c

(j)
δ δ(j), (4)

while the free constant parameter c
(j)
δ can be chosen to

optimize estimation performance when the thresholds are

fixed.

The last two assumptions are used to enhance the estimation

performance by placing the dynamic range of the quantizer in

a region with richer statistical information.

The general scheme is depicted in Fig. 1, where the UP-

DATE block contains an online estimator of the parameter. In

a direct approach to solve this estimation problem an online

version of the maximum likelihood estimator could be used.

This would require unbounded memory capacity because all

previous samples would have to be stored and also all previous

estimators, as they are the previous central thresholds. To

find the maximum likelihood estimate, a complex iterative

optimization procedure based on gradients would be necessary.

A solution to reduce complexity and memory requirements is

to consider that the procedure iterates only one time per sample

set and that it uses only the present set of measurements, this

leads to the following algorithm:

X̂k = X̂k−1 + γkη (ik) , (5)

where γk is a sequence of positive gains, ik is the vec-

tor of quantized observations
[

i
(1)
k , · · · , i(N)

k

]T

and η [i] is

a quantizer output coefficient, defined as a function from
{

I(1), · · · , I(N)

}

to R.

III. ESTIMATION PERFORMANCE

The performance of the estimator (5) can be studied using

the theory developed in [6] for adaptive algorithms.

It is shown in [6] that algorithms of the form (5) when used

for estimating constant parameters must have decreasing gains

as follows

γk =
γ

k
. (6)

Also using the results from [6, Chap. 3], the asymptotic

variance of the estimation error can be obtained under the

condition that the mean error converges to zero as k −→ ∞.

To prove this convergence, it would be sufficient to use an

ordinary differential equation (ODE) approximation of (5)

and then prove global convergence properties for the ODE

using Lyapunov theory. In this work, such analysis will not

be considered, only the mean behavior when X̂k = x will be

studied.

When X̂k = x, the mean increment E
(

X̂k − X̂k−1

)

is

given by

E
(

X̂k − X̂k−1

)

= γkE [η (i)] = γkη
T
F

vec
d , (7)

where η is a vector regrouping all possible values of the

output coefficients
[
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and F
vec
d is a vector defined in the same way but with

elements given by

Fd (i) =
N
∏

j=1

F
(j)
d

(

i(j)
)

, (8)

where F
(j)
d

(

i(j)
)

is the probability of having the output i(j)

at the sensor j when X̂k = x:

F
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Thus, the following condition is needed to have an equilibrium

point at the true parameter:

ηT
F

vec
d = 0, (10)

Note that this is a necessary condition for asymptotic unbi-

asedness of the algorithm.

Assuming that the algorithm is asymptotically unbiased,

the results in [6, pp. 110-113] can be applied to obtain the

asymptotic distribution of the estimation error, the optimal gain

γ = γ⋆ and minimal estimation variance σ2
ǫ . The asymptotic

error is Gaussian distributed and it is given as follows

k
1
2 ǫk  

k→∞
N
(

0, σ2
ǫ

)

(11)

The optimal γ and minimal σ2
ǫ are then given by

γ⋆ =
1

ηT fdf
T
d η

(12)

and

σ2
ǫ =

ηTF dη

ηT fdf
T
d

. (13)

The matrix F d is a diagonal matrix diag [Fvec
d ] and fd is the

vector form (as η and F
vec
d ) regrouping the elements
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(15)

The asymptotic performance can also be optimized through

the choice of η, this can be done by minimizing (13) w.r.t.

η under the equilibrium constraint (10). This problem can be

cast as a modified eigenvalue problem for which the solution

is given in [7]. This leads to the following results:

η = F
−1
d fd − 1fd = F

−1
d fd, (16)

where 1 is a square matrix of ones, the second equality comes

from the symmetry assumptions and

σ2
ǫ = γ⋆ =

1

fTd Fdfd
(17)

Using the symmetry assumptions, it is possible to write the

results above as the following sums:

η (i) =
N
∑

j=1

f
(j)
d

(

i(j)
)

F
(j)
d

(

i(j)
)

(18)

and

σ2
ǫ = γ⋆ =

1
∑N

j=1

∑

i(j)
f
(j) 2
d (i(j))
F

(j)
d (i(j))

(19)

The output coefficients can be seen as a sum of the score

functions for the quantized measurements of the different

sensors when the central thresholds are placed exactly at

the parameter and the asymptotic variance is the inverse

of the sum of the Fisher information for the measurements

from the sensors also when the central thresholds are placed

at the parameter. This indicates that the estimator can be

implemented using tables with N
(j)
I coefficients only and also

that the estimator is asymptotically efficient.

The last free parameters are τ (j) and c
(j)
δ , both can be

chosen to maximize the individual Fisher information for

each sensor. The optimization through τ (j) is a difficult

problem that will not be treated here. In the following sections,

the quantizer will be supposed to be uniform with unitary

quantization intervals and c
(j)
δ will be used for optimizing the

estimation performance.

IV. SIMULATIONS

The validity of the results will now be verified through sim-

ulations. All the sensors within a simulation will be considered

to have the same type of noise and the same noise scale factor

δ. The noise considered will be Gaussian or Cauchy distributed

with the following PDFs respectively:

fG (v) =
1

δ
√
π
e−(

v
δ )

2

,

fC (v) =
1

δπ
(

1 +
(

v
δ

)2
) . (20)

Optimization w.r.t. cδ (the same gain for all sensors in this

case, as the noise is identically distributed) will be done by

searching the maximum of the corresponding Fisher informa-

tion in a fine grid. After finding the optimal cδ , the coefficients
fd(i)
Fd(i)

and the gain γ⋆ can be calculated.

For all the following simulations, the length of the block

of samples will be 5000 and for evaluating the mean squared

error (MSE) the average of the squared error will be calculated

using 50000 blocks, the noise scale will be δ = 1 for both

types of noise. The parameter value and initial estimator value

are x = 0 and X̂0 = 1.

In the first simulation, it will be considered that all the

quantizers have NI = 4 and N will be 1, 2 or 3, the results

can be observed in Fig. 2 in log scale both in time and MSE.

The simulated results are compared with the theoretical ap-

proximations, for this algorithm they are asymptotically equal

to the optimal CRB. As it was expected the MSE decreases

with the number of sensors and the simulated results are very

close to the theoretical approximation for a large number of

samples. To have a more appropriate comparison between

different number of sensors, channel bandwidth constraints

must be considered.

In the second simulation, the total bandwidth considered

will be 5 bits. Two possible settings will be considered, a

single sensor approach using the 5 bits (NI = 32) and a multi-

sensor approach with one sensor quantizing the measurements

with 2 (NI = 4) bits and the other with 3 bits (NI = 8). The
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results are shown in Fig. 3, also with a comparison with the

CRBs. For both types of noise, the theoretical and simulated

results show that the multisensor approach is superior.

V. CONCLUSIONS

In this work, a fusion center approach for estimation based

on quantized measurements was presented. An online low

complexity estimator was proposed to estimate a constant

using quantized noisy measurements obtained from multiple

sensors, the quantizers input offsets were considered to be

equal to the last estimate broadcasted by the estimator. The

estimation performance was studied and optimized. It was

shown that the asymptotic error variance is equal to the

CRB obtained when considering that the measurements are

quantized with quantizers centered at the true parameter.

The theoretical results were validated through simulation

under two types of measurement noise distribution, Gaussian

and Cauchy, and different number of sensors. In a fixed total
bandwidth context, it was observed that an approach with

multiple sensors and low resolution quantizers was superior to

a single sensor approach. Such observation motivates the use

of low resolution sensor networks for estimation purposes.
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