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Element Method formulation with uniform flow

Bassem Barhoumia,1

a University of Tunis El Manar, National Engineering School of Tunis, MAI Laboratory,
BP 37, El Belvedere 1002 Tunis, Tunisia

Abstract

This paper presents an improved form of the convected Boundary Element
Method (BEM) for axisymmetric problems in a subsonic uniform flow. The pro-
posed formulation based on the axisymmetric Convected Helmholtz Equation (CHE)
and its fundamental solution that describes the sound radiation from a monopole
source. The variables in the new axisymmetric boundary integral formulation can
be expressed explicitly in terms of the acoustic pressure and its particular normal
derivative. Also, the constant coefficients are expressed only in terms of the axisym-
metric convected Green’s function and its convected normal derivative. The par-
ticular and convected derivatives reduce the flow effects of the normal and the flow
direction derivatives incorporated in the conventional convected boundary integral
formulas. The advanced form of the axisymmetric boundary integral representation
with flow is a similar form of the axisymmetric boundary element method without
flow. Precisely, the two new operators significantly reduce the computational bur-
den of the classical BEM and then becomes the CPU time of BEM without flow.
The formula is verified comparing to both analytical and Finite Element Methods
(FEM) of an axisymmetric infinite rigid duct in a subsonic uniform flow.

Keywords:
Axisymmetric Convected Boundary Element Method, Convected Helmholtz Equa-
tion, singular integrals, Finite Element Method, axisymmetric infinite rigid duct.

1. Introduction

The numerical studies of some acoustic problems with fluid flow require only
the special methods, such as the computational techniques of the Finite Element
Method (FEM) and boundary element method (BEM) for solving any axisymmetric
medium in the science and engineering. The finite element method is currently the
most widely used numerical method for solving the interior medium with mean flow
and that the boundary element method is used for solving the exterior medium with
a constant flow [1].
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E-mail adresse: bassembarhoumi@hotmail.fr
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The finite element method has been implemented for solving the Helmholtz equa-
tion for the acoustic wave diffraction problems without flow [2]. It has been imple-
mented with a displacement formulation for the modelling and simulation of the
fluid-structure interaction problems in which the coupling conditions are formulated
[3]. A numerical technique of the FEM for the modeling of the acoustic pressure
inside an axisymmetric lined duct in the presence of a constant flow was developed
and presented in Ref. [4]. This method is based on the resolution of the convected
Helmholtz equation in the modal representation which gives good results compared
with the analytical ones. The FEM applied to determine the time-harmonic acous-
tic field in a 2D infinite waveguide with walls covered of an absorbing material,
and in the presence of a mean flow assumed uniform far from the source [5]. The
boundary conditions of the rigid and lined ducts are represented by transparent
boundary conditions suitable for use in a finite element scheme which based on the
Dirichlet-to-Neumann (DtN) boundary condition [5]. For particular acoustic do-
mains, [6] has determined the acoustic propagation in a transformed domain by the
Prandtl-Glauert transformation.

It is known that the finite element method has its limitations in modeling infinite
domains. The unbounded medium contains the non-reflection condition which is
represented by the Sommerfeld radiation condition in a medium at rest [7] or in
a subsonic uniform flow [6]. Using the boundary element method (BEM), which
requires a discretization of only the generator of the acoustic domain and that this
Sommerfeld condition is automatically fulfilled by the fundamental solution. This
makes the BEM superior to the FEM in many cases, especially for the unbounded
problems, such as the wave propagation in the infinite lined ducts.

The boundary element method can be formulated in the transformed acoustic
medium [8] and in the original acoustic medium [9]. In order to take advantage
of both the FEM and the BEM, a coupled FEM/BEM approach has been pro-
posed [10]. A direct collocation boundary element formulation for the calculation
of acoustic propagation in a subsonic uniform mean flow has been presented in Ref.
[11] in which the model is directed towards the calculation of the propagation inside
and radiation from axisymmetric lined ducts. An advanced boundary element/fast
Fourier transform (BE/FFT) methodology for solving axisymmetric acoustic wave
scattering and radiation problems with non-axisymmetric boundary conditions has
been developed in Ref. [12].

However, the main disadvantages of using boundary integral formulations in an
original acoustic medium are the same as in the non-flow case [13]. In addition,
the convection effects in the presence of flow substantially increase these difficulties
and makes significantly more complicated the conventional integral representations
[10,11]. These axisymmetric formulations are derived from the three-dimensional
boundary integral formulation developed in [9] in which the convected terms due
to the Green’s function and its derivatives such as the normal derivative and the
derivative in the ow direction.

Also, the authors in Ref. [14] have been used a reformulation of the three-
dimensional convected boundary element to solve the axisymmetric acoustic prob-
lems. The reformulation based on the non-standard normal derivative similar to the
non-flow normal derivative of the Green’s kernel. The non-standard derivative leads
to a global form of the integral formula contains another supplementary convec-
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tive terms in which make difficulty the numerical implementation of the boundary
element method. The acoustic variable of the classical and reformulation axisym-
metric boundary integral representations in Refs. [10,11,14] in terms of the acoustic
pressure as well as its normal and tangential derivatives.

The aim of this paper is to contribute to reduce the complexity of convected
boundary integral formulas for axisymmetric domains in a subsonic uniform flow.
Thus, a new reformulation of the boundary element method for the axisymmetric
mediums (BEMA) which based on the axisymmetric convected Helmholtz equa-
tion and its fundamental solution is presented. This new axisymmetric boundary
element method requires only two operators which substantially reduce the flow ef-
fects of the normal and the flow direction derivatives of the axisymmetric convected
Green’s function incorporated in the classical convected boundary integral formula-
tions. Through the use of these new convected terms, the new axisymmetric BEM
formula has a similar form of the axisymmetric BEM without flow. The acous-
tic variables in the new axisymmetric boundary integral equation can be expressed
explicitly in terms of the acoustic pressure and its particular normal derivative.

The numerical implementation of BEMA is developed for the acoustic propaga-
tion in an axisymmetric rigid duct and validated by comparison with FEMA method
and the analytical solution in which the CPU times are presented.

2. An improved Axisymmetric BEM Formulation

Consider an acoustic medium Ω with a compressible fluid, inviscid, isentropic,
which is characterized by the Mach flow vector M∞, of density ρ∞ and speed of
sound c∞ in the axisymmetric physical space (o,r,z). In figure 1, ∂Ω = Γ∞∪Γ is the
generator limiting the axisymmetric medium Ω, such as Γ∞ and Γ are the exterior
and interior generators of the outgoing normal vector nq(nrq , nzq) and the tangential
vector tq(trq , tzq) at the point q, respectively. The generator ∂Ω not perturbed the
streamlines and unchanged the direction of the flow.

Figure 1: Axisymmetric acoustic medium.

2.1. Axisymmetric Convected Helmholtz Equation
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A combination of the Axisymmetric Linearized Euler Equations can be produced
the Axisymmetric Convected Helmholtz Equation in a harmonic regime (exp(+iωt))
in which t is the time, ω is the angular frequency and i is the imaginary unit. The
wave equation wearing on axisymmetric acoustic pressure p is decomposed into a
non-flow part and a convection part [10]

[∆ + k2](p)− (M∞.∇)
[
(2ik + (M∞.∇))(p)

]
= 0, (1)

where ∆ and ∇ are the axisymmetric Laplace and Gradient operators. k = ω/c∞ is
the original wavenumber. The fundamental solution of Eq. (1) is the axisymmetric
convected Green’s function Gk

0 =
∫ 2π

0 Gkdβ, which is the integration of the three-
dimensional convected Green function Gk over the azimuthal angle β. The Green’s
kernel Gk(m, q) is given for the points m and q by

Gk (m, q) = exp
[
−ik∗

(
mq.M∗∞ + R∗β

)]/
(4παR∗β), (2)

where m(rm, zm) and q(rq, zq) are the axisymmetric source-observer points, α is the
Prandtl-Glauert factor, k∗ = k/α is the convected wavenumber, and that M∗∞ =
M∞/α is the convected Mach vector. The distance R∗β is the convected radius which
depends on the azimuthal order β, it’s given for the points m and q by

R∗β (m, q) =
√

r∗2 + 4rqrmsin2 (β/2), (3)

in which r∗(m, q) =
√

mq2 + (mq.M∗∞)2 is the axisymmetric convected radius and
mq is the physical distance between source-observer. Also, the axisymmetric con-
vected Green’s function satisfies the following inhomogeneous convected Helmholtz
equation

H
(

Gk
0 (m, q)

)
=
[
∆q + k2

]
Gk

0 (m, q)

+ (M∞.∇q)
[
(2ik− (M∞.∇q)) Gk

0 (m, q)
]

= − 1

2πrq
δ (q−m) ,

(4)

in which (·)q is the operator at point q and δ is the Dirac delta function such as
δ(q−m) = δ(rq − rm)δ(zq − zm).

2.2. Axisymmetric convected Helmholtz integral equation

To obtain a boundary integral equation formulation for the acoustic problem,
the Helmholtz equation Eq. (1) is multiplied by the axisymmetric convected Green’s
function Gk

0(m, q) and its fundamental equation Eq. (4) by p(q). Subtracting these
two equations and integrating over the axisymmetric exterior medium Ω yields

p (m) =

∫
Ω

[
Gk

0 (m, q) H (p (q))− p (q) H
(

Gk
0 (m, q)

)]
rqdΩq,m ∈ Ω\Γ, (5)

Using the axisymmetric second Green’s formula, the axisymmetric Gradient prop-
erty and the axisymmetric divergence theorem (Appendix A), the axisymmetric

4



acoustic pressure Eq. (5) takes the following form

p (m) =

∫
∂Ω

[
Gk

0 (m, q)
∂p

∂nq
(q)− p (q)

∂Gk
0

∂nq
(m, q)] rqdΓq

− 2ik

∫
∂Ω

M∞np (q) Gk
0 (m, q)rqdΓq

−
∫
∂Ω

M∞nGk
0 (m, q) (M∞.∇q)p (q)

+

∫
∂Ω

M∞np (q) (M∞.∇q)Gk
0 (m, q)rqdΓq,m ∈ Ω\Γ,

(6)

where ∇q = σnnq +σttq is the axisymmetric Gradient operator in which the couple
(σn = ∂/∂nq , σt = ∂/∂tq) designates the normal and tangential derivatives at point
q, respectively. M∞n = M∞.nq is the normal Mach number.

In order to simplify the boundary integral equation Eq. (6), the normal derivative
∂/∂nq and the flow direction derivative (M∞.∇q) can be converted into a particular
normal derivative d/dnq, which is given by the following relation

d(·)
dnq

=
∂(·)
∂nq
−M∞n (M∞.∇q) (·), (7)

The particular normal derivative of the axisymmetric convected Green function
dGk

0/dnq =
∫ 2π

0 dGk/dnqdβ is the integration of the particular normal derivative
of the three-dimensional Green kernel dGk/dnq over the azimuthal angle β. Us-
ing the normal and the flow direction derivatives of the three-dimensional Green’s
function in Refs. [10,11,14], one obtains the following derivative function

dGk

dnq
(m, q) = −Gk(m, q)

[(
1 + ik∗R∗β(m, q)

) rnβ

R∗β
2(m, q)

+ ikM∞n] , (8)

where rnβ = mqaxi.nq is the normal distance and that the vector mqaxi of coor-
dinate (rq − rmcos(β), zq − zm). The particular normal derivative of the convected
Green’s function Eq. (8) is decomposed into two terms. The first term generalizes
the expression of the normal derivative in a non-flow case and that the second term
explains the convective influence. Substituting the particular normal derivatives
Eqs. (7) and (8) in the integral formula Eq. (6) yield

p (m) =

∫
∂Ω

[
Gk

0 (m, q)
dp

dnq
(q)− p (q)

dkGk
0

dnq
(m, q)] rqdΓq,m ∈ Ω\Γ, (9)

The axisymmetric boundary integral formulation Eq. (9) is decomposed into two
integrals in which the acoustic variables are expressed only in terms of the acoustic
field as well as its particular normal derivative which interpreting as a condition
applied to the interior generator Γ. Thus, the axisymmetric BEM Eq. (9) is similar
to the boundary integral equation solution for solving the axisymmetric potential
flows [15] and the non-flow case (the right first term in the equation 6) [16]. From
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the particular normal derivative operator Eq. (7), we obtain the convected normal
derivative operator

dk(·)
dnq

=
d(·)
dnq

+ 2ikM∞n(·), (10)

Substituting the particular normal derivative of the three-dimensional Green’s func-
tion Eq. (8) into the convected normal derivative operator Eq. (10), one obtains

dkGk

dnq
(m, q) = −Gk(m, q)

[(
1 + ik∗R∗β(m, q)

) rnβ

R∗β
2(m, q)

− ikM∞n] , (11)

The integration over the circular generator Γ∞ given by Eq. (9), represents con-
tributions waves which come in the interior region due to the source is very far
from observer point; q → ∞. Thus, this integral is null. According to the three-
dimensional Green’s function at infinity [17], the axisymmetric Green’s kernel Gk

0

is proportional to 1/
√

R∗β. Also, taking into account the term rnβ/R
∗
β is equivalent

to the tangential Prandtl-Glauert factor β∗t = β/
√

1−M2
∞t, the convected normal

derivative dGk
0/dnq of Eq. (11) is proportional to ik(1/

√
1−M2

∞t −M∞n)/
√

R∗β.

This leads to two convected radiation conditions which verified by the axisymmetric
acoustic pressure and its Green’s kernel

lim
r→∞

p(r) = 0, (12)

lim
r→∞

{
√

r

[
dp

dr
(r) + i

(
k√

1−M2
∞t

− kM∞n

)
p(r)

]}
= 0, (13)

where M∞t = M∞.tq is the tangential Mach number. The first condition Eq. (12)
indicates the non-reflection of waves, and the second condition Eq. (13) general-
izes the classical Sommerfeld radiation condition in a uniform flow subsonic [7,8].
Substituting the non-reflection conditions into the boundary equation Eq. (9), we
obtain

p (m) = ±
∫
Γ

[
Gk

0 (m, q)
dp

dnq
(q)− p (q)

dkGk
0

dnq
(m, q)] rqdΓq,m ∈ Ω\Γ, (14)

in which the signs (+,−) designates the exterior and interior acoustic domains.
When the point m is taken on the generator at point q, the Green’s kernel and its
convected normal derivative Eqs. (2) and (11) contain singular and regular parts.
Thus, Eq. (14) requires to study of behavior of the kernels near the singularity.

2.3. Singular integrals

A classical procedure can be used to isolate the singularity problems of the
axisymmetric Green’s function and its convected derivative. In fact, the singularities
can be isolated by decomposing the axisymmetric convected Green’s function Gk

0 into
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a singular static part G0
0(k = 0) and regular part gk

0 depending on the wavenumber.
Then, the axisymmetric Green’s function takes the following form

Gk
0 (m, q) = G0

0 (m, q) + gk
0 (m, q) , (15)

Thus, the convected normal derivative is given by

dkGk
0

dnq
(m, q) =

dkG0
0

dnq
(m, q) +

dkgk
0

dnq
(m, q) , (16)

Because the difference between the singular and regular behavior, the singular func-
tions in Eqs. (15) and (16) are evaluated analytically and that the regular parts are
evaluated numerically with standard Gauss-Legendre quadrature of high order. In
fact, the static axisymmetric Green’s function is given by [10,11]

G0
0 (m, q) =

K (τ)

πατ∗
, (17)

Using the normal and the flow direction derivatives of the static Green’s kernel in
Ref. [10], one obtains the following static convected derivative

dkG0
0

dnq
(m, q) = − 1

πατ∗

[(
rnπ/2

r∗2
−

nrq

2rq

)
E (τ) +

(
nrq

2rq
− ikM∞n

)
K (τ)

]
, (18)

where K(τ) and E(τ) are the complete elliptic integrals of the first and second kinds,
the parameters τ and τ∗ are given by

τ2τ∗2 = 4rqrm,τ
∗ =

√
r∗2 + 4rqrm, (19)

According to the complete elliptic integrals at r→ 0 [17], the static Green’s function
exhibits a logarithmic behavior near the singularity, as follows

G0
0 (m, q) ∼ − 1

2πα

Log (r∗)

2πrq
, r→ 0, (20)

Thus, the static convected normal derivative Eq. (18) near the singularity is char-
acterized by

dkG0
0

dnq
(m, q) ∼ − 1

2πα

1

2πrq

rn0

r∗2
, r→ 0, (21)

Since rn0/r
∗ = O(r∗), then the singularity of the static convected function dkGk

0/dnq

is thus only apparent. Following the exclusion procedure [18,19] to isolate the sin-
gularity problems in the boundary formula Eq. (14), which can be rewritten as

p (m) = ± lim
ε→0

∫
Γε

[
Gk

0 (m, q)
dp

dnq
(q)− p (q)

dkGk
0

dnq
(m, q)] rqdΓq

± lim
ε→0

∫
Γ∓
ε

[
Gk

0 (m, q)
dp

dnq
(q)− p (q)

dkGk
0

dnq
(m, q)] rqdΓq,

(22)
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where sε is the disk of center m and of radius ε = r bounded by the circle Γ+
ε ∪ Γ−ε

and Γ = lim
ε→0

(Γε ∪ Γ−ε ) for the exterior domain and that Γ = lim
ε→0

(Γε ∪ Γ+
ε ) for the

interior domain (see figure 2).

Figure 2: Analytical regular method.

Substituting Eqs. (20) and (21) in Eq. (22), we get a new original form of the
integral boundary representation with uniform flow wearing on the axisymmetric
acoustic pressure at any point m

c± (m) p (m) = ±
∫
Γ

Gk
0 (m, q)

dp

dnq
(q) rqdΓq ∓

∫
Γ

p (q)
dkGk

0

dnq
(m, q) rqdΓq,m ∈ Ω,

(23)

where c±(m) is the free term at any point m, which is given by

c± (m) = 1− θ∓(m)

2π
= 1±

∫
Γ

− 1

2πβ

mq.nq

r∗2(m, q)
dΓq, (24)

in which θ±(m) is the convected angle. When the point m in the exterior and interior
domains, the convected angle θ±(m) = 0 and that the coefficient c±(m) = 1. If m is
a regular point of the generator, θ±(m) = π and that c±(m) = 0.5.

2.4. Numerical implementation

The numerical implementation of the axisymmetric boundary integral equation
Eq. (23) for a body of arbitrary shape is obtained by discretizing the generator Γ
of the body with N one-dimensional quadratic isoparametric elements, according to
the following convergence criterion

nehe ≤ λα2, (25)

where n is the number of finite elements for a wavelength λ and he is the diameter
of the finite element. Then, by using the quadratic shape functions, the acoustic
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pressure p and its normal derivative σn of any point q on the generator Γ are assumed
to be given in terms of the nodal coordinates. Thus, the tangential derivative in the
local coordinates system along the generator Γ at point q is given by [11,20]

σt (q) = σξ (q) /Ji [ξ (q)] , (26)

with −1 ≤ ξ ≤ 1 is the local coordinate and Ji is the Jacobien of reference-local
transformation. Using the collocation method so that the point m coincides with the
nodes qi of the discretized generator Γ, Eq. (14) can be written in complex matrix
form with Robin condition

[A]p = [Bn]σn + [Bc]pc, (27)

where p, pc and σn are the nodal vectors containing the values of the two-dimensional
acoustic pressure p, its Dirichlet acoustic pressure pc and its Neumann normal
derivative σn at each node, respectively, whereas [A] and [Bn] are the axisymmetric
acoustic matrices with the elements of matrix [A] contain the convected angles and
elementary integrals related to the axisymmetric convected Green’s function Gk

0 and
its convected normal derivative dkGk

0/dnq, while the elements of matrix [Bn] is com-
posed only by the elementary integrals containing the integrands of axisymmetric
Green’s function and its convected derivative. [Bc] is the acoustic matrix containing
the integrands Gk

0 and dkGk
0/dnq.

3. Axisymmetric Finite Element Method

The axisymmetric Finite Element Method is based on the weak variational for-
mulation, which can be obtained by multiplying the axisymmetric wave equation
Eq. (1) by a test function p∗ (the axisymmetric acoustic pressure p∗ satisfies the
axisymmetric convected Helmholtz equation Eq. (1)). Then, integrating the result
over the axisymmetric interior medium Ωi, one obtains∫

Ωi

p∗∆pdΩi + k2

∫
Ωi

p∗pdΩi − 2ikM∞

∫
Ωi

p∗
∂p

∂z
dΩi −M2

∞

∫
Ωi

p∗
∂2p

∂z2
dΩi, (28)

Using the axisymmetric second Green’s formula, one obtains∫
Ωi

[p∗∆p] rdΩi = −
∫
Ωi

∇p∗∇prdΩi +

∫
Γi

p∗
∂p

∂nΓi

rdΓi, (29)

∫
Ωi

[
p∗
∂2p

∂z2

]
rdΩi = −

∫
Ωi

∂p∗

∂z

∂p

∂z
rdΩi +

∫
Γi

p∗
∂p

∂nz
rdΓi, (30)

2

∫
Ωi

p∗
∂p

∂z
rdΩi =

∫
Ωi

p∗
∂p

∂z
rdΩi −

∫
Ωi

∂p∗

∂z
prdΩi +

∫
Γi

p∗pnzrdΓi, (31)
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Substituting Eqs. (29)-(31) into Eq. (28), we obtain a developed form of the weak
variational formulation in Refs. [4,21]

−
∫
Ωi

∇p∗∇prdΩi + k2

∫
Ωi

p∗prdΩi + ikM∞

∫
Ωi

p∗
∂p

∂z
rdΩi

−ikM∞

∫
Ωi

∂p∗

∂z
prdΩi + M2

∞

∫
Ωi

∂p∗

∂z

∂p

∂z
rdΩi

+

∫
Γi

p∗
∂p

∂nΓi

rdΓi + ikM∞

∫
Γi

p∗pnzrdΓi −M2
∞

∫
Γi

p∗
∂p

∂nz
rdΓi = 0,

(32)

The same classical numerical discretization in Ref. [4], the elementary integrals
of the numerical variational formulation Eq. (32) over the reference triangular or
interval elements T̂ take the following form∫

T̂

f ∗ PdT̂, (33)

in which f and P are the regular polynomials of order n (n < 3) containing the
shape functions. Then, these integrals are evaluated analytically [22]. Thus, the
solve equation is a similar form of the complex matrix form Eq. (27) in which [A],
[Bn] and [Bc] are the axisymmetric acoustic matrices with the various integrals in
Eq. (32).

4. Application: Axisymmetric rigid duct

We consider an infinite axisymmetric rigid duct of truncated domain Ω of radius
R = 0.1m, of length L = 0.5m, of symmetry axis (oz), in a subsonic uniform flow of
the Mach vector M∞ = M∞ez in the (r-z) meridian plane. The truncated medium
is limited by the rigid wall ΓR of the normal vector nΓR

and by two generators, the
left boundary Γ− at z = 0 and the right boundary Γ+ at z = L of normal vectors
nΓ− and nΓ+ , respectively (see Figure 3).

Figure 3: Axisymmetric rigid duct.

The acoustic pressure in an axisymmetric rigid duct is [3]

p±n = AnJ0(kr,nr)eik±
z,nz, (34)
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in which (0) is the azimuthal order and (n) is the radial order, An is the axisymmetric

amplitude of order n equal to

√
2

R

1√
J2

0 (kr,nR)− J2
1 (kr,nR)

, J0 is the Bessel function

of the first kind and that k±z,n and kr,n are the axial and radial wavenumbers (±
indicates the propagation mode in the increased (+) and decreased (-) z-direction)
which satisfies the following relations

∂J0(kr,nr)

∂r

∣∣∣∣
r=R

= 0, (35)

k±z,n =
−kM∞ ±

√
k2 − α2k2

r,n

α2
,

(36)

Since the term as the function of tangential derivative σt over the axisymmetric
generator duct is zero, then the new radiation condition is given by the following
particular derivative σ at right and left generators Γ±

σ± = ±iα2k±z,np (37)

We note k±n = α2k±z,n is the new wavenumber in which its module reduces the module
of the classical wavenumber k±z,n for the axisymmetric excitations.

4.1. Numerical methodologies

• The two-dimensional rigid duct is discretized by triangular elements structured
and regular with three nodes isoparametric of two straight perpendiculars.

• The axial and radial wavenumbers satisfies the convergence criterion of the
discretization Eq. (25) in which the number of triangles is 1652 elements (see figure
4).

• The evaluation of the acoustic pressure at point m in an interior axisymmetric
rigid duct Ω given by Eq. (23) is numerically where Γ = Γ− ∪ ΓR ∪ Γ+ is the
generator of this duct, and taking into account that the free term at the corner
points m = Γ− ∩ ΓR and m = ΓR ∩ Γ+ is c−(m) = 3/4.

Figure 4: Axisymmetric mesh.

4.2. Numerical results

We apply BEMA, FEMA techniques and the analytical solution (S.Anal) as-
sociated to the axisymmetric acoustic pressure which propagated in the increased
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z-direction of axisymmetric excitation (p+
n /An). Figures 5 and 6 give the cartogra-

phies of the real parts Re(P+
n /An) for different values of the Mach vector by S.BEMA,

S.FEMA and S.Anal methods.

Figure 5: Real part of the axisymmetric acoustic pressure Re(P+
0 /A0) by S.Anal

(top), FEMA (middle) and BEMA (bottom) for M∞ = 0 (left) and M∞ = 0.4ez

(right) with k = 30.
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Figure 6: Real part of the axisymmetric acoustic pressure Re(P+
2 /A2) by S.Anal

(top), FEMA (middle) and BEMA (bottom) for M∞ = 0 (left) and M∞ = 0.4ez

(right) with k = 90.

Figures 5 and 6 are presented the real parts of the axisymmetric acoustic pressure
Re(P+

n /An) by FEMA and BEMA which are in very good concord with analytical
solution of relative error given by the L2 norm. For FEMA, the relative error is
less than 0.5% and for the axisymmetric boundary integral method, the error is less
than 0.8%.

We observe that for the initial mode (0), the axisymmetric acoustic pressure is
uniform along the radial and axial waves. Also, when the subsonic uniform flow is
increased, the wavelength increases, which is explained by the offset of the wave in
the positive z-direction (see Figure 5).

In the other mode, the axisymmetric acoustic pressure along the radial and axial
axis is non-uniform in the presence and absence of the flow. Indeed, in the upstream
region, the acoustic field is radially amplified to be greater than that obtained in
the downstream region in which we observe the Sommerfeld radiation condition Eq.
(12), and we notice also that the uniform flow is proportional to the wavelength (see
Figure 6).

In addition, the CPU times of the Numerical boundary element method, the
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finite element method and that the classical boundary element method in Ref. [14]
with mean flow are obtained by a machine 2.93 GHz using MATLAB-ACOUSTIC
codes, which are given by the following table 1

Mach vector Presented BEM Classical BEM Presented FEM

M∞ = 0 2.71 min 3.08 min 8.45 min

M∞ = 0.4ez 2.73 min 6.92 min 13.86 min

Table 1: The CPU times of BEM, Classical BEM and FEM.

A comparison between the CPU times of FE and BE methods in table 1, show
that the axisymmetric Convected boundary element formulation Eq. (23) reduces
80% of the computation time of Finite element method Eq. (32).

Compared to the classical axisymmetric boundary integral formulae, the pro-
posed method reduces a CPU time equal to 60% of the classical axisymmetric BEM.
Also, the relative error for the classical axisymmetric boundary integral equation is
less than 2%.

We observe that when the number of the discretization increase in term of the
numerical implementation of the axisymmetric boundary element method with mean
flow, the gain time between BEM-FEM and BEM-Classical BEM increase.

For the BEM case, we observe that the numerical execution time for the non-flow
case is the numerical execution time for the flow case. This is because the improved
form of the axisymmetric boundary integral representation Eq. (23) with the mean
flow is similar to the boundary element method without flow.

5. Conclusion and prospects

In this work, an improved form of the axisymmetric Helmholtz integral equa-
tion and conventional finite element method for an axisymmetric medium in a sub-
sonic uniform flow have been developed and presented. The axisymmetric convected
boundary element method is derived from two new operators such as the convected
and particular derivatives, which substantially reduces the complexity due to the
presence of flow in the conventional formulations. The formulation is derived to be
easy to implement as a numerical tool for computational codes of the axisymmetric
acoustic medium in a mean flow.

Also, the improved boundary integral representation significantly reduces the
computational burden of the convenctional axisymmetric finite element method.
Precisely, for the rigid duct case, the axisymmetric BEM require three Matrices
in terms of integrals over the generator and that axisymmetric FEM require six
assembly matrices in terms of integrals over the medium and its generator. The
proposed methodologies can be applied to simplified the modal boundary element
method and its derivatives [11,23].

Finally, we think that the method could be extended for the analysis of physical
phenomena in other noise pollution systems such as compressors, aircraft engines,
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and ventilation systems that contain different materials. It is hoped that this could
have a significant impact in design optimization of flow duct systems in the industry
sector.

APPENDIX A. AXISYMMETRIC ACOUSTIC PROPERTIES

The axisymmetric Green’s identity formula as a function of the test function p∗

is given by ∫
Ω

(∆qp∗ (q) p (q)−∆qp (q) p∗ (q)) dΩq

=

∫
∂Ω

[p∗ (q)
∂p

∂nq
(q)− p (q)

∂p∗

∂nq
(q)]rqdΓq,

(A.1)

where ∂/∂nq is the normal derivative and that ∆q is the axisymmetric Laplace
operator in an acoustics problem r-z

∆q (·) =
∂2

∂r2
q

(·) +
1

rq

∂

∂rq
(·) +

∂2

∂z2
q

(·) , (A.2)

Using the axisymmetric Green’s identity formula Eq. (A.1) for the axisymmetric
Greens function Gk

0(m, q), yields∫
Ω

(
∆qGk

0 (m, q) p (q)−∆qp (q) Gk
0 (m, q)

)
dΩq

=

∫
∂Ω

[
Gk

0 (m, q)
∂p

∂nq
(q)− p (q)

∂Gk
0

∂nq
(m, q)

]
rqdΓq,

(A.3)

The axisymmetric Gradient property is given by

Gk
0 (m, q) (M∞.∇q) p (q) + p (q) (M∞.∇q) Gk

0 (m, q)

= (M∞.∇q)
(

p (q) Gk
0 (m, q)

)
,

(A.4)

And that the axisymmetric Divergence theorem is given by

(p (q)M∞) .∇q

(
(M∞.∇q) Gk

0 (m, q)
)

= ∇q.
[(

(M∞.∇q) Gk
0 (m, q)

)
p (q)M∞

]
−
(

(M∞.∇q) Gk
0 (m, q)

)
((M∞.∇q) p (q)) ,

(A.5)
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