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 en décrivant des produits de mélanges d'algèbres de fonctions spéciales (issues d'équations différentielles à pôles simples) de plus en plus grandes. Les étudier nous conduit à définir une classe de produits de mélange, que nous nommons ϕ-shuffles. Nous étudions cette classe d'un point de vue combinatoire, en commençant par étendre (sous conditions) le théorème de Radford à celle-ci, puis en construisant (toujours sous conditions) sa bigèbre. Nous analysons les conditions des résultats précités pour les simplifier en les rendant visible dès la définition du produit de mélange. Nous testons enfin ces conditions sur les produits introduits en début d'article.

We carry on the investigation initiated in [15] : we describe new shuffle products coming from some special functions and group them, along with other products encountered in the literature, in a class of products, which we name ϕ-shuffle products. Our paper is dedicated to a study of the latter class, from a combinatorial standpoint. We consider first how to extend Radford's theorem to the products in that class, then how to construct their bi-algebras. As some conditions are necessary do carry that out, we study them closely and simplify them so that they can be seen directly from the definition of the product. We eventually test these conditions on the products mentioned above.

Introduction

As a matter of fact, mathematics (in particular number theory), physics and other sciences provide, for their theories, algebras of special functions indexed by parameters 1 , with a product, defined at first as a function X * × X * to A X and satisfying a simple recurrence of the type ∀(a, b) ∈ X2 , ∀(u, v) ∈ (X * ) 2 , au⊔⊔ ϕ vb = a(u⊔⊔ ϕ bv) + b(au⊔⊔ ϕ v) + ϕ(a, b)(u⊔⊔ ϕ v) , [START_REF] Tollu | Théorie générale des fonctions[END_REF] the initialization being provided by the fact that 1 X * should be a unit. Of course, we will address the question of the existence of such a product, and will extend it by linearity to A X .

However, recall that these special functions are indexed by parameters but, unfortunately, sometimes do not exist for some of their values : the prototype of this case is the Riemann zeta function ζ(s) = n 1 1 n s for s = 1. Nevertheless, if these "functions" are seen formally, one can in many cases 2 ., define a product on the indices which governs the effective product on the functions 3 .

Once the formal identity is obtained, there are many ways to write the divergent quantities as limits of terms which fulfil the same identities (truncated or power series) 4 .

Returning to this family of products, we will use a typology based on examples frequently encountered in the literature as well as new ones that we supply in Section 2.

1. Type I : factor ϕ comes from a product (possibly with zero) between letters (i.e.

X ∪ {0} is a semigroup). 2. Type II : factor ϕ comes from the deformation of a semigroup product by a bicharacter. 3. Type III : factor ϕ comes from the deformation of a semigroup product by a colour factor. 4. Type IV : factor ϕ is the commutative law of an associative algebra (CAA) on A.X 5. Type V : factor ϕ is the law of an associative algebra (AA) on A.X We have collected examples from the literature, with the corresponding formulas, in the following table.

Name

Formula (recursion) ϕ Type Shuffle [START_REF] Ree | Lie elements and an algebra associated with shuffles[END_REF] au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) ϕ ≡ 0 I Stuffle [START_REF] Hoffman | Quasi-symmetric functions, multiple zeta values, and rooted trees[END_REF] x i u x j v = x i (u x j v) + x j (x i u v) ϕ(x i , x j ) = x i+j I + x i+j (u v) Min-stuffle [START_REF] Costermans | Calcul symbolique non commutatif : analyse des constantes d'arbres de fouille[END_REF] x i u x j v = x i (u x j v) + x j (x i u v) ϕ(x i , x j ) = -x i+j III -x i+j (u v) Muffle [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF] x i u q x j v = x i (u q x j v) + x j (x i u q v) ϕ(x i , x j ) = x i×j I + x i×j (u q v) q-shuffle [START_REF] Bui | Hopf algebras of shuffles and quasi-shuffles[END_REF] x i u q x j v = x i (u q x j v) + x j (x i u q v) ϕ(x i , x j ) = qx i+j III + qx i+j (u q v) q-shuffle 2

x i u q x j v = x i (u q x j v) + x j (x i u q v) ϕ(x i , x j ) = q i.j x i+j II + q i.j x i+j (u q v) LDIAG(1, q s ) [START_REF] Duchamp | Deformations of Algebras: Twisting and Perturbations[END_REF] (non-crossed,

au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) ϕ(a, b) = q |a||b| s (a.b) II non-shifted) + q |a||b| s
a.b(u ⊔⊔ v) q-Infiltration [START_REF] Duchamp | Direct and dual laws for automata with multiplicities[END_REF] au

↑ bv = a(u ↑ bv) + b(au ↑ v) ϕ(a, b) = qδ a,b a III + qδ a,b a(u ↑ v) AC-stuffle au ⊔⊔ ϕ bv = a(u ⊔⊔ ϕ bv) + b(au ⊔⊔ ϕ v) ϕ(a, b) = ϕ(b, a) IV + ϕ(a, b)(u ⊔⊔ ϕ v) ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)) Semigroup- x t u ⊔⊔ ⊥ x s v = x t (u ⊔⊔ ⊥ x s v) + x s (x t u ⊔⊔ ⊥ v) ϕ(x t , x s ) = x t⊥s I stuffle + x t⊥s (u ⊔⊔ ⊥ v) ϕ-shuffle au ⊔⊔ ϕ bv = a(u ⊔⊔ ϕ bv) + b(au ⊔⊔ ϕ v) ϕ(a, b) law of AAU V + ϕ(a, b)(u ⊔⊔ ϕ v)
Of course, the q-shuffle is equal to the (classical) shuffle when q = 0. As for the qinfiltration, when q = 1, one recovers the infiltration product defined in [START_REF] Chen | Free differential calculus, IV. The quotient groups of the lower central series[END_REF].

Many shuffle products arise in number theory when one studies polylogarithms, harmonic sums and polyzêtas: it was in order to study all these products that two of us introduced Type IV (see above) [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF].

On the other hand, in combinatorial physics, one has coproducts with bi-multiplicative (and noncommutative) perturbation factors (see [START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF]).

The structure of the paper is the following: in part 2, we complete the first products of [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF] with the description of products which come from Hurwitz polyzêta functions (the product given in [START_REF] Ngoc | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF] was not valid in all cases) and from generalized Polylerch functions. We are able to give the complete recursive relation which allows to define all kinds of products; we verify that it implies the existence and uniqueness of this product, which can be extended to A X . We examine the "known" and the "new" products in order to determine their classes. In part 3, we consider how to extend Radford's theorem and we prove that it can be carried over to the whole class of AC-products (class IV): the Lyndon words constitute a pure transcendence basis of the corresponding commutative algebra, which can moreover be endowed, under additional growth conditions, with a Hopf algebra structure.

The basis of Lyndon words is the key to effective computations on the algebra of special functions ruled by such products 5 . In part 4, we determine the necessary and sufficient conditions on ϕ so that ϕ belong to the class of AC-products; we give also necessary and sufficient conditions for such a product to be dualizable (i.e. to be the adjoint of a comultiplication).

Preliminary remark. It is worth emphasizing at the outset that, although some of the objects/results under review in the present paper have already been defined/proved elsewhere, we include them in our study to lay out as complete a picture as possible and to exemplify the rather 'pedestrian' approach we have adopted. In particular, we have refrained throughout the paper from using more sophisticated algebraic techniques.

Notation. In the sequel, X will denote an alphabet, k a Q-algebra, and A a kcommutative and associative algebra with unit (a k-CAAU).

Hurwitz Polyzêtas and Generalized Polylerch Functions

We remind the reader of some special functions introduced in [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF] and complete their study: we prove that they follow a product law which we describe.

Some special functions and their products

The Riemann Polyzêta is the function which maps every composition s = (s 1 , . . . , s r ) ∈

(N ≥1 ) r , to 6 ζ(s) = n 1 >...>nr>0 1 n s 1 1 . . . n sr r (2) 
We now make an observation which, however simple, will appear in different disguises as a building block of many a construction of the paper : There is a (linear) bijection between the module freely generated by (all) compositions and Q Y (where Y = {y k } k≥1 ) defined by β s : (s 1 , . . . , s r ) → y s 1 . . . y sr (3)

So, if s = (s 1 , . . . , s r ) ∈ (N ≥1 ) r , s 1 > 1 and s ′ = (s ′ 1 , . . . , s ′ r ′ ), s ′ 1 > 1 are compositions, one knows [14] that 7 ζ(s s ′ ) = ζ(s)ζ(s ′ ) (4) 
That function ζ is well-known and is a special case of the following special functions. 5 The decomposition algorithm (which we shall not decribe in detail) is based on formula (36) of lemma (4). 6 The following series converges for s 1 > 1. Under that condition, the definition can be extended by linearity to the module generated by the set of so-called admissible composition. 7 With a slight abuse of language. Stricly speaking, equation 4 actually reads

ζ β -1 s β s (s) β s (s ′ ) = ζ(s)ζ(s ′ ) .

Coloured Polyzêtas

The coloured polyzêta is the function which, to a composition s = (s 1 , . . . , s r ) and a tuple of complex numbers of the same length ξ = (ξ 1 , . . . , ξ r ) , associates

ζ(s, ξ) = n 1 >...>nr>0 ξ n 1 1 . . . ξ nr r n s 1 1 . . . n sr r (5) 
It should be noted that ζ(s, ξ) appears -with the notation Li s (ξ) -in particule physics [START_REF] Weinzierl | Schwinger equations lectures given at the workshop[END_REF] .

To describe the product here, we will use two alphabets Y = {y i } i∈N * , X = {x i } i∈C * and M be the (free) submonoid generated by Y × X. One easily checks that 8

M = {(u, v) ∈ Y * × X * | |u| = |v|}
As above, to make things rigorous (but slightly more difficult to read), one considers the (linear) bijection defined, on M, by β c : ((s 1 , . . . , s r ), (ξ 1 , . . . , ξ r )) → (y s 1 . . . y sr , x ξ 1 . . . x ξr ) .

The duffle product is defined as follows.

Definition 1 ([15]). (Product of coloured polyzêtas) Let Y = {y i } i∈N * , X = {x i } i∈C * and M be as above. The duffle is defined as a bilinear product over k

[M] = k Y × X such that ∀w ∈ M * , w q 1 M * = 1 M * q w = w, ∀y i , y j ∈ Y 2 , ∀x k , x l ∈ X 2 , ∀u, v ∈ M * 2 ,
(y i , x k ).u q (y j , x l ).v = (y i , x k )(u q (y j , x l )v) +(y j , x l )((y i , x k )u q v) + (y i+j , x k×l )(u q v).

Again, we will show that, under suitable conditions

9 ζ ((s, ξ) q (s ′ , ξ ′ )) = ζ(s, ξ)ζ(s ′ , ξ ′ ) . (6) 

Hurwitz Polyzêtas

The Hurwitz polyzêta is the function which, to a composition s = (s 1 , . . . , s r ) and a tuple of parameters10 of the same length t = (t 1 , . . . , t r ), associates

ζ(s, t) = n 1 >...>nr>0 1 (n 1 -t 1 ) s 1 . . . (n r -t r ) sr . ( 7 
)
8 Throughout the paper |w| stands for the length of the word w. 9 Again, rigorously speaking, the left-hand side of the following equation should read

ζ β -1 c β c (s, ξ) q β c (s ′ , ξ ′ ) .
This series converges if and only if s 1 > 1 (for a "global" way to expand [START_REF] Costermans | Calcul symbolique non commutatif : analyse des constantes d'arbres de fouille[END_REF] as a meromorphic function of s ∈ C r , see [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF]). To be able to cope with the case s 1 = 1, we have to use the truncated Hurwitz polyzêtas function given by :

∀N ∈ N >0 , ζ N (s, t) = N nr>...>n 1 >0 1 (n 1 -t 1 ) s 1 . . . (n r -t r ) sr (8) 
In order to obtain the product law, we will use here two alphabets Y = {y i } i∈N >0 , Z = {z t } t∈C\N >0 , the (free) submonoid N generated by Y × Z and, as usual, the bijection

β h : ((s 1 , . . . , s r ), (t 1 , . . . , t r )) → (y s 1 . . . y sr , z t 1 . . . z tr ) (9) 
suitably extended by linearity. We have now the following product

Definition 2. (Product of Formal Hurwitz Polyzêtas) Let Y = {y i } i∈N * , Z = {z t } t∈k
and N be as above.

The huffle is defined as a bilinear product over k

[N] = k Y × Z such that ∀w ∈ N * , w 1 N * = 1 N * w = w, ∀y i , y j ∈ Y 2 , ∀z t , z t ′ ∈ Z 2 , ∀u, v ∈ N * 2 , t = t ′ ⇒ (y i , z t )u (y j , z t )v = (y i , z t )(u (y j , z t )v) + (y j , z t )((y i , z t )u v) +(y i+j , z t )(u v) t = t ′ ⇒ (y i , z t ).u (y j , z t ′ ).v = (y i , z t ). (u (y j , z t ′ ).v) + (y j , z t ′ ). ((y i , z t ).u v) + i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n (y i-n , z t ). (u v) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n (y j-n , z t ′ ). (u v) .
We also will show that 11 for all integer

N ζ N ((s, t) (s ′ , t ′ )) = ζ N (s, t)ζ N (s ′ , t ′ ) . (10) 
Remark 1. The functions we call 'Hurwitz polyzêtas', a term coined in the last century (see for example [START_REF] Ngoc | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF]). must not be confused with the monocenter polyzêtas, defined only for a composition s and a parameter t by

ζ(s, t) = n 1 >...>nr>0 1 (n 1 -t) s 1 . . . (n r -t) sr , (11) 
which follow a much simpler rule, namely the stuffle product on the compositions.

11 Again, rigorously speaking, the left-hand side of the following equation should read

ζ N β -1 h β h (s, t) β h (s ′ , t ′ ) .

Generalized Polylêrch functions

The generalized Polylêrch function is the function which maps a composition s = (s 1 , . . . , s r ), a tuple ξ = (ξ 1 , . . . , ξ r ) of complex numbers, and a tuple t = (t 1 , . . . , t r ) of parameters 10 , all three of the same length, to

ζ(s, t, ξ) = n 1 >...>nr>0 ξ n 1 1 . . . ξ nr r (n 1 -t 1 ) s 1 . . . (n r -t r ) sr . (12) 
Here, we will need three alphabets Y = {y i } i∈N * , X = {x i } i∈C * , Z = {z t } t∈k and the (free) submonoid T generated by Y × Z × X. The bijection

β l : ((s 1 , . . . , s r ), (t 1 , . . . , t r ), (ξ 1 , . . . , ξ r )) → (y s 1 . . . y sr , z t 1 . . . z tr , x ξ 1 . . . x ξr ) (13) 
still extended by linearity. The product q is given by the following definition:

Definition 3. Product of Generalized Lerch functions Let Y = {y i } i∈N * , X = {x i } i∈C * , Z = {z t } t∈k and T be the (free) submonoid generated by Y × Z × X.
The luffle is defined as the bilinear product over k[T ] = k Y × Z × X satisfying the following recursive relation :

∀w ∈ A * , w q 1 A * = 1 A * q w = w, ∀(y i , y j ) ∈ Y 2 , ∀(z t , z t ′ ) ∈ Z 2 , ∀(x k , x l ) ∈ X 2 , ∀(u, v) ∈ A * 2 , t = t ′ ⇒ (y i , z t , x k ).u q (y j , z t , x l ).v = (y i , z t , x k ). (u q (y j , z t ).v) + (y j , z t , x l ). ((y i , z t ).u q v) +(y i+j , z t , x k×l ). (u q v) t = t ′ ⇒ (y i , z t , x k ).u q (y j , z t ′ , x l ).v = (y i , z t , x k ). (u q (y j , z t ′ ).v) + (y j , z t ′ , x l ). ((y i , z t ).u q v) + i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n (y i-n , z t , x k×l ). (u q v) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n (y j-n , z t ′ , x k×l ). (u q v) We also show 12 ζ ((s, t, ξ) q (s ′ , t ′ , ξ ′ )) = ζ(s, t, ξ)ζ(s ′ , t ′ , ξ ′ ) . (15) 

General framework of study

Other products from table 1 belong to the same family as the examples examined so far, and so pertain to the same kind of approach. As we aim to offer as comprehensive a framework as possible, we now concentrate on the most general class of ϕ-products, i.e. class V, which emerges from definition (4) below. We will use a unitary ring as the ground set of scalars (and not a field as it would be expected in combinatorics) because some applications require to work with rings of (analytic or arithmetic) functions.

12 Again, rigorously speaking, the left-hand side of equation 15 should read

ζ β -1 l β l (s, t, ξ) q β l (s ′ , t ′ , ξ ′ ) . ( 14 
)
Proposition 1. Let A be a unitary commutative ring, X be an alphabet and ϕ : X ×X → A X is an arbitrary mapping. Then there exists a unique mapping ⋆ : X * × X * → A X satisfying the conditions :

(R)      for any w ∈ X * , 1 X * ⋆ w = w ⋆ 1 X * = w, for any a, b ∈ Xand u, v ∈ X * , au ⋆ bv = a(u ⋆ bv) + b(au ⋆ v) + ϕ(a, b)(u ⋆ v). (16) 
Proof -By recurrence over n = |u| + |v|.

Definition 4. With the notations of Proposition 1, the unique mapping from X × X to A X satisfying conditions (R) will be noted ⊔⊔ ϕ and will be called ϕ-shuffle product.

From now on, we suppose that ϕ takes its values in AX the space of homogeneous polynomials of degree 1. We still denote by ϕ its linear extension to AX ⊗ AX given by

ϕ(P, Q) = x,y∈X P |x Q|y ϕ(x, y) (17) 
and ⊔⊔ ϕ the extension of the mapping of Definition (4) by linearity 13 to A X ⊗ A X .

Then ⊔⊔ ϕ becomes a law of algebra (with 1 X * as unit) on A X .

Extending quasi-stuffle relations

The following elementary result can be found in any complex analysis textbook. It is freely used throughout this section.

Lemma 1. For any integers s, r ≥ 1, for any complex numbers a, b = a :

∀x ∈ C \ {a, b}, 1 (x -a) s (x -b) r = s k=1 a k (x -a) k + r k=1 b k (x -b) k (18)
where, for all k ∈ {1, . . . , s},

a k = s + r -k -1 r -1 (-1) s-k (a -b) s+r-k and, for all k ∈ {1, . . . , r}, b k = s + r -k -1 s -1 (-1) r-k (b -a) s+r-k . Let t = (t 1 , . . . , t r ) be a set of parameters 10 , s = (s 1 , . . . , s r ) a composition, ξ = (ξ 1 , . . . , ξ r ) ∈ C r . We define, for N ∈ N >0 , M N s,ξ,t = N n 1 >...>nr>0 r i=1 ξ n i i (n i -t i ) s i . ( 19 
)
and M N (),(),() = 1. Of course, it is a truncated series of ζ(s; t; ξ). Proposition 2. For every composition s, tuple ξ of complex numbers, tuple t of parameters all of the same length l ∈ N, and for every composition r, tuple ρ of complex numbers, tuple t ′ of parameters also of the same length k ∈ N, one has

∀N ∈ N, M N s,ξ,t M N r,ρ,t ′ = M N (s,ξ,t) q (r,ρ,t ′ ) . (20) 
Proof -If l = 0 or k = 0, that is immediate. Let l ∈ N * , k ∈ N * and s = (s 1 , . . . , s l ) and r = (r 1 , . . . , r k ) two compositions, ξ = (ξ 1 , . . . , ξ l ) ∈ C l , ρ = (ρ 1 , . . . , ρ k ) ∈ C k , and t = (t 1 , . . . , t l ), t ′ = (t ′ 1 , . . . , t ′ k ) two sets of parameters and put s 2 = (s 2 , . . . , s l ), r 2 = (r 2 , . . . , r k ), ξ 2 = (ξ 2 , . . . , ξ l ), ρ 2 = (ρ 2 , . . . , ρ k ), t 2 = (t 2 , . . . , t l ) and t

′ 2 = (t ′ 2 , . . . , t ′ k ), • If t ′ 1 = t 1 , M N s,ξ,t M N r,ρ,t = N n 1 ,N n ′ 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s ′ ,ξ ′ ,t 2 ρ n ′ 1 1 (n ′ 1 -t 1 ) r 1 M n ′ 1 r ′ ,ρ ′ ,t 2 (21) 
Classically, we decompose the sum

N n 1 ,N >n ′ 1 into three sums corresponding to the simplices n 1 > n ′ 1 ; n ′ 1 > n 1 and n 1 = n ′ 1 and get M N s,ξ,t M N r,ρ,t ′ = N n 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s 2 ,ξ 2 ,t 2 M n 1 r,ρ,t + N n ′ 1 ρ n ′ 1 1 (n ′ 1 -t ′ 1 ) r 1 M n 1 s,ξ,t M n ′ 1 r 2 ,ρ 2 ,t 2 + N m (ξ 1 ρ 1 ) m (m -t 1 ) s 1 1 (m -t 1 ) r 1 M m s 2 ,ξ 2 ,t 2 M m r 2 ,ρ 2 ,t ′ 2 (22) 
so that,

∀N ∈ N, M N s,ξ,t M N r,ρ,t = M N (s,ξ,t) q (r,ρ,t ′ ) . (23) 
• In the same way, when

t 1 = t ′ 1 M N s,ξ,t M N r,ρ,t ′ = N n 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s 2 ,ξ 2 ,t 2 M n 1 r,ρ,t ′ + N n ′ 1 ρ n ′ 1 1 (n ′ 1 -t ′ 1 ) r 1 M n ′ 1 s,ξ,t M n ′ 1 r 2 ,ρ 2 ,t ′ 2 + N m (ξ 1 ρ 1 ) m 1 (m -t 1 ) s 1 1 (m -t ′ 1 ) r 1 M m s 2 ,ξ 2 ,t 2 M m r 2 ,ρ 2 ,t 2 = N n 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s 2 ,ξ 2 ,t 2 M n 1 r,ρ,t ′ + N n ′ 1 ρ n ′ 1 1 (n ′ 1 -t ′ 1 ) r 1 M n ′ 1 s,ξ,t M n ′ 1 r 2 ,ρ 2 ,t 2 + N m s 1 k=1 s 1 + r 1 -k -1 r 1 -1 (-1) s 1 -k (t 1 -t ′ 1 ) s 1 +r 1 -k (ξ 1 ρ 1 ) m (m -t ′ 1 ) k + r 1 k=1 s 1 + r 1 -k -1 s 1 -1 (-1) r 1 -k (t 1 -t ′ 1 ) s 1 +r 1 -k M m s 2 ,ξ 2 ,t M m r 2 ,ρ 2 ,t ′ (24) 
so

∀N ∈ N, M N s,ξ,t M N r,ρ,t ′ = M N (s,ξ,t) q (r,ρ,t ′ ) . (25) 
Remark 2. Let r a integer, χ = (χ 1 , . . . , χ r ) a tuple of multiplicative characters 14 and (s, ξ, t being as above) let us define

M N s,ξ,t (χ) = N n 1 >...>nr>0 r i=1 χ n i i (ξ i ) (n i -t i ) s i . ( 26 
)
The same proof shows that, for any (s, ξ) ∈ Z l >0 × C l and (r, ρ) ∈ Z k >0 × C k , for any l-tuple t and k-tuple t ′ of parameters 10 ,

∀N ∈ N, M N s,ξ,t (χ) M N r,ρ,t ′ (χ) = M N (s,ξ,t) q (r,ρ,t ′ ) (χ). ( 27 
)
This result allows to deduce some product relations on the different multi-zêta functions :

Theorem 2.1. Let s = (s 1 , . . . , s l ) and r = (r 1 , . . . , r k ) two compositions, ξ = (ξ 1 , . . . , ξ l ) a l-tuple, ρ = (ρ 1 , . . . , ρ k ) a k-tuple of complex numbers of which the first composant has a modulus strictly less than 1, t = (t 1 , . . . , t s ) and t ′ = (t ′ 1 , . . . , t ′ k ) two tuples of parameters not in N >0 and N ∈ N (i) For the coloured polyzêta function :

ζ(s, ξ)ζ(s ′ , ξ ′ ) = ζ ((s, ξ) q (s ′ , ξ ′ )) (28) 
(ii) For the truncated Hurwitz polyzêta function :

ζ N (s, t)ζ N (s ′ , t ′ ) = ζ N ((s, t) (s ′ , t ′ )) (29) 
(iii) In particular, for the monocentered polyzêta function : (iv) For the Polylerch generalized function :

ζ (s
ζ(s, t, ξ)ζ(s ′ , t ′ , ξ ′ ) = ζ ((s, t, ξ) q (s ′ , t ′ , ξ ′ )) (31) 
Proof -(ii) comes directly from Proposition 2 because ζ N (s, t) = M N s,(1,...,1),t ; for (i), (iii) and (iv), apply Proposition 2 with, respectively, the functions M N s,ξ,(0,...,0) , M N s,(1,...,1),(t,...,t) and M N s,ξ,t and take both sides of the equality to the limit as N grows to infinity.

14 Endomorphisms of the semigroup (C, ×).

Remark 3. We cannot use this method for the Hurwitz polyzêtas because in the decomposition, some divergent terms (which have s 1 = 1 !) appear: for example, for t = t ′ ,

(y 2 , z t ) (y 3 , z t ′ ) = (y 2 y 3 , z t z t ′ ) + (y 3 y 2 , z t ′ z t ) + 1 n=0 2 + n 2 (-1) n (t -t ′ ) 3+n (y 2-n , z t ) + 2 n=0 1 + n 1 (-1) n (t -t ′ ) 2+n (y 3-n , z t ′ ) = (y 2 y 3 , z t z t ′ ) + (y 3 y 2 , z t ′ z t ) + 1 (t -t ′ ) 3 (y 2 , z t ) - 3 (t -t ′ ) 4 (y 1 , z t ) + 1 (t -t ′ ) 2 (y 3 , z t ′ ) - 2 (t -t ′ ) 3 (y 1 , z t ′ ) + 3 (t -t ′ ) 4 (y 1 , z t ′ ) (32)
Separately, the terms -3 (t -t ′ ) 4 (y 1 , z t ) and

3 (t -t ′ ) 4 (y 1 , z t ′ ), corresponding respectively to -3 (t -t ′ ) 4 1 n -t and 3 (t -t ′ ) 4
1 n -t ′ give a divergent series although all other terms correspond to convergent series. Of course, the sum of the two

3 (t -t ′ ) 4 - 1 n -t + 1 n -t ′ = 3 (t -t ′ ) 4 t ′ -t (n -t)(n -t ′ ) (33)
is a term of a convergence series, but the series is not a Hurwitz Polyzêta.

3. Radford's theorem for the AC-stuffle.

In this subsection, A is supposed to be a ring with unit; when we need it to be commutative or to contain the set of rational numbers, we will state it explicitly.

Let < be a total ordering on the alphabet X, and Lyn(X) denote the family of Lyndon words [START_REF] Reutenauer | Free Lie Algebras[END_REF] constructed from X * w.r.t. this ordering. We will prove that the largest framework in which Radford's theorem holds true [START_REF] Radford | A natural ring basis for shuffle algebra and an application to group schemes[END_REF] is when ϕ is commutative (and associative).

Computing ϕ-shuffle expressions using shuffles

In this subsection A is a ring with unit and ϕ : AX ⊗ AX → AX an associative law. We can express the result of the ϕ-shuffle product thanks to the shuffle product (and some terms of lower degree). First we observe what happens with the product of two words : Lemma 2. For u, v ∈ X * , there exists (C w u,v ) |w|<|u|+|v| ∈ A (N) such that :

u ⊔⊔ ϕ v = u ⊔⊔ v + |w|<|u|+|v| C w u,v w.
Proof -Omitted. Now, because the Lyndon words are candidates to be a transcendental basis, we see what happens when they are ϕ-shuffled. Definition 5. Let ⋆ : A X × A X → A X be an associative law with unit and X = Lyn(X). For any α ∈ N (X) and {l 1 , • • • , l r } ⊃ supp(α) in strict decreasing order (i.e.

l 1 > • • • > l r ), we set X ⋆α = l ⋆α 1 1 ⋆ • • • ⋆ l ⋆αr r (34) 
One easily checks easily that the product (34) does not depend on the choice of {l 1 , • • • , l r } ⊃ supp(α). We will also need the following parameter (which will turn out to be the length of the dominant terms in the product)

||α|| = l∈Lyn(X) α(l)|l| . ( 35 
) Lemma 3. If ⊔⊔ ϕ is associative, ∀α ∈ N (Lyn(X)) , ∃(C α β ) β ∈ A (N (Lyn(X)) ) / X ⊔⊔ ϕ α = X ⊔⊔ α + β∈N (Lyn(X)) ||β||<||α|| C α β X ⊔⊔ β . Proof -Omitted 3.2. Radford's theorem in ϕ-shuffle algebras Lemma 4. If ⊔⊔ ϕ is associative, ∀p ∈ N * , span (X ⊔⊔ ϕ α ) α∈N (Lyn(X)) ,||α||<p = span (X ⊔⊔ α ) α∈N (Lyn(X)) ,||α||<p . (36) 
Proof -Lemma 3 give ∀p ∈ N * , span (X ⊔⊔ ϕ α ) α∈N (Lyn(X)) ,||α||<p ⊂ span (X ⊔⊔ α ) α∈N (Lyn(X)) ,||α||<p . We just have to prove, for any p ∈ N * , the property P(p) :

span (X ⊔⊔ α ) α∈N (Lyn(X)) ,||α||<p ⊂ span (X ⊔⊔ ϕ α ) α∈N (Lyn(X)) ,||α||<p (37) 
• It is true for p = 1.

• Assume P(p) true for an integer p.

Let α ∈ N (Lyn(X)) such that ||α|| < p + 1. We can find (C α β ) β ∈ A (N (Lyn(X)) ) such that X ⊔⊔ ϕ α = X ⊔⊔ α + β∈N (Lyn(X)) ||β||<||α|| C α β X ⊔⊔ β , so X ⊔⊔ α = X ⊔⊔ ϕ α -β∈N (Lyn(X)) ||β||<||α|| C α β X ⊔⊔ β .
But every term of the sum is of the form C α β X ⊔⊔ β with β ∈ N (Lyn(X)) and ||β|| < ||α|| < p + 1 so ||β|| < p. Consequently, they are in span (X ⊔⊔ ϕ α ) α∈N (Lyn(X)) ,||α||<p , and so is the sum. By the induction hypothesis, the sum is in span (X ⊔⊔ ϕα ) α∈N (Lyn(X)) ,||α||<p , therefore X ⊔⊔ α ∈ span (X ⊔⊔ ϕα ) α∈N (Lyn(X)) ,||α||<p+1 .

Theorem 3.1. Let A be a commutative ring (with unit) such that Q ⊂ A15 and ⊔⊔ ϕ : A X ⊗ A X → A X is associative. If X is totally ordered by <, then (X ⊔⊔ ϕ α ) α∈N (Lyn(X)) is a linear basis of A X .

Proof -Since this family is a generating family by lemma 4, only freeness remains to be proven. Let α∈J β α X ⊔⊔ ϕ α = 0 be a null linear combination of (X ⊔⊔ ϕ α ) α∈N (Lyn(X)) , with J a nonempty finite subset of N (Lyn(X)) . Thanks to lemma 3, for any α ∈ J, we can find a finite family B α ⊂ N (Lyn(X)) and (C α β ) β∈Bα ∈ A Bα such that

X ⊔⊔ ϕ α = X ⊔⊔ α + β∈Bα ||β||<||α|| C α β X ⊔⊔ β . Set B = J ∪ α∈J B α ; B is a finite set. Then (X ⊔⊔ ϕ α ) α∈J is a triangular family for |.|
with respect to the family F = (X ⊔⊔ ϕ α ) α∈B in the vector space span(F ), which is of finite dimension. But F is a basis, so (X ⊔⊔ ϕ α ) α∈J is free and ∀α ∈ J, β α = 0.

Corollary 1. Under the same hypotheses, if in addition ⊔⊔ ϕ is commutative in

A then i) The algebra A = (A X , ⊔⊔ ϕ , 1 X * ) is a polynomial algebra.
ii) Lyn(X) is a transcendence basis of A.

Remark 4. It is necessary to suppose Q ⊂ A as, in case ϕ ≡ 0, one has

∀n ∈ N >0 , a n = 1 n! (a ⊔⊔ n ) (38) Proof - i) Immediate result.
ii) Comes from proposition 3.1 and theorem 4.1, which proves in an elementary (so independent) way that the commutativity of ϕ is equivalent to the commutativity of ⊔⊔ ϕ .

3.3. Bialgebra structure Definition 6. A law ⋆ defined over A X is a dual law (or dualizable) if there exists a linear mapping

∆ ⋆ : A X → A X ⊗ A X such ∀(u, v, w) ∈ X * × X * × X * , u ⋆ v|w = u ⊗ v|∆ ⋆ (w) ⊗2 . ( 39 
)
In this case, ∆ * will be called the comultiplication dual to ⋆.

Theorem 3.2. If A is a commutative ring (with unit), if Q ⊂ A, and if in addition the product ⊔⊔ ϕ : A X ⊗ A X → A X is an associative and commutative law on A X , then the algebra (A X , ⊔⊔ ϕ , 1 X * ) can be endowed with the comultiplication ∆ conc dual to the concatenation

∆ conc (w) = uv=w u ⊗ v (40) 
and the "constant term" character ǫ(P

) = P |1 X * . With this setting B ϕ = (A X , ⊔⊔ ϕ , 1 X * , ∆ conc , ǫ) (41) 
is a bialgebra 16 .

Remark 5. Let, classically, ∆ + conc be defined by

∀w ∈ X * , ∆ + conc (w) = uv=w u,v =1 u ⊗ v
We remark that ∆ + conc is coassociative and locally nilpotent, i.e.

∀w ∈ X * , ∃n ∈ N * / ∆ + conc n (w) = 0.

Thus the bialgebra (41) is, in fact, a Hopf Algebra.

Proof -It is a classical combinatorial verification, done in [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF].

The following identity remains to be proven:

∀(w 1 , w 2 ) ∈ X * , ∆ conc (w 1 ⊔⊔ ϕ w 2 ) = ∆ conc (w 1 )∆ conc (w 2 ) (42) 
which can be done by a (lengthy) induction or by duality.

Conditions for AC-shuffle and dualizability

Commutative and associative conditions

We have obtained an extended version of Radford's theorem and other properties with conditions stated w.r.t. ⊔⊔ ϕ , we will see in this subsection that these conditions can be set uniquely in terms of properties of ϕ itself.

Definition 7. For P ∈ A X , we note supp(P ) the support of P and deg(P ) = max{|l|, l ∈ supp(P )} Lemma 5. Let A be a unitary commutative ring, X be an alphabet and ϕ : X × X → A X is an arbitrary mapping. Then,

∀(u, v) ∈ (X * ) 2 , deg(u⊔⊔ ϕ v) |u| + |v| (43) 
Proof -If |u| = 0 or |v| = 0, then u⊔⊔ ϕ v is one of {u, v} so its length is |u| + |v|. Let X + be the set of nonempty words. We prove

∀(u, v) ∈ (X + ) 2 , deg(u⊔⊔ ϕ v) = |u| + |v| by induction on |u| + |v|.
For any letters a and b, a⊔⊔

ϕ b = ab + ba + ϕ(a, b)1 A * so deg(a⊔⊔ ϕ b) = 2 = |a| + |b|.
One assumes the property true for all words u, v ∈ X + such that |u| + |v| = n, where n is an integer. Let u and v be now two words of X + such that |u|

+ |v| = n + 1. There exist x, y in X, u ′ , v ′ in X * such that u = xu ′ , v = yv ′ (because (u, v) ∈ (X + ) 2 ). Then |u|+|v ′ | = |u|+|v|-1 n, so deg(y(u⊔⊔ ϕ v ′ )) n+1. Also |u ′ |+|v| = |u|-1+|v| n so deg(x(u ′ ⊔⊔ ϕ v)) n+1, and |u ′ |+|v ′ | = |u|-1+|v|-1 n so deg(ϕ(x, y)u ′ ⊔⊔ ϕ v ′ ) n+1.
Hence, deg(u⊔⊔ ϕ v) = n + 1 : the induction is proved. (ii) The law ⊔⊔ ϕ is associative if and only if the extension ϕ : AX ⊗ AX → AX is associative.

Proof -We give an elementary proof.

(i) [⊔⊔ ϕ commutative =⇒ ϕ commutative] Let us suppose ∀(u, v) ∈ (X * ) 2 , u⊔⊔ ϕ v = v⊔⊔ ϕ u.. In particular, ∀(x, y) ∈ (X * ) 2 , x⊔⊔ ϕ y = x⊔⊔ ϕ y. But, for any (x, y) ∈ X 2 , x⊔⊔ ϕ y = xy + yx + ϕ(x, y) and y⊔⊔ ϕ x = yx + xy + ϕ(y, x). (44) 
and so (∀x, y ∈ X)(ϕ(x, y) = ϕ(y, x)).

[ϕ commutative =⇒ ⊔⊔ ϕ commutative] Now let us suppose ϕ is commutative then let us prove by recurrence on |uv| that ⊔⊔ ϕ is commutative :

-The previous equivalence proves that the recurrence holds for |u| = |v| = 1.

-Suppose the recurrence holds for any u, v ∈ X * such that 2 ≤ |uv| ≤ n and |u|, |v| = 1. Let u = xu ′ and v = yv ′ with x, y ∈ X and u ′ , v ′ ∈ X * . Then, 

u⊔⊔ ϕ v = x(u ′ ⊔⊔ ϕ yv) + y(xu ′ ⊔⊔ ϕ v) + ϕ(x, y)(u ′ ⊔⊔ ϕ v ′ ) = x(yv⊔⊔ ϕ u) + y(v ′ ⊔⊔ ϕ xu ′ ) + ϕ(y, x)(v ′ ⊔⊔ ϕ u ′ ) (by the induction hypothesis) = v⊔⊔ ϕ u. (45) 
One can then deduce that

(∀x, y, z ∈ X)(x⊔⊔ ϕ (y⊔⊔ ϕ z) = (x⊔⊔ ϕ y)⊔⊔ ϕ z) ⇐⇒ (∀x, y, z ∈ X)(ϕ(x, ϕ(y, z)) = ϕ(ϕ(x, y), z)). (51) 
[ϕ associative =⇒ ⊔⊔ ϕ associative] Now if ϕ is associative then let us prove by induction on |u| + |v| + |w| that ⊔⊔ ϕ is associative :

-The previous equivalence proves that the induction holds for |u| = |v| = |w| = 1.

-Suppose the recurrence holds for any u, v ∈ X * such that 3 ≤ |u|+|v|+|w| ≤ n and |u|, |v|, |w| = 1.

-Let u = xu ′ , v = yv ′ and w = zw ′ with x, y, z ∈ X and u ′ , v ′ , w ′ ∈ X * . Then,

u⊔⊔ ϕ (v⊔⊔ ϕ w) = u⊔⊔ ϕ y(v ′ ⊔⊔ ϕ w) + z(v⊔⊔ ϕ w ′ ) + ϕ(y, z)(v ′ ⊔⊔ ϕ w ′ ) = x(u ′ ⊔⊔ ϕ y(v ′ ⊔⊔ ϕ w)) + y(u⊔⊔ ϕ (v ′ ⊔⊔ ϕ w)) + ϕ(x, y)(u ′ ⊔⊔ ϕ (v ′ ⊔⊔ ϕ w)) +x(u ′ ⊔⊔ ϕ z(v⊔⊔ ϕ w ′ )) + z(u⊔⊔ ϕ (v⊔⊔ ϕ w ′ )) + ϕ(x, z)(u ′ ⊔⊔ ϕ (v⊔⊔ ϕ w ′ )) +x(u ′ ⊔⊔ ϕ ϕ(y, z)(v ′ ⊔⊔ ϕ w ′ )) + ϕ(y, z)(u⊔⊔ ϕ (v ′ ⊔⊔ ϕ w ′ )) + ϕ(x, ϕ(y, z))u ′ ⊔⊔ ϕ (v ′ ⊔⊔ ϕ w ′ ) = x(u ′ ⊔⊔ ϕ (v⊔⊔ ϕ w)) +y(u⊔⊔ ϕ (v ′ ⊔⊔ ϕ w)) + ϕ(x, y)(u ′ ⊔⊔ ϕ (v ′ ⊔⊔ ϕ w)) +z(u⊔⊔ ϕ (v⊔⊔ ϕ w ′ )) + ϕ(x, z)(u ′ ⊔⊔ ϕ (v⊔⊔ ϕ w ′ )) +ϕ(y, z)(u⊔⊔ ϕ (v ′ ⊔⊔ ϕ w ′ )) + ϕ(x, ϕ(y, z))u ′ ⊔⊔ ϕ (v ′ ⊔⊔ ϕ w ′ ) (52) and (u⊔⊔ ϕ v)⊔⊔ ϕ w = (x(u ′ ⊔⊔ ϕ v) + y(u⊔⊔ ϕ v ′ ) + ϕ(x, y)(u ′ ⊔⊔ ϕ v ′ ))⊔⊔ ϕ w) = x((u ′ ⊔⊔ ϕ v)⊔⊔ ϕ w) + z(x(u ′ ⊔⊔ ϕ v)⊔⊔ ϕ w ′ ) + ϕ(x, z)((u ′ ⊔⊔ ϕ v)⊔⊔ ϕ w ′ ) +y((u⊔⊔ ϕ v ′ )⊔⊔ ϕ w) + z(y(u⊔⊔ ϕ v ′ )⊔⊔ ϕ w ′ ) + ϕ(y, z)((u⊔⊔ ϕ v ′ )⊔⊔ ϕ w ′ ) +ϕ(x, y)((u ′ ⊔⊔ ϕ v ′ )⊔⊔ ϕ w) + z(ϕ(x, y)(u ′ ⊔⊔ ϕ v ′ )⊔⊔ ϕ w ′ ) + ϕ(ϕ(x, y), z)((u ′ ⊔⊔ ϕ v ′ )⊔⊔ ϕ w ′ ) = x((u ′ ⊔⊔ ϕ v)⊔⊔ ϕ w) + ϕ(x, z)((u ′ ⊔⊔ ϕ v)⊔⊔ ϕ w ′ ) +y((u⊔⊔ ϕ v ′ )⊔⊔ ϕ w) + ϕ(y, z)((u⊔⊔ ϕ v ′ )⊔⊔ ϕ w ′ ) +ϕ(x, y)((u ′ ⊔⊔ ϕ v ′ )⊔⊔ ϕ w) + ϕ(ϕ(x, y), z)((u ′ ⊔⊔ ϕ v ′ )⊔⊔ ϕ w ′ ) +z(u⊔⊔ ϕ v)⊔⊔ ϕ w ′ ) (53)
Indeed, thanks to the induction hypothesis and the commutativity of ϕ, u⊔⊔ ϕ (v⊔⊔ ϕ w) and (u⊔⊔ ϕ v)⊔⊔ ϕ w are equal.

Dualizability conditions

Proposition 3. We call γ z x,y := ϕ(x, y)|z the structure constants of ϕ (w.r.t. the basis X). The product ⊔⊔ ϕ is a dual law if and only if (γ z x,y ) x,y,z∈X is dualizable in the following sense

(∀z ∈ X)(#{(x, y) ∈ X 2 |γ z x,y = 0} < +∞) . ( 54 
) Proof -[⊔⊔ ϕ dual law =⇒ γ z x,y dualizable]. Let ∆ be the dual of ⊔⊔ ϕ , that is, for all u, v, w ∈ X * u⊔⊔ ϕ v|w = u ⊗ v|∆(w) ⊗2 . (55) 
For all z ∈ X, one must have ∆(z) = n i=1 α i u i ⊗ v i . On the other hand, for all x, y ∈ X, one has (x⊔⊔ ϕ y) -(xy + yx) = ϕ(x, y). Hence 

α i u i ⊗ v i . (56) 
We can deduce from the preceding argument that γ z x,y = 0 =⇒ (x ∈ ∪ n i=1 Alph(u i ) and y ∈ ∪ n i=1 Alph(v i )) which proves the point.

[γ z x,y dualizable =⇒ ⊔⊔ ϕ dual law]). This is, combinatorially speaking, the most interesting point. We first define a comultiplication ∆ on A X by transposing the structure constants of ⊔⊔ ϕ by ∆(z) :

= z ⊗ 1 + 1 ⊗ z + x,y∈X γ z x,y x ⊗ y (57) 
and, as the sum is finite (see however the comment after this theorem), this quantity belongs to A X ⊗ A X . One then has a linear mapping ∆ : AX → A X ⊗ A X which is extended, by universal property, into a morphism of algebras ∆ :

A X → A X ⊗A X . Explicitely, for all w = z 1 z 2 • • • z n , one has ∆(z 1 z 2 • • • z n ) = ∆(z 1 )∆(z 2 ) • • • ∆(z n ) . (58) 
Now, we prove that the dual law of the latter coproduct is exactly ⊔⊔ ϕ . First remark : by (57) and (58), one has

∆(w) = w ⊗ 1 + 1 ⊗ w + u,v∈X + β(u, v)u ⊗ v (59) 
the last sum being finitely supported. This shows by duality that

u⊔⊔ ∆ 1 = 1⊔⊔ ∆ u = u (60) 
(here, ⊔⊔ ∆ stands for the dual law of ∆). Moreover

au⊔⊔ ∆ bv = w∈X * au⊔⊔ ∆ bv|w w = w∈X * au ⊗ bv|∆(w) w = au ⊗ bv|1 ⊗ 1 1 + w∈X + au ⊗ bv|∆(w) w = x∈X ; m∈X * au ⊗ bv|∆(xm) xm = x∈X ; m∈X * au ⊗ bv|∆(x)∆(m) xm = x∈X ; m∈X * au ⊗ bv| x ⊗ 1 + 1 ⊗ x + y,z∈X ∆(x)|y ⊗ z y ⊗ z ∆(m) xm = x∈X ; m∈X * au ⊗ bv|(x ⊗ 1)∆(m) xm + x∈X ; m∈X * au ⊗ bv|(1 ⊗ x)∆(m) xm+ x∈X ; m∈X * au ⊗ bv| y,z∈X ∆(x)|y ⊗ z y ⊗ z)∆(m) xm m∈X * au ⊗ bv|(a ⊗ 1)∆(m) am + m∈X * au ⊗ bv|(1 ⊗ b)∆(m) bm+ x∈X ; m∈X * au ⊗ bv| ∆(x)|a ⊗ b a ⊗ b)∆(m) xm m∈X * u ⊗ bv|∆(m) am + m∈X * au ⊗ v|∆(m) bm+ x∈X ; m∈X * ∆(x)|a ⊗ b u ⊗ v|∆(m) xm = a m∈X * u ⊗ bv|∆(m) m + b m∈X * au ⊗ v|∆(m) m+ m∈X * x∈X ∆(x)|a ⊗ b x u ⊗ v|∆(m) m = a(u⊔⊔ ∆ bv) + b(au⊔⊔ ∆ v) + ϕ(a, b)(u⊔⊔ ∆ v) (61) 
This proves that the dual law ⊔⊔ ∆ equals ⊔⊔ ϕ and we are done.

The Hopf-Hurwitz algebra

In section 7, we provided the law on indices followed by the product of Formal Hurwitz polyzêtas, we now prove that the law ϕ associated with it is associative. The "centres" will be taken from a subfield k of C and the set of coefficients A is a k-CAAU. i) The law ϕ : AN ⊗ AN → AN associated to • is defined, on the basis N, by the multiplication table T F ormal Hurwitz if t = t ′ ; ϕ((y i , z t ), (y j , z t ′ )) = (y i+j , z t ) if t = t ′ ; ϕ((y i , z t ), (y j , z t ′ )) = i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n (y i-n , z t ) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n (y j-n , z t ′ ) (62)

ii) The product is associative, commutative and unital, making (A N , •, 1 N ) into a A-CAAU.

Proof -i) Let first j : kN → k(X) be the linear mapping defined by j((y i , z t )) = 1 (X-t) i . In fact, as the { 1 (X-t) i } are linearly independent, j is into. On the other hand, j is a morphism of k-AAU due to the fact that the multiplication table is identical. Hence ϕ is a law of C-AA on AN ≃ A ⊗ k kN. ii) Is a consequence of the general theorems. Now, we have the following bialgebra

H F ormal Hurwitz = (A N , ϕ , 1 N * , ∆ conc , ǫ) (63) 
which is a Hopf algebra. Note that ϕ is not dualisable which means that the adjoint

∆ ϕ : N * → A N * ⊗ N * (64) 
does not have its image in A N ⊗ A N . See next paragraph for tools and proofs.

Corollary 2. The product q is associative, commutative and unital, making (A N , q , 1 N ) into a A-CAAU.

Proof -It comes that the product q is a direct product of the products • and q .

Conclusion

We have been able to give a useful extended version of Radford's theorem. Let us observe that :

• For the shuffle product, ϕ ⊔⊔ ≡ 0, so the shuffle ⊔⊔ is associative, commutative and dualizable.

• The stuffle product over an alphabet indexed by N is associative and commutative because ϕ (x i , x j ) = x i+j is so; moreover it is dualizable.

• The muffle product over an alphabet indexed by C is associative and commutative because ϕ q (x i , x j ) = x i×j is so; it is not dualizable because for all n ∈ N >0 , x 1 = ϕ q (x 1/n , x n ). However, there are multiplicative subsemigroups S of C such that ϕ restricted to the alphabet (x i ) i∈S is dualizable.

• The duffle product over an alphabet indexed by N * × C * is associative and commutative because ϕ q (y i , x k ), (y j , x l ) = (y i+j , x k×l ) is associative and commutative; it is not dualizable either (for the same reason). But we can do the same remark as the muffle about the possibility to restrict the alphabet so that ϕ becomes dualizable.

• The Formal Polyzêta product is associative, commutative but, for all j ∈ N >0 , with t = t ′ , ϕ • ((y 2 , z t ), (y j , z t ′ )) = and then ∀j ∈ N >0 , ϕ • ((y 2 , z t ), (y j , z t ′ )) |(y 1 , z t ) = -j j -1 1 (t -t ′ ) j+1 = 0 which implies that • is not dualizable.

• The Lerch product is associative, commutative and not dualizable (for the same reason as q ).

So, if we work in the Riemann polyzêta algebra, in the coloured polyzêta algebra, or in the Generalized Lerch polyzêta algebra, we can use a representation with the Lyndon set as a transcendence basis. Moreover, in the Riemann polyzêta algebra and the truncated Hurwitz polyzêta algebra can both be completed into Hopf algebras.
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 1 Figure 1: Hasse diagram of the inclusions between classes.
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 41 In the context of definition 4, (i) The law ⊔⊔ ϕ is commutative if and only if the extension ϕ : AX ⊗ AX → AX is commutative.

(

  ii) [⊔⊔ ϕ associative =⇒ ϕ associative] Let us suppose ∀u, v, w ∈ X * , (u⊔⊔ ϕ v)⊔⊔ ϕ w = u⊔⊔ ϕ (v⊔⊔ ϕ w).(46)Then, for any x, y, z ∈ X , one has(x⊔⊔ ϕ y)⊔⊔ ϕ z = x⊔⊔ ϕ (y⊔⊔ ϕ z). (47) But (x⊔⊔ ϕ y)⊔⊔ ϕ z = (xy + yx + ϕ(x, y))⊔⊔ ϕ z (48) = xy⊔⊔ ϕ z + yx⊔⊔ ϕ z + ϕ(x, y)⊔⊔ ϕ z = x(y⊔⊔ ϕ z) + z(xy⊔⊔ ϕ 1) + ϕ(x, z)y + y(x⊔⊔ ϕ z) + z(yx⊔⊔ ϕ 1) + ϕ(y, z)x + ϕ(x, y)z + zϕ(x, y) + ϕ(ϕ(x, y), z) = x(yz + zy + ϕ(y, z)) + zxy + ϕ(x, z)y + y(xz + zx + ϕ(x, z)) + zyx + ϕ(y, z)x + ϕ(x, y)z + zϕ(x, y) + ϕ(ϕ(x, y), z) x⊔⊔ ϕ (y⊔⊔ ϕ z) = x⊔⊔ ϕ (yz + zy + ϕ(y, z)) (49) = x⊔⊔ ϕ yz + x⊔⊔ ϕ zy + x⊔⊔ ϕ ϕ(y, z) = x(1⊔⊔ ϕ yz) + y(x⊔⊔ ϕ z) + ϕ(x, y)z + x(1⊔⊔ ϕ zy) + z(x⊔⊔ ϕ y) + ϕ(x, z)y = xϕ(y, z) + ϕ(y, z)x + ϕ(x, ϕ(y, z)) = xyz + y(xz + zx + ϕ(x, z)) + ϕ(x, y)z + xzy + z(xy + yx + ϕ(x, y)) + ϕ(x, z)y + xϕ(y, z) + ϕ(y, z)x + ϕ(x, ϕ(y, z)).

  γ z x,y = ϕ(x, y)|z = (x⊔⊔ ϕ y) -(xy + yx)|z = (x⊔⊔ ϕ y)|z -(xy + yx)|z = (x ⊗ y)|∆(z) = (x ⊗ y)| n i=1

  ′ -t) 2+n (y j-n , z t ′ ) (65)

	1 n=0	j -1 + n j -1		(-1) n (t -t ′ ) j+n (y 2-n , z t )
	+	j-1 n=0	1 + n 1	(t	(-1) n

The combinatorial supports of these parameters will finally resolve themselves into words.Preprint submitted to ElsevierDecember 1,

That includes in particular all the cases under consideration in our paper

That is the domain of symbolic computation in the vein of Euler and Arbogast[START_REF] Lusternik | Les premières étapes du calcul symbolique[END_REF][START_REF] Fréchet | Biographie du mathématicien alsacien Arbogast[END_REF].

That is the domain of renormalisation and asymptotic analysis initiated by Du Bois-Reymond and Hardy[START_REF] Tollu | Théorie générale des fonctions[END_REF][START_REF] Hardy | Orders of Infinity: The "Infinitärcalcül" of Paul Du Bois-Reymond[END_REF].

All parameters in the tuple are taken in some subring of C and none of them is a strictly positive integer.

We recall that AX (resp. A X ) admits X (resp. X * ) as linear basis, therefore AX ⊗ AX (resp. A X ⊗ A X ) is free with basis X × X (resp. X * × X * ) or more precisely, the image family (x ⊗ y) x,y∈X (resp. (u ⊗ v) u,v∈X * ).

Precisely, N + .1 A ⊂ A ×

Commutative and, when |X| ≥ 2, noncocommutative.