
HAL Id: hal-01232114
https://hal.science/hal-01232114v1

Submitted on 22 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Realistic Simulation Engines within the
MORSE Framework

Arnaud Degroote, Pierrick Koch, Simon Lacroix

To cite this version:
Arnaud Degroote, Pierrick Koch, Simon Lacroix. Integrating Realistic Simulation Engines within the
MORSE Framework. Workshop on Rapid and Repeatable Robot Simulation (R4 SIM), at Robotics:
Science and Systems, Jul 2015, Roma, Italy. �hal-01232114�

https://hal.science/hal-01232114v1
https://hal.archives-ouvertes.fr


Integrating Realistic Simulation Engines
within the MORSE Framework

Arnaud Degroote∗, Pierrick Koch†‡, Simon Lacroix†§
∗Institut Supérieur de l’Aéronautique et de l’Espace, 31055 Toulouse, France

arnaud.degroote at isae.fr
†CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

‡Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
pierrick.koch at laas.fr

§Univ de Toulouse, LAAS, F-31400 Toulouse, France
simon.lacroix at laas.fr

I. INTRODUCTION

As complex systems, robots integrate a variety of sub-
systems that rely on a large spectra of physical processes.
Dynamics is of course the primal concern, and it varies a lot
depending on the environment and kind of robots considered:
there is not much to compare between rigid-body mechanics,
fluid dynamics or wheel-soil interactions for instance. Percep-
tion implies optics, electromagnetism, acoustics, also declined
according to the kind of sensors used and the considered
environments. Besides these robot-related physical processes,
the environment itself is defined by a series of properties
and dynamic processes, that either pertain to physics (e.g.
atmospheric phenomena that may impact flight mechanics or
perception) or are related to other actors governed by specific
models (e.g. crowd dynamics, road traffic, and even humans
interacting with the robots).

Robotics simulators developed within the robotics commu-
nity are of course far from integrating this whole spectrum
of processes and models. Their design is mostly driven by
other concerns, such as real-time property, compliance with the
software architecture within which the functions to evaluate
are integrated, ease of deployment and use... They are mostly
used to test, evaluate or validate the integration of a series of
functions, and the realism of the simulated processes is often
not an important concern.

While such simulators are very beneficial to robotics devel-
opments, their lack of realism does not properly fill the gap be-
tween simulations and actual tests: there is a growing interest
in exploiting more realistic models within robotics simulators.
The literature abounds with specialized simulators, that focus
on a given physics phenomenon: the issue of integrating such
simulators within a robotics simulator, in a composable and
reusable manner, pertains to the simulator architecture. This
paper presents a way to tackle this integration issue, based
on the robotics simulator Morse [11, 3] and the High Level
Architecture standard (HLA, [12]).

II. ROBOTICS SIMULATORS

Robotics simulators such as Gazebo [2], V-REP [7], or
Morse [11, 3] rely more or less on the same architecture:
they are built upon one (or more) classic physics engine such

as ODE [4] or Bullet [1], and a graphical engine to edit the
environment and simulate vision and depth sensors. Simulated
sensors and controllers are embedded in a component / plug-in
system. All these components run in the same process, using
multiples threads for parallel computations 1. While such a
design allows to test in real time the integration of different
robotics components and rather ”high-level” algorithms, it fails
to scale along two dimensions:

• The increase in the number of simulated robots;
• The augmentation of the realism of the simulated sensors,

actuators and environments.
Besides CPU/GPU performance limitations, integrating an

existing specialized simulation may be difficult in practice,
as existing simulators usually do not provide the interfaces
defined by the component / plug-in system. Last, even if
several physics engines are supported, only one is supported
for a given simulation run, as these simulators are configured
at start-up with one physics engine. This is an issue for fine-
grained simulation of teams of heterogeneous robots, that may
include aerial, marine and ground robots.

A. Morse design

The Morse simulator relies on the open-source modeller
Blender and the physical engine Bullet. This tight integration
within Blender allows to easily construct realistic robots and
environments. Blender being fully scriptable in Python, one
can import scenes from third party environment models, e.g.
multi-layered terrain maps provided by geographic agencies
or companies.

As it is usual for robotics simulators, Morse provides a
components system, allowing to easily integrate new sensors
and actuators on-board the simulated robot. But Morse goes
further in the component decomposition and the separation
of concerns, by providing modifiers and datastream handlers.
Modifiers are pieces of code allowing to change slightly the
behaviour of a sensor, from simple data type conversion (Euler
to quaternion angle representations, units) to more complex

1In Gazebo, there is in fact two processes, a viewer allowing interactions
with the simulation gzclient and the simulator itself gzserver following the
described architecture



init()

main()

foreach sensors

foreach actuators

foreach datastream manager do
run datastream action

end
clock.update()
service.action()
foreach request manager do

process requests
end
multinode.synchronize()

sensor default action
foreach sensor output modifier do

alter(data)
end
foreach sensor output function do

send(data)
end

foreach actuator input function do
receive(data)

end
foreach actuator input modifier do

alter(data)
end
actuator default action

data

data

E
x
te
rn
al

C
li
en
t
S
of
tw

ar
e

(c
om

m
u
n
ic
a
ti
on

v
ia

m
id
d
le
w
ar
e)

Fig. 1. Morse main loop overview

noise models. Datastream handlers adapts the data to robotics
middleware specific format, for both data-oriented interfaces
and service-oriented interfaces. This feature allows to trans-
parently use Morse with a variety of robotics architectures,
such as GeNoM-based, Orocos-YARP, Orocos-ROS, standard
ROS, MOOS... Robots running different architectures can
hence be jointly simulated – which proved to significantly ease
multiple partners integration in collaborative projects. Figure 1
illustrates how the different Morse components interact during
one simulation loop.

Simulation scenes, including the components to use, their
configurations and interactions are described using the Builder
API, an internal domain-specific language based on Python.
It hides the Blender complexity to users, but also allows to
dynamically program a scene, thus easing robustness tests of
algorithms in various situations.

III. DISTRIBUTED SIMULATIONS

To augment the level of realism of a robotics simulator using
additional specialized simulators, or to augment the number of
robots involved in a simulation, the only way is to distribute
the simulation processes over a network of CPUs. This raises
the issue of synchronisation, as the simulators deployed on the

various CPUs have their own computation requirements and
scheduler, or the CPUs may differ – not to mention the delays
induced by the network. Besides, one need tools to allow the
simulators to exchange information between the simulators.

A. High Level Architecture (HLA)

Distributed simulations are largely used in more mature
industries, such as space [15] or aeronautic [10, 9] industries,
because they allow to make precise and realistic simulations.
This is made possible thanks to the High Level Architecture
standard, which defines solutions to the issues of information
exchanges and time management between the simulators.

HLA is an open international standard, developed by the
Simulation Interoperability Standards Organization (SISO) and
published by IEEE. In the HLA terminology, a federate is
an HLA compliant simulator, while a federation is the set of
simulators connected for one distributed simulation. Without
entering too much in the details, HLA defines an API that
allows to:

• model the content of one simulator (the Simulation Object
Model or SOM), and what is exchanged in the federation
(the Federation Object Model or FOM) (i.e. the set of
objects exchanged in a given simulation);

• manage the federation itself (simulator entering or going
out the federation), and the objects that each federate
manages;

• provide several time management policies.
Various implementations of this standard are available (e.g.

[5, 6, 14]): these RunTime Infrastructures can be viewed as
simulation middlewares. One of the great benefits of using
HLA is that a wide variety of specific simulators are compliant
with the interfaces it defines. In robotics, there has been a few
attempts to develop distributed simulation suites using HLA
[16, 17, 13], but none became widely used yet.

B. Morse and HLA

To handle large number of robots in a simulation, Morse
proposes a multi-node mode. Basically, each node handles
a small subset of robots and simulates their sensors and
actuators, and synchronizes the robot positions2, so that all
simulated robots are known to all nodes (which allows sensors
to perceive robots from other nodes for instance). The same
mechanism is also used for hybrid simulation, i.e. in which
real robots interact with simulated robots – this specific case
imposing that the simulation runs in real-time. A simple in-
house protocol has been defined for this purpose, but it yields
very primitive distributed simulations, only deployable on
homogeneous nodes.

To exploit specialized realistic simulators and develop more
realistic multi-robot simulations, we extended the Morse ar-
chitecture to comply with the HLA specifications. As a use
case, we present here the integration of a JSBSim [8], a
flight simulator that exploits an accurate Flight Dynamic
Model (FDM) engine (in its current implementation, Morse
has indeed only a simplistic flight model for quadrotors or

2Hence the call to multinode.synchronize() in the main() of the
Morse loop shown figure 1.



J
S
B
S
im

H
L

A
A

d
a
p

te
r

MORSE

H
L

A
A

d
ap

te
r

F
ee

t
↔

m
et

er
m

o
d

ifi
er

Morse core components

YARP Adapter

OROCOS components

engine control

pose, velocity

im
u

,
ca

m
er

a

co
n
tr

ol

Fig. 2. An Orocos-based robot simulation with Morse and JSBSim

helicopters, good enough for testing integration and high-
level algorithms, but not precise enough to test flight control
laws). In this particular case, it is possible to use a direct
integration of the JSBSim engine into a Morse component,
but such an approach would not scale over the long-term
(and such an integration is not always possible, depending
on the specialized simulator architecture). To achieve the
integration of Morse and JSBSim using HLA, nothing had to
be changed in the Morse core architecture: we only developed
a new datastream handler for HLA, allowing to retrieve or
send arbitrary data from Morse using the HLA API. On the
other side, we developed a simple C++ HLA wrapper around
JSBSim, using the CERTI [14] HLA implementation.

Figure 2 depicts the interactions between an Orocos soft-
ware architecture with a Morse/JSBSim integrated simulator.
Orocos components communicates with the Morse simulator
using the YARP middleware, while the Morse core interacts
through HLA with the JSBSim node, sending commands
(coming directly from Orocos, or after some computation of
a Morse actuator), and receiving pose and velocity updates.
These values can then be used to simulate on-board sensors
output (e.g. IMU). Note the presence of feet/meter modifier, to
comply with the units used in JSBSim (this conversion could
have been made within the C++ federate, but since most FDM
use imperial units, we adapted the Morse interface).

Thanks to HLA, a multi-node simulation is now only a
specific instantiation of an HLA architecture with various
Morse HLA nodes. Not only this standardizes and eases
the deployments of large multi-robot simulations, but the
synchronization of the nodes are now guaranteed.

IV. SUMMARY

We briefly described how the Morse architecture has been
adapted to interact in a HLA federation. This is work in

progress, and the developments are still preliminary (the
source code is on https://github.com/adegroote/morse-jsbsim).
Future work will consist in extending the realism of simula-
tions by integrating additional specialized simulators (e.g. an
atmosphere simulator for autonomous soaring developments),
and on the user-interface, which should ease the definition
of distributed simulations. Among the longer term issues that
remain to be tackled, the two following are worth to study:

• The definition of simulation descriptions in order to
provide generic interfaces and interoperability between
simulators. Indeed, while HLA defines a grammar, it does
not define the vocabulary exchanged between federates.
To provide real interoperability between simulators, this
vocabulary (the Federation Object Management) must be
generic and descriptive enough. This model problem is
still open, and should be discussed within the community.

• The maintenance of the consistency of the environment
models that are distributed over an HLA federation: e.g.
when ruts are caused by robot traverses on a terramechan-
ics terrain model, the terrain appearance must be updated
accordingly for the vision / Lidar simulators. HLA could
handle such changes, but their modeling is a tough issue.

REFERENCES

[1] Bullet website. URL http://bulletphysics.org/wordpress/.
[2] Gazebo website. URL http://gazebosim.org/.
[3] Morse website. URL https://morse.openrobots.org.
[4] ODE website. URL http://ode.org/.
[5] Open RTI source code. URL http://sourceforge.net/projects/

openrti/.
[6] Portico HLA RTI. URL www.porticoproject.or.
[7] V-REP website. URL http://www.coppeliarobotics.com/.
[8] Jon S Berndt. JSBSim: An open source flight dynamics model.

In in C++. AIAA. Citeseer, 2004.
[9] W. Bo, L. Hu, Z. Yibo, and S. Yijie. HLA based collaborative

simulation of civil aircraft ground services. In Information
Computing and Applications, pages 734–741. Springer, 2011.

[10] J-B. Chaudron, D. Saussié, P. Siron, and M. Adelantado. Real-
time aircraft simulation using HLA standard. In IEEE AESS
Simulation in Aerospace 2011, Toulouse (France), June 2011.

[11] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg,
P. Koch, C. Lesire, and S. Stinckwich. Simulating Complex
Robotic Scenarios with MORSE. In SIMPAR, 2012.

[12] Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Cre-
ating computer simulation systems: an introduction to the high
level architecture. Prentice Hall PTR, 1999.

[13] Patricio Nebot, Joaqunf Torres-Sospedra, and Rafael J. Martnez.
A New HLA-Based Distributed Control Architecture for Agri-
cultural Teams of Robots in Hybrid Applications with Real and
Simulated Devices or Environments. Sensors, 11(4):4395–4400,
April 2001.

[14] E. Noulard, J-Y. Rousselot, and P. Siron. CERTI, an Open
Source RTI, why and how. In Spring Simulation Interoperability
Workshop, pages 23–27, 2009.

[15] Michael R Reid and Edward I Powers. An evaluation of the high
level architecture (HLA) as a framework for NASA modeling
and simulation. In 25th NASA Software Engineering Workshop,
Goddard Space Flight Center, Greenbelt (USA), 2000.

[16] L. Winkler and H. Wörn. Symbricator3D – a distributed
simulation environment for modular robots. In Intelligent
Robotics and Applications. Springer, 2009.

[17] L. Xiang, L. Xunbo, and C. Liang. Multi-disciplinary modeling
and collaborative simulation of multi-robot systems based on
HLA. In IEEE International Conference on Robotics and
Biomimetics, Dec 2007.

https://github.com/adegroote/morse-jsbsim
http://bulletphysics.org/wordpress/
http://gazebosim.org/
https://morse.openrobots.org
http://ode.org/
http://sourceforge.net/projects/openrti/
http://sourceforge.net/projects/openrti/
www.porticoproject.or
http://www.coppeliarobotics.com/

	Introduction
	Robotics Simulators
	Morse design

	Distributed simulations
	High Level Architecture (HLA)
	Morse and HLA

	Summary

