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Where do | come from?

Robotics @ LAAS/CNRS, Toulouse (France)

* A keyword: autonomy
 Constructive and integrative approach

Field robotics

Humanoids
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Mobile robots everywhere




From automatic control
to autonomous control

 Automatic control :
— Well defined task (“regulate variable”, “follow trajectory”...)
— Well defined and simple environments
— “Direct” link between (simple) perception and action

- Autonomous control :
— More general task (“reach goal’,
— More complex environments
— Calls for decisional processes

114

monitor area ”...)

= “Perception / Decision / Action” loop

Y. Decision
£ i A Y

.= Action

Plus :
— Processes integration
— Learning ils) Perception
— Interaction with humans

— Interactions with other robots



From automatic control
to autonomous control

E.g. for a drone:

— Regulate heading / speed / altitude
— Follow a list ordered waypoints
— Follow a geometric trajectory

s Action

) Perception

— Follow a road .= Action

— Follow a target
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— Survey an area while avoiding threats
and obstacles, and track intruders

s Action

Decision: notion of deliberation, Also referred to as "Sense/
Plan/Act” paradigm

planning: prediction and evalyatlon (this scheme applies to
of the outcomes of an action numerous processes)




Autonomous robots
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* The three pillars of autonomy

E Perception

» A basic task: autonomous navigation
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E Perception

» A basic task: autonomous navigation

1. Perception

epth ge Digftél terrain model



Autonomous robots
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* The three pillars of autonomy

E Perception

» A basic task: autonomous navigation

2. Decision

Convolution of the robot Search
model with the terrain model



Autonomous robots

:8: Decision
4 Y

.= Action

* The three pillars of autonomy

E_ Perception

* A basic task: autonomous navigation

3. Action

“Just” execute the planned motions



Autonomous robots

:8: Decision
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.= Action

* The three pillars of autonomy

E_ Perception

2. Decision

Deciding, Planning = Simulation + Search

« Simulation of the effects of an action with a
predictive model

« Search over possible organizations of possible
actions to meet a goal or to optimize a criteria



Autonomous robots
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.= Action

* The three pillars of autonomy

E_ Perception

2. Decision

= Models are at the core of autonomy

 Environment models
* Action models



QOutline

« Mapping for autonomous navigation
* Mapping and localization

« Beyond autonomous navigation



Autonomous navigation

Navei=ga-dion | NAVIZA s o
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Autonomous navigation

An instance of the perception/decision/action loop:

E Perception

» Gathering data on the environment
 Structuring the data into models (maps)
* Localizing the robot

:é: Decision
A

 Planning motions to find the optimal one

.= Action

« Executing a trajectory



(Autonomous navigation is declined in
numerous flavors)

Depending on:

* The kind of vehicle
« Air, ground, maritime, underwater

* The kind of environment
 Structured or not
» “Hostile” or not
* Dynamic or not

* Numerous constraints or helpers
* Environment known or not?
 Existence of localisation aiding systems?
* Networked environment or not?



Mapping for autonomous navigation

Autonomous navigation involves:
 Avoiding obstacles

* Planning trajectories

* Planning itineraries

> Need to detect and represent obstacles
Need to estimate feasibility / cost / time of motions

These are assessed on the basis of maps



Building maps: information flow

Exteroceptive Environment

Real world sensor data models

Geometry

Semantics

Lighting Images

Physical conditions
properties
Thermal

Chemical  properties
properties

Point clouds

Radar echoes

Temperature,
humidity...

t Action

3 models
Initial models

Initial knowledge



Mapping for autonomous navigation

Mapping = “Acquisition and representation of
information on the environment”

All sensors are imprecise and uncertain
> Probabilistic mapping:

Knowing perfectly the robot poses {u;}, and given
the sensor data {z}:

d ={U,2,,Uy,2ys U, 2, }
calculate the most likely map:

m =argmax P(m|d)

m




Probabilistic mapping

lllustration: occupancy grid

- Structure: 2D regular discretization of the environment (= 2D grid)
- Each grid cell encodes the probability of presence of an obstacle
(“occupied”)

P(obst) = 1

P(obst) = 0




Probabilistic mapping

lllustration: occupancy grid

Sensor model Initial knowledge
- Bayes theorem: N\ /
P(z|0.)P(O.
PO = (z/0)P(0)
P(2)

« Sensor model: probability of range reading given known occupancy
of a grid cell O; :

 “Inverse sensor model”
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Sonar sensor




Probabilistic mapping

lllustration: occupancy grid

* Recursive bayes updates
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Probabilistic mapping

lllustration: occupancy grid

Planar Lidar



Probabilistic mapping




Probabilistic mapping

lllustration: terrain navigability using point clouds

« Same principles apply: modeling the sensor, application of the
Bayes theorem, recursive update

« More complex sensors: use of learning techniques to establish
their model

Data classification — area-wise



Probabilistic mapping

lllustration: terrain navigability using point clouds

« Same principles apply: modeling the sensor, application of the
Bayes theorem, recursive update

* More complex sensors: use of learning techniques to establish
their model

Data classification — point-wise



Probabilistic mapping

lllustration: mapping dynamic environments
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Geometric mapping

lllustration: digital terrain maps

DTM: z= f(x,)) ona
regular Cartesian grid

* Varying resolution
 Imprecision on the data

L uncertainties in the values {% %




Geometric mapping

lllustration: digital terrain maps

Practical implementation:
* simple statistics on the “population” of 3D points that fall in a cell
cacellis: (z, 0,) (+ #points, dates, ...)

- — -—




Geometric mapping

lllustration : approximate hierarchical 3D
occupancy grids (“Octomap”)




Map structures

« Raster models:
regular or hierarchic
Cartesian grids

=) Graph structures
easily derived

* Real 3D structures are o i .
. - Sosele ;;n:.:‘."-’-:r?wﬂ e el )

hardly maintained in _ ga-%’t__ T e el o |

real time 2 Lo e, S




Exploiting maps for navigation

 To generate/plan motions
=> evaluation/quantification of motion actions
« Classical 2-stages approach: itineraries / trajectories

——
Probabilistic obstacle model Digital elevation map



Maps for navigation: key points

Whatever the encoded information (terrain class, elevation,
traversability, ...), it is essential maintain its “quality” (confidence,
precision, certainty...):

 To fuse the various sources of information
* initial model
* models built by other robots
» sensor data

« To drive the decision processes

Spatial consistency is crucial



Mapping for autonomous navigation

All sensors are imprecise and uncertain
> Probabilistic mapping:

Knowing perfectly the robot poses {u,;}, and given
the sensor data {z }:

d={U,2,Uy,2ps U, .2 }
calculate the most likely map:

m =argmax P(m|d)

m




Mapping for autonomous navigation

All sensors are imprecise and uncertain
Probabilistic mapping: 27?77

C_ Knowing perfectly the robot poses {@d given
the's {4,&2

d - {Ml ,Z] 9M2 7Z2 % ° "Mn ’Z/l}

calculate the most likely map:

m =argmax P(m|d)

m
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* Mapping and localization



On the importance of localization

Autonomous nhavigation encompasses:
« Ensuring the lowest level (locomotion) controls
« Ensuring the proper execution of paths / trajectories

* Ensuring the achievement of the navigation mission (“goto
[goall]’)

» Ensuring the spatial consistency of the built models
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Mapping and localization

Mapping as an estimation problem:
Given the robot position x, a data set Z,, a sensor model
p(Z*|M, x,,) compute the map M: p(M|x,, Z*)

Map-based localization as an estimation problem:
Given a map M, a data set Z,, a sensor model p(ZX|M, x,)
compute the robot position x,: p(x,|M, Z*)

In the absence of maps and precise localization:
Given the robot controls u, and sensor readings z,,
compute the map M and the robot position x,: p(M, x |u,,z,)

> Simultaneous Localization And Mapping (SLAM)



Principle of SLAM
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— Landmark detection



»
»

&

»
>

— Landmark detection

— Relative observations (measures)
« Of the landmark positions

Principle of SLAM



Principle of SLAM
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— Landmark detection

— Relative observations (measures)
« Of the landmark positions
« Of the robot motions
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Principle of SLAM
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— Landmark detection

— Relative observations (measures)
« Of the landmark positions
« Of the robot motions



Principle of SLAM
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— Landmark detection

— Relative observations (measures)
« Of the landmark positions
« Of the robot motions

— Observation associations
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Landmark detection

Relative observations (measures)
« Of the landmark positions
« Of the robot motions
Observation associations

Refinement of the landmark and
robot positions

S—

Principle of SLAM

®

All these functions can be
achieved in numerous
different ways



Principle of SLAM

Dead-reckoning
SLAM

.
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(a rich scientific history, with different
communities involved)



SLAM comes in numerous flavors

Essential questions to answer:

1.

2. Which estimation formalism?

3.

Which sensors / landmarks?

In which frame?

Points / lines / planes / dense
signal...

EKF, IF, PF, Set membership,
non linear optimization...

Absolute / local / relative



[llustration: vision-based SLAM




What is localization?

Essential questions to answer:

1. With which precision? From cm to meters

2. In which frame? Absolute vs. local

3. At which frequency? From kHz to “sometimes”
4. Integrity of the solution?

5. Auvailability of the solution?

"« Ensure the lowest level (locomotion) controls

cm accuracy,
> 100 Hz, = * Ensure the proper execution of paths / trajectories
local frame

* Ensure the spatial consistency of the built models

—

pum—

~M accuracy,
“sometimes”, <
global frame

» Ensure the achievement of the navigation mission (“goto
[goal]’)




Localization precision required for a DTM

= DTM resolution ~ 10cm, height precision ~ 3cm

 Velodyne Lidar provides chunks of 64 points @ 3.5 kHz
* 1° error on pitch yields a 17cm elevation error @ 10m

2m/s, GPS RTK @ 20Hz
+ Xsens AHRS @ 50Hz
+ FOG gyro @ 50Hz

2m/s, RT-SLAM @ 100Hz



SLAM Maps

Twofold landmark representation:

o080 2

1. Appearance 2. Positions and uncertainties



Autonomous robots
Mapping for autonomous navigation
Mapping and localization

Beyond autonomous navigation
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Remote operations

« Sites / areas where human presence is precluded

Either not possible, too risky or too costly for humans



Remote operations

« Sites / areas where human presence is precluded
 To do what ?

Considered missions:
 exploration, search
 coverage / patrolling: observations, scene analyses,
situation assessment
* interventions in the environment
In various application contexts:
« Environment monitoring (pollutions, science, ...)
« Search and rescue
» Civil security, defense applications

=) /nformation gathering and intervention missions



Fleets of robots

« Advantages brought by robot teams

 Increase of the achievable task and operation
spaces

« Higher robustness wrt. failures
« Complementarities

— QOperational synergies
= Robotic synergies



Fleets of robots

» Advantages brought by robot teams

 Increase of the achievable task and operation
spaces

« Higher robustness wrt. failures

« Complementarities
— Operational synergies
—> Robotic synergies

« E.g. Air / Ground fleets of robots

On going work @ LAAS & Onera



Challenges

Dozens of heterogeneous robots cooperate to achieve
long-lasting missions in large environments

Large scale (km?) implies:
* Faster robots, longer missions (“lifelong autonomy”)
 Large (multi-scale) environment models
« Communication constraints
» Cooperative and coordinated perception / planning / action



lllustration: planning a patrolling mission
(1/2)




lllustration: planning a patrolling mission
(2/2)
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Which action models have been used?

 Robot motion model
nav_time(R;, C;,Cy) € [0, +00]

nav_cost(R;,C;,Cy) € [0, +0o0]
* QObservation model
ObSI(Ri, C]) = {Cl, on Cn,} 2 A’f]{i,Cj = A"IR.L-

obs_utility(C;) € [0,1],C; € Mg, U...U Mg,

« Communication model
(3077‘?,(R,;, CJ) = {Cl, . Cn_} (S I\JR?.',Cj < l\-’f_rgz.

com2D(R;,C;, R;,C;) € {0,1}



Which environment models have been
used?

* To plan motions: express
traversability / accessibility




Which environment models have been
used?

* To plan motions: express
traversability / accessibility

« To plan observations: line
of sight visibility

* To plan communications:
line of sight visibility




lllustration: autonomous navigation
revisited
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What environment models have been
used?

« To plan AGV motions:
express traversability /
accessibility

« To plan AUV motions: information quality
(quantity) of the traversability model



Which environment models are used

for localisation?
« Geometric models (a priori of built by the robots)

« Dedicated models (e.g. “landmarks”, “views memory”)
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A database of environment models

» Avariety of dedicated models have to be maintained
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A database of environment models

A variety of dedicated models have to be maintained
A series of queries are exploited

Fonction Action Arguments Returned | Algorithm(s)
value
1sAccessible motion m, P; Cmaz {2} Dijkstra
navigate motion T P1, P2 (path, c) A¥. D¥
canSee perception Ty D { (p,¢) } | ray tracing
test_comlink com. Te, P1, P2 6" ray tracing

¥ .eiion @CtION Model
p position
¢ motion cost

@ information quality



« Good environment representations are the
foundations of good decisions — and hence of

autonomy
= Numerous tasks / missions can be turned
into of information gathering approaches
=> This also applies to personal robots and
co-workers

* A variety of representations are required

« Geometry is certainly the most important
information to represent (but not only)

* Representing the quality (precision, certainty)
of information is essential

Summary




Current challenges

» The presence of operators will impose to share the information
—> spatial ontologies?

« Lifelong autonomy, lifelong mapping

 Richer semantics (from scene perception to scene interpretation)
 Exploit richer sensors (full-wave Lidars, hyperspectral imagery)

» Data flood

* Distributed real-time management of the spatial representations
database



