Building and managing maps for autonomous robots

Simon Lacroix Laboratory for Analysis and Architecture of Systems CNRS, Toulouse

ISPRS 2015 Geospatial Week

Where do I come from?

Mobile robots everywhere

From automatic control to autonomous control

• Automatic control :

- Well defined task ("regulate variable", "follow trajectory"...)
- Well defined and simple environments
- "Direct" link between (simple) perception and action
- Autonomous control :
 - More general task ("reach goal", "monitor area "...)
 - More complex environments
 - Calls for decisional processes

Plus :

- Processes integration
- Learning
- Interaction with humans
- Interactions with other robots

— ...

From automatic control to autonomous control

E.g. for a drone:

- Regulate heading / speed / altitude
- Follow a list ordered waypoints
- Follow a geometric trajectory
- Follow a road
- Follow a target
- Survey an area while avoiding threats and obstacles, and track intruders

<u>Decision</u>: notion of deliberation, planning: prediction and evaluation of the outcomes of an action Also referred to as "Sense/ Plan/Act" paradigm (this scheme applies to *numerous* processes)

• The three pillars of autonomy

• A basic task: autonomous navigation

- A basic task: autonomous navigation
- 1. Perception

- A basic task: autonomous navigation
- 2. Decision

Convolution of the robot model with the terrain model

Search

- A basic task: autonomous navigation
- 3. Action

"Just" execute the planned motions

2. Decision

Deciding, Planning = Simulation + Search

• Simulation of the effects of an action with a predictive model

• Search over possible organizations of possible actions to meet a goal or to optimize a criteria

The three pillars of autonomy

2. Decision

Models are at the core of autonomy

- Environment models
- Action models

Outline

- Autonomous robots
- Mapping for autonomous navigation
- Mapping and localization
- Beyond autonomous navigation

Autonomous navigation

Autonomous navigation

An instance of the perception/decision/action loop:

- Gathering data on the environment
- Structuring the data into models (maps)
- Localizing the robot

• Planning motions to find the optimal one

• Executing a trajectory

(Autonomous navigation is declined in <u>numerous</u> flavors)

Depending on:

- The kind of vehicle
 - Air, ground, maritime, underwater
- The kind of environment
 - Structured or not
 - "Hostile" or not
 - Dynamic or not
 - ...

- Numerous constraints or helpers
 - Environment known or not?
 - Existence of localisation aiding systems?
 - Networked environment or not?

• . . .

Mapping for autonomous navigation

Autonomous navigation involves:

- Avoiding obstacles
- Planning trajectories
- Planning itineraries

Need to detect and represent obstacles Need to estimate feasibility / cost / time of motions

These are assessed on the basis of *maps*

Building maps: information flow

Mapping for autonomous navigation

Mapping = "Acquisition and representation of information on the environment"

All sensors are imprecise and uncertain

► <u>Probabilistic</u> mapping:

Knowing perfectly the robot poses $\{u_i\}$, and given the sensor data $\{z_i\}$:

$$d = \{u_1, z_1, u_2, z_2, \dots, u_n, z_n\}$$

calculate the most likely map:

$$m^* = \underset{m}{\operatorname{arg\,max}} P(m \mid d)$$

Illustration: occupancy grid

- Structure: 2D regular discretization of the environment (= 2D grid)
- Each grid cell encodes the probability of presence of an obstacle ("occupied")

Illustration: occupancy grid

- <u>Sensor model</u>: probability of range reading given known occupancy of a grid cell O_i :
- "Inverse sensor model"

Illustration: occupancy grid

• Recursive bayes updates

Illustration: occupancy grid

Sonar

Planar Lidar

Illustration: terrain navigability using point clouds

Illustration: terrain navigability using point clouds

- Same principles apply: modeling the sensor, application of the Bayes theorem, recursive update
- More complex sensors: use of learning techniques to establish their model

Data classification – area-wise

Illustration: terrain navigability using point clouds

- Same principles apply: modeling the sensor, application of the Bayes theorem, recursive update
- More complex sensors: use of learning techniques to establish their model

Data classification – point-wise

Illustration: mapping dynamic environments

(INRIA eMotion)

Geometric mapping

Illustration: digital terrain maps

DTM: z = f(x, y) on a regular Cartesian grid

- Varying resolution
- Imprecision on the data
- uncertainties in the values

Geometric mapping

Illustration: digital terrain maps

Practical implementation:

- simple statistics on the "population" of 3D points that fall in a cell
- a cell is : (z, σ_z) (+ #points, dates, ...)

Geometric mapping

Illustration : approximate hierarchical 3D occupancy grids ("Octomap")

Map structures

• Real 3D structures are hardly maintained in real time

Exploiting maps for navigation

- To generate/plan motions
 - \Rightarrow evaluation/quantification of motion actions
- Classical 2-stages approach: itineraries / trajectories

Probabilistic obstacle model

Digital elevation map

Maps for navigation: key points

- 1. Whatever the encoded information (terrain class, elevation, traversability, ...), it is *essential* maintain its "quality" (confidence, precision, certainty...):
 - To fuse the various sources of information
 - initial model
 - models built by other robots
 - sensor data
 - To drive the decision processes
- 2. Spatial consistency is crucial

Mapping for autonomous navigation

All sensors are imprecise and uncertain

► <u>Probabilistic</u> mapping:

Knowing perfectly the robot poses $\{u_i\}$, and given the sensor data $\{z_i\}$:

$$d = \{u_1, z_1, u_2, z_2, \dots, u_n, z_n\}$$

calculate the most likely map:

$$m^* = \operatorname*{arg\,max}_{m} P(m \,|\, d)$$

Mapping for autonomous navigation

All sensors are *imprecise* and *uncertain*

Probabilistic mapping: ???

Knowing perfectly the robot poses { u_i }, and given the sensor data { z_i }: $d = \{u_1, z_1, u_2, z_2, \dots, u_n, z_n\}$ calculate the most likely map: $m^* = \arg \max P(m \mid d)$

Outline

- Autonomous robots
- Mapping for autonomous navigation
- Mapping and localization

On the importance of localization

Autonomous navigation encompasses:

- Ensuring the lowest level (locomotion) controls
- Ensuring the proper execution of paths / trajectories
- Ensuring the achievement of the navigation mission ("goto [goal]")
- Ensuring the spatial consistency of the built models

Mapping and localization

Mapping as an estimation problem: Given the robot position x_v , a data set Z_k , a sensor model $p(\mathbf{Z}^k | \mathbf{M}, \mathbf{x}_v)$ compute the map *M*: $p(\mathbf{M} | \mathbf{x}_v, \mathbf{Z}^k)$

Map-based localization as an estimation problem: Given a map M, a data set Z_k , a sensor model $p(\mathbf{Z^k}|\mathbf{M}, \mathbf{x}_v)$ compute the robot position x_v : $p(\mathbf{x}_v|\mathbf{M}, \mathbf{Z^k})$

In the absence of maps and precise localization: Given the robot controls u_k and sensor readings z_k , compute the map M and the robot position x_v : $p(M, x_v | u_k, z_k)$

Simultaneous Localization And Mapping (SLAM)

- Landmark detection
- Relative observations (measures)
 - Of the landmark positions

- Landmark detection
- Relative observations (measures)
 - Of the landmark positions
 - Of the robot motions

- Landmark detection
- Relative observations (measures)
 - Of the landmark positions
 - Of the robot motions

- Landmark detection
- Relative observations (measures)
 - Of the landmark positions
 - Of the robot motions
- Observation associations

- Landmark detection
- Relative observations (measures)
 - Of the landmark positions
 - Of the robot motions
- Observation associations
- Refinement of the landmark and robot positions

All these functions can be achieved in numerous different ways

Dead-reckoning SLAM

(a rich scientific history, with different communities involved)

SLAM comes in numerous flavors

Essential questions to answer:

- 1. Which sensors / landmarks?
- Points / lines / planes / dense signal...

EKF, IF, PF, Set membership,

non linear optimization...

- 2. Which estimation formalism?
- 3. In which frame?

Absolute / local / relative

Illustration: vision-based SLAM

What is localization?

Essential questions to answer:

- 1. With which precision?
- 2. In which frame?
- 3. At which frequency?
- 4. Integrity of the solution?
- 5. Availability of the solution?
- From *cm* to *meters* Absolute vs. local From *kHz* to "sometimes"

cm accuracy, > 100 *Hz*, local frame *cm* accuracy, 'sometimes", - (sometimes", - (gold) *cm* accuracy, 'sometimes", - (sometimes) *cm* accuracy, 'sometimes'', - (sometimes)

Localization precision required for a DTM

- \Rightarrow DTM resolution ~ 10cm, height precision ~ 3cm
- Velodyne Lidar provides chunks of 64 points @ 3.5 kHz
- 1° error on pitch yields a 17 cm elevation error @ 10m

2*m/s*, GPS RTK @ 20*Hz* + Xsens AHRS @ 50*Hz* + FOG gyro @ 50*Hz*

2*m/s*, RT-SLAM @ 100*Hz*

SLAM Maps

Twofold landmark representation:

1. Appearance

2. Positions and uncertainties

Outline

- Autonomous robots
- Mapping for autonomous navigation
- Mapping and localization
- Beyond autonomous navigation

Remote operations

• Sites / areas where human presence is precluded

Either not possible, too risky or too costly for humans

Remote operations

- Sites / areas where human presence is precluded
- To do what ?

Considered missions:

- exploration, search
- coverage / patrolling: observations, scene analyses, situation assessment
- *interventions* in the environment
- In various application contexts:
 - Environment monitoring (pollutions, science, ...)
 - Search and rescue
 - Civil security, defense applications
 - ...

Information gathering and intervention missions

Fleets of robots

- Advantages brought by robot teams
 - Increase of the achievable task and operation spaces
 - Higher robustness wrt. failures
 - Complementarities
 - → Operational synergies
 - → Robotic synergies

Fleets of robots

- Advantages brought by robot teams
 - Increase of the achievable task and operation spaces
 - Higher robustness wrt. failures
 - Complementarities
 - → Operational synergies
 - → Robotic synergies
- E.g. Air / Ground fleets of robots

On going work @ ACFR On going work @ LAAS & Onera

"Remote eye" @ CMU

Challenges

Dozens of *heterogeneous* robots *cooperate* to achieve *long-lasting* missions in *large* environments

Large scale (*km*³) implies:

- Faster robots, longer missions ("lifelong autonomy")
- Large (multi-scale) environment models
- Communication constraints
- Cooperative and coordinated perception / planning / action

Illustration: planning a patrolling mission (1/2)

Illustration: planning a patrolling mission (2/2)

Which action models have been used?

• Robot motion model

 $nav_time(R_i, C_j, C_k) \in [0, +\infty]$

 $nav_cost(R_i, C_j, C_k) \in [0, +\infty]$

Observation model

$$obs1(R_i, C_j) = \{C_1, ..., C_n\} \subset M_{R_i}, C_j \in M_{R_i}$$

 $obs_utility(C_j) \in [0,1], C_j \in M_{R_1} \cup \ldots \cup M_{R_n}$

Communication model

$$com(R_i, C_j) = \{C_1, ..., C_n\} \subset M_{R_i}, C_j \in M_{R_i}$$

 $com2D(R_i, C_i, R_j, C_j) \in \{0, 1\}$

Which environment models have been used?

• To plan motions: express traversability / accessibility

Which environment models have been used?

• To plan motions: express traversability / accessibility

- To plan observations: line of sight visibility
- To plan communications: line of sight visibility

Illustration: autonomous navigation revisited

What environment models have been used?

 To plan AGV motions: express traversability / accessibility

• To plan AUV motions: information quality (quantity) of the traversability model

Which environment models are used for localisation?

• Geometric models (a priori of built by the robots)

• Dedicated models (*e.g.* "landmarks", "views memory")

A database of environment models

• A variety of *dedicated* models have to be maintained

A database of environment models

- A variety of *dedicated* models have to be maintained
- A series of *queries* are exploited

Fonction	Action	Arguments	Returned value	Algorithm(s)
isAccessible	motion	r_m, p, c_{max}	$\{p'\}$	Dijkstra
navigate	motion	r_m, p_1, p_2	(path, c)	A*, D*
canSee	perception	r_p, p	$\{(p,\phi)\}$	ray tracing
test_comlink	com.	r_c, p_1, p_2	α	ray tracing

 r_{action} action model p position c motion cost φ information quality

 Good environment representations are the foundations of good decisions – and hence of autonomy

> → Numerous tasks / missions can be turned into of information gathering approaches
> → This also applies to personal robots and

- co-workers
- A variety of representations are required
- Geometry is certainly the most important information to represent (but not only)
- Representing the quality (precision, certainty) of information is essential

Summary

Current challenges

- The presence of operators will impose to share the information
 → spatial ontologies?
- Lifelong autonomy, lifelong mapping
- Richer semantics (from scene perception to scene interpretation)
- Exploit richer sensors (full-wave Lidars, hyperspectral imagery)
- Data flood
- Distributed real-time management of the spatial representations database