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Classification of Outdoor 3D Lidar Data Based on
Unsupervised Gaussian Mixture Models

Artur Maligo1 and Simon Lacroix2

Abstract— 3D point clouds acquired with lidars are an impor-
tant source of data for the classification of outdoor environments
by autonomous terrestrial robots. We propose here a two-layer
classification system. The first layer consists of a Gaussian mix-
ture model, issued from unsupervised training, which defines a
large set of data-oriented classes. The second layer consists of a
supervised, manual grouping of the unsupervised classes into a
smaller set of task-oriented classes. Because it uses unsupervised
learning at its core, the system does not require any manual
labelling of datasets. We evaluate the system on two datasets
of different nature, and the results show its capacity to adapt
to different data while providing classes which are exploitable
in a target task.

I. INTRODUCTION

Perception is a key requirement for terrestrial autonomous
mobile robots operating in outdoor environments. In partic-
ular, the processing of 3D point clouds acquired with lidars
enable robots to build environment models, on which are
based the solutions to tasks such as traversability analysis [1],
object recognition [2], scan registration, place recognition [3]
and others involving data association. Semantic models, in
this context, are especially interesting because they encode
qualitative information, and thus provide to a robot the ability
to reason at a higher level of abstraction.

At the core of a semantic modelling system, lies the
capacity to classify the sensor observations acquired from
a target scene [4]. The challenges faced arise, firstly, from
the difficulty of modelling the variability encountered in
outdoor environments, which contain elements of all shapes
and scales, possibly cluttered together [5], [6]. Secondly,
the manner in which scene elements are sampled by a
lidar depends on their position relatively to the sensor, on
occlusions, and on the characteristics of the lidar.

Although supervised learning can be employed in the
classification [7], [8], it is not scalable with respect to the
amount and complexity of the concerned data, due to the
necessity of manual labelling by a human domain expert. A
different approach is to apply unsupervised learning, which
overcomes this necessity because it is able to detect the
classes that are naturally represented in the data.

In this work, we propose a two-layer classification model
which mainly relies on unsupervised learning. The first,
intermediary layer consists of a Gaussian Mixture Model
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(GMM) trained in an unsupervised manner, defining a set
of intermediary classes which is a fine-partitioned represen-
tation of the environment. The second and final layer consists
of a grouping of the intermediary classes into a set of final
classes that are exploitable in the considered target task.
The grouping process is done by an expert, therefore being
supervised, but remains simpler than the manual labelling of
a dataset.

The two-layer model is able to separate the factors that
influence the classification. Data-oriented factors, that is the
sensor and environment properties contained in the data, are
abstracted by the intermediary layer. The final layer, in turn,
introduces the task-oriented factors, that is, it gives classes
a semantic interpretation.

A normal application of our classification process consists
in the data acquisition, followed by the unsupervised training
and supervised grouping of a few different models to be
tested, followed by a qualitative, visual inspection of the
results, and concluded by the choice of the model which
performed the best. The output model is thus a predictive
model and can be used to classify new data.

We evaluate our method on two datasets acquired with
different lidars and possessing different characteristics. We
evaluate it quantitatively with the first set, and qualitatively
with both sets. Our system delivers consistent results, il-
lustrating its generic nature and capacity of detecting the
relevant classes in a scene.

In section II, we review the related work. Section III
presents the main concepts of our approach and provides
details about its implementation. We then introduce the
experimental setup in section IV, and evaluate our system
in section V. The paper ends in section VI with a short
discussion and pointers to future work.

II. RELATED WORK

A. Classification Element

The classification element is the element being classified.
It can be a 3D point, a segment, a voxel, or another structure.
The choice of the classification element is linked to the type
of environment model to be built.

In pointwise classification, classification is applied directly
to 3D points [5], [7], [9]. Only local information, that is
information about the neighbourhood of a point, is used
for classification. Therefore, no assumptions regarding the
segmentation of the points are made, making this approach
agnostic with respect to shapes.

Some approaches apply segmentation on the points and
then use the segments as classification targets [2], [6], [10].



This permits the use of global information in the classifica-
tion, i.e. information about the whole object. This approach
allows for a richer description of objects, but it introduces
the constraint of dealing with all the variety of shapes.

There are methods that consider a more specific form
of segments: voxels [8], [11]. In these works, points are
grouped into voxels of adaptive sizes, then a subsequent
segmentation step is applied, resulting in super-voxels, which
are the targets of classification.

We believe that pointwise classification has the advantage
of not biasing the classification by introducing an arbitrary
segmentation, be it a fixed discretization or a data-centred
segmentation. Moreover, the first layer of our model is
oriented towards representing the basic shape patterns in the
environment. Hence we opt for this approach.

B. Learning

Supervised learning is frequently applied in 3D data
classification. A comparison is presented in [5]. [9] uses
linear classifiers, [2] uses a SVM, [7] uses a GMM and [8],
[12] use a CRF. The GMM used in [7] is supervised, with a
fixed number of Gaussian components for each class.

Supervised learning has the disadvantage of requiring
manual labelling of the dataset, hardly applicable if the
amount of data is large, or if the process of labelling is com-
plex. Moreover, in a difficult problem, where the considered
classes are not well represented in the feature space, solutions
tend to rely on more complex models, although these might
not provide the most natural way of approaching the problem.

The use of unsupervised learning is relatively less com-
mon. The work of [6] presents a method where 3D points are
segmented and the resulting segments are used for the unsu-
pervised discovery of classes. [13] uses online clustering to
incrementally learn classes, based on segments of a triangular
mesh. [14], an unsupervised method based on range image
features is used to generate a set of words, which are in turn
used to replace similar regions of a map to compress its size.
The work of [3] applies k-means clustering to range image
features in order to assist in the place recognition problem.

In unsupervised learning, no classes are imposed, which
leaves the model free to find the patterns that can be
encountered in the data. A disadvantage is that the resulting
classes do not possess an immediate semantic interpretation,
and for this reason are not readily useful.

Our approach aims at avoiding manual labelling and at
finding a model which naturally adapts to the data. We
choose for this an unsupervised GMM. The works closest
to ours are [6], [13], but they stop at the class discovery
stage. The use of a final layer, in our approach, makes it
possible to add a semantic interpretation to the discovered
classes.

C. Scale

Classification is performed on a feature vector, resulting
from a feature extraction process [15]. When 3D data is
considered, scale arises as an essential factor in this process.

Considering pointwise classification, a standard method is,
given a target point, to take all points lying inside a spherical
support region centred around it, and use these in the feature
computation [3], [5], [7]. Given that a sphere radius is
specified, the resulting feature only provides information
about the point neighbourhood on the specified scale. This
method is not efficient when the classes present in the
environment are characterized by different scales.

To overcome the problem mentioned above, multi-scale
methods have been proposed. In [16], an adaptive process is
performed: the radius of the support region is chosen based
on the shape of the neighbourhood. This method is however
computationally expensive.

Another multi-scale approach was proposed in [9]. In this
work, multiple spherical support regions, with different radii,
are used simultaneously for feature extraction. The resulting
vector is a combination of the feature values extracted at the
different radii, and thus encodes how the shape of the point’s
neighbourhood is perceived at different scales.

[17] presents a hierarchical approach for dealing with
multiple scales. A point cloud is firstly analysed as a whole.
If it is not considered flat according to their criterion, it is
divided in halfs, following a 2D grid model. These halfs,
which are 2D cells, are then submitted to the same analysis.
This procedure continues in a recursive manner, and the
division terminates if a cell is considered flat or if it has
reached a minimum size.

Works applying segment classification deal with the scale
problem in an implicit way, because segments assume differ-
ent sizes depending on the object being segmented [2], [6],
[8], [11].

In this work, besides considering a single spherical support
region for feature extraction, we also explore the method
of using multiple regions simultaneously, found in [9] and
discussed above. In the first, single-scale case, what our
model learns is the classes existing at the given scale. In
the second, multi-scale case, the model learns the classes
that present a consistent, specific pattern over the scales.

III. APPROACH

Our approach relies on the proposed two-layer classifica-
tion model. We perform pointwise classification, such that a
point, associated with its support region, or neighbourhood,
is the element being classified. In the multi-scale case, a
point is characterized by multiple neighbourhoods.

The classification model is composed by two layers.
The intermediary layer consists of an unsupervised GMM.
This layer provides the intermediary classes. The final layer
consists of a grouping of the intermediary classes into the
final classes, which are the output of the system.

A. Intermediary Layer: Unsupervised GMM

The intermediary classification layer is a GMM. Through
feature extraction, a 3D point belonging to a point cloud
is associated with a point x in the feature space. A GMM
represents the distribution over x by introducing a latent



Fig. 1. Grouping principle. Left: a scan from the Freiburg dataset. Right: one from the Caylus dataset. Top: intermediary classes, colours encode the
class. Bottom: intermediary classes that may be grouped into a final class. In the Freiburg scan, the final class is ground, in the Caylus scan, it is grass.
Colours: red encodes the classes that won’t be grouped, other colours encode the classes that will.

variable c [15]:

p(x) =
∑
c

p(c)p(x|c) =
NC∑
n=1

πnN (x|µn,Σn). (1)

Each possible value of c is a component of the model and
corresponds to a class. NC is the number of classes. The
parameters of the model are, for each class, the mixing
coefficient πn, the mean µn and the covariance matrix Σn.

Inference is done by computing the posterior distribution:

p(cn = 1|x) = πnN (x|µn,Σn)∑NC

i=1 πiN (x|µi,Σi)
. (2)

Inference is followed by the decision step, where the class
that obtained the highest posterior probability is assigned to
the input.

Given a training set, the model parameters are found with
the unsupervised Expectation-Maximization (EM) method.
The complexity of the model is determined by the number
of classes, or Gaussian components, employed in the GMM.
By increasing the number of components of the model, it
is ideally possible to model arbitrary decision boundaries in
the feature space. This layer is currently implemented using
scikit-learn [18].

B. Final Layer: Supervised Grouping
Figure 1 illustrates the principle of the grouping, the final

layer. This layer is a mapping of the intermediary classes into
a smaller set of final classes. Each final class has a semantic
interpretation in the context of the target task. However, not
all the intermediary classes can be exploited. Some of them
correspond to objects of different nature, and thus cannot be
grouped into a meaningful final class. In this case, the class is
marked as unknown. unknown points do not contribute to the
resulting classification. In a way, this procedure is analogous
to a decision process, where we refrain from classifying a
point, if a given certainty criterion is not met.

The grouping is determined during the training phase. This
step is done in a supervised manner, by a human expert.

Overall, it consists in examining the results of the interme-
diary classification, and assigning to each intermediary class
a final class, or the class unknown. To perform this task, a
graphical interface is required. In our work, we found that
the visualization tool ParaView [19] provided all the desired
functions.

C. Feature Extraction

The feature extraction process is performed pointwise. In
the single-scale case, it takes into account a target point
and the points in its spherical neighbourhood of radius
r. In the multi-scale case, it takes into account multiple
spherical neighbourhoods, determined by a set of radii R =
{r1, ..., rNR

}, NR being the number of radii. Three values
are computed for each scale, resulting in a feature space
dimension of 3, if single-scale, or 3NR, if multi-scale.

The input point cloud is expressed in the sensor reference
frame. As we show further, for the first two feature values
this is enough, but for the third one we require the trans-
formation to the world reference frame. Thus, the inputs
of feature extraction are actually the point cloud and the
corresponding sensor-to-world transformation.

The three feature values result from a Principal Compo-
nent Analysis (PCA) operation applied to a point’s neigh-
bourhood. The works of [7], [9], [12], [17] also base the
feature extraction on PCA, and indeed our features are
heavily inspired on, and similar to theirs, but with some
differences. We use PCL [20] to implement the neighbours’
search and PCA.

Let λ1 > λ2 > λ3 be the eigenvalues output by PCA, and
v1, v2 and v3 the eigenvectors. As done in [9], the shape
of the points distribution can be encoded by the following
values, which we take as the first two feature values:

x1 =
λ1

λ1 + λ2 + λ3
, x2 =

λ2
λ1 + λ2 + λ3

. (3)

Interpreting PCA as a plane fitting operation [21], the eigen-
vector v3, associated to the smallest eigenvalue λ3, represents



an estimation of the surface normal. It is possible to use the
local-to-global transformation to transform this vector into
the global reference frame, resulting in the global normal
n = [nx ny nz]

T . The third feature value, x3, is then given
by the z coordinate:

x3 = nz. (4)

The feature extraction process includes a feature stan-
dardizing step. Based on the training set, we extract the
mean µi and the standard deviation σi along each feature
dimension i. Then, once all features are computed for a point,
standardizing is applied for every dimension:

xi =
xi − µi

σi
. (5)

The final feature vector is given by x = [x1 x2 x3]
T in

the single-scale case, which becomes x = [xT
1 ... xT

NR
]T in

the multi-scale case, xj being the feature values computed
at radius rj . In this latter case, we proceed as in [9] and
copy the feature values from a higher scale, if available, to
the values at missing lower scales.

In the 3D space, it makes no sense applying PCA on a set
with less than four points, because such points will always
be collinear or coplanar. Four points, on the contrary, can
either be collinear, coplanar, or none of both, and thus can
characterize arbitrary 3D shapes. Thus, during feature ex-
traction we leave out points with less than three neighbours.
Such points are then also excluded from the classification.
This situation occurs with higher frequency in the furthest
regions of scans, where the laser sampling is more sparse.
In turn, an interesting consequence is that isolated outliers
are naturally left out of classification.

IV. EXPERIMENTAL SETUP

To test our approach, experiments with two outdoor
datasets of different nature were performed. The first one is
the Freiburg public dataset [3], for which we have ground-
truth, made available in [5]. With this dataset, we can
evaluate the system quantitatively, using standard metrics
of classification performance. The second one is a dataset
acquired with our own robot and sensor setup, for which
there is no ground-truth. In this case, the results are evaluated
qualitatively.

For each dataset, it is necessary to define two sets: a
training set and a validation set. The training set is used
for finding the GMM’s parameters and for the grouping.
The validation set is used for the evaluation. Both sets
are composed by scans selected from the dataset. This
section presents the experimental setups and explains how
our system is expected to behave when handling the data
from each dataset.

A. Freiburg Dataset

This is a public dataset, containing scans acquired with a
SICK LMS lidar on board of a wheeled robot. The place is
a university campus, including buildings of different types,
roads, and many artificial elements like bikes, columns and
street lamps. It also contains some grass areas, trees of

different shapes, vegetation and, in some of the scans, people.
The ground-truth considers 20 different classes, offering a
fine distinction between the elements in the set.

For the acquisition, the sensor was moved using a pan-
tilt unit. The point clouds are denser, if compared to the
ones of the Caylus dataset. Here the scans are the result
of the fusion of individual and overlapping shots, producing
point densities that vary according to the area in the scan.
This effect is noticeable on the ground and on the walls, for
example, which can appear differently in areas where the
scans overlap.

With this dataset, we test two instances of our system:
a single-scale one and a multi-scale one. For a quantitative
evaluation, we show the confusion matrices, and we calculate
the metrics of precision, recall, F1 and accuracy. The first
three ones assess performance classwise, but by averaging
F1 over the classes we have a total F1 score. These metrics
are calculated on a validation set which does not contain any
data from the training set.

B. Caylus Dataset

This dataset contains scans acquired with a Velodyne
HDL-32E lidar, mounted on top of an unmanned ground
vehicle. The Velodyne sensor is a mobile scanning sensor,
acquiring data with a 360◦ horizontal field of view. The
place is a countryside village, and contains earth paths, some
slopes, low and high grass, trees, bushes and other vegetation,
but also artificial elements like asphalted roads, buildings,
road signs and some abandoned vehicles. The operator of
the robot can be seen in some scans.

This dataset has a great deal of variety regarding natural
elements, like terrain and vegetation. There are lots of clutter,
and objects appear grouped in different ways through the
dataset. As an example, tree trunks are sometimes isolated,
sometimes have stones nearby, other times vegetation. The
other challenging point of this dataset is the sparsity of
the Velodyne sensor’s sampling pattern. The ground, for
instance, exhibits very different aspects in regions near to
and far from the sensor, due to the dramatic decrease of the
point density in function of the distance.

With this dataset, we evaluate the system qualitatively,
due to the lack of ground-truth. We only test a single-scale
instance of the system. The qualitative evaluation is done
by visual inspection of scans in a validation set. This is
an example of dataset for which ground-truth is difficult to
produce, due to two factors: the sampling sparsity and the
presence of more natural, non-structured elements. This case
represents what would be a real application of our approach,
starting from a dataset with no ground-truth, and ending with
an inspection of the final classification results provided by
the system.

C. Choice of Parameters

The first factors influencing the system’s performance are
the training set and the validation set. The important point
is to keep the training and validation sets different in order
to evaluate the generalization properties of the model. This



means selecting validation scans as far as possible from the
training scans. At the same time, both sets should contain
instances of all the relevant classes, in quantities as balanced
as possible.

The other parameters affecting the behaviour of the system
are NC , the number of classes in the GMM, and r or R, the
radius or set of radii of the support regions, respectively.
NC must be chosen so that the GMM is able to produce
a fine enough set of classes, so that these can be grouped
afterwards. The radii parameters determine the scales at
which the model operates.

For the Freiburg tests, we manually choose five scans for
the training set and grouping, and another five for the valida-
tion set, following the guidelines mentioned previously. Ex-
amining the validation results of some models, we select the
two ones that performed best, one single-scale and another
multi-scale. Both models have NC = 50. The first one has
r = 50cm, and the second has R = {0.2, 0.4, 0.6, 0.8, 1.0}.
We present the results for these models on the next section.

For the Caylus dataset, twelve scans compose the training
set, and from these two representative scans were selected
for the grouping. Following the validation of some models,
the values empirically selected are NC = 30 and r = 25cm.

V. EVALUATION

A. Freiburg Results

For the Freiburg dataset, both the single-scale and
the multi-scale models result in a set of four fi-
nal classes: ground, wall-building, pole-trunk-people, and
foliage-vegetation-bicycle. A fifth class, unknown, denotes
the intermediary classes that could not be grouped into
any meaningful class. For the purposes of evaluation, the
original ground-truth classes are all grouped into the same
four classes. Figure 2 shows the results for two scans from
the validation set, and table I shows the quantitative results.

Among the final classes, ground has a single semantic
meaning. wall-building includes small walls, buildings, as
well as small shrubs, which all possess vertical planar
shapes. pole-trunk-people groups three elements of different
nature, but with a similar geometrical shape: vertical, linear,
cylindrical. It is thus natural to find them under the same
class. Moreover, there are very few instances of people in
the data, so it is unprobable that the model would find such a
specific class. A similar analysis applies to the class foliage-
vegetation-bicycle. Bicycles end up under this label because
they appear to the sensor as a scattered 3D shape, just as
foliage and vegetation do.

Concerning the performance, the results for the classes
pole-trunk-people and foliage-vegetation-bicycle are the low-
est. This happens in part due to the rarity of these classes
in the dataset, compared to the other two, and in part due to
their geometrical characteristics. Poles and trunks look fre-
quently similar to the corner of buildings and to the divisions
between windows, and the bigger trunks look like walls.
foliage-vegetation-bicycle suffers from the same difficulties,
because it is confused with any element in the scene which

has a marked 3D shape, like corners and prominent features
of buildings.

The accuracies are the same for both models, 0.82, but
looking at the precision, recall and F1 scores, we can see
that the multi-scale model performs better. An increase in
the F1 score from 0.72 to 0.76, in particular, is important
because F1 is a demanding score. The better performance of
the multi-scale model is expected, since using more scales
should lead to a richer distinction of the patterns in the data.
It should be noted, however, that the single-scale model is
not that far behind, which means that using a radius of 50cm
already leads to a good representation of the classes.

Overall, we note that both models achieve a F1 score
above 0.70 and an accuracy above 0.80. Visually, the results
are consistent, as it can be seen in figure 2. The precisions
are high for all classes. The limitation of the system lies
clearly in the recall. For every class, the highest number of
false negatives is found under the unknown class. Thus, the
impossibility of using all the intermediary classes provided
by the GMM, leaving some of them unknown, is the main
reason behind the lower recall scores.

We argue, in turn, that the factor imposing difficulties on
the GMM representation is the particular sampling charac-
teristics present in this set’s point clouds. Because they are
composed by three overlapping scans, there are point regions
which are denser than others. For instance, relatively dense
regions on walls are sometimes seen as linear, instead of
planar, due to the concentration of points along a linear
direction, rather than distributed uniformly along a plane.

B. Caylus Results

For the Caylus dataset, the grouping resulted in six final
classes: road, grass, trunk-people, vegetation, wall and far-
vegetation. The results can be found in figure 3. In terms
of the relevance of classes, the results do not match those
of Freiburg, but are still interesting and consistent with the
expectations. The class trunk-people represents objects of
different natures, such as tree trunks and the human operator,
but also building corners. This is a consequence of their
similar appearance under the features employed.

In regions far from the sensor, classes become less distin-
guishable. Tree foliage can appear as vegetation if close, or
as far-vegetation if, well, far. Indeed, the class far-vegetation
corresponds to a merge of tree canopy and grass. Walls
and road, when distant, are also mixed, whereas they are
well distinguished when close. The main reason behind
these difficulties is the sampling sparsity characteristic of the
Velodyne lidar, which increases with the distance. Clutter
also had a negative impact, especially on the detection of
trunks because these are frequently surrounded by other
objects.

C. Discussion

The discovered classes in all of the test cases do cor-
respond to relevant elements in the scene, because they
correspond to meaningful geometrical patterns and could
thus be used for a given target task. This confirms the



unknown ground wall-building pole-trunk-people foliage-vegetation-bicycle recall F1

ground 5959 389651 39 68 1059 0.97 0.98
wall-building 30190 689 130764 393 3883 0.78 0.85

pole-trunk-people 5179 149 3655 4983 1819 0.31 0.46
foliage-vegetation-bicycle 67359 5889 6494 275 71124 0.46 0.61

precision - 0.98 0.93 0.87 0.91 Total F1 = 0.72
Freiburg results with the single-scale model. Accuracy = 0.82.

unknown ground wall-building pole-trunk-people foliage-vegetation-bicycle recall F1

ground 15768 381861 108 21 1938 0.95 0.97
wall-building 25507 449 139024 164 2241 0.83 0.89

pole-trunk-people 5605 116 2029 5805 2328 0.36 0.53
foliage-vegetation-bicycle 73706 1051 2693 204 76893 0.50 0.64

precision - 1.00 0.97 0.94 0.92 Total F1 = 0.76
Freiburg results with the multi-scale model. Accuracy = 0.82.

TABLE I

Fig. 2. Freiburg results. Two scans from the validation set. From left to right: ground-truth, prediction of the single-scale model, and prediction of the
multi-scale model. Colours: (red, ground), (green, wall-building), (cyan, pole-trunk-people), (blue, foliage-vegetation-bicycle).

Fig. 3. Caylus results. Two scans from the validation set. Left: original scans, points coloured by height. Right: prediction, colours (red, road), (yellow,
grass), (green, trunk-people), (cyan green, vegetation), (light blue, wall), (dark blue, far-vegetation).

capacity of an unsupervised GMM to reveal the natural
classes present in the data, and the possibility of finding,
in the grouping process, a semantic interpretation for those
classes.

In both datasets, the performance of the classification

decreases with the distance. This is a consequence of the
“myopic” characteristics of lidars, from both the sampling
and the precision points of view. The sampling density, which
decreases according to the distance, certainly influences the
classification in a strong way.



It should be noted that these limitations can be tackled
by increasing the number of components of the GMM.
Using fewer intermediary classes leads to situations of under-
partitioning, where one class corresponds to two or more un-
related objects, and thus cannot be semantically interpreted.
Using more classes allows the system to model more precise
patterns in the data, which may lead to the distinction be-
tween two classes which were previously indistinguishable.
The trade-off limiting this flexibility is having a model which
requires more data to train, is slower to train, and is slower
in inference time.

VI. CONCLUSION

We have proposed a two-layer classification model for
outdoor 3D lidar data. The intermediary layer is composed
by a GMM trained in an unsupervised manner, and is thus
data-oriented. The final layer groups the intermediary classes
into higher-level classes which are useful in the target task,
and is trained by a human expert, being thus task-oriented.
The system is thus naturally flexible, and does not require
manual labelling of data.

There are numerous directions in which we can improve
the performance of the approach. One direction is to enrich
the feature space. Additional features can be easily integrated
and will undoubtedly enhance the overall classification pro-
cess. For the Caylus dataset, acquired with the Velodyne
sensor, an interesting feature could be the local shape of con-
secutive points acquired by a single laser beam, a direction
already explored in [17].

Our system performs a pointwise classification, and as
such, does not require any pre-processing or post-processing
stage. However, adding a post-processing stage might im-
prove the results. A possible post-processing stage could be
a filtering based on a voting scheme, as done in [7]. Another
possibility could be the use of higher-level information about
the class patterns for correcting some misclassifications,
such as the classification of corners, windows and doors of
buildings as linear objects.

Lastly, the concept of the two-layer model follows in a
way the approach taken in coding-based learning methods
[22]. These methods also use an intermediary model which
represents the data through basic components, called codes
or words. The set of all basic components is called codebook
or vocabulary. In our case, the basic components would be
the Gaussian components of the GMM. It would thus be
interesting to examine if our system could be improved by
adding to it elements from such approaches, or if using an
unsupervised GMM to generate the dictionary could benefit
these methods.

REFERENCES

[1] P. Papadakis, “Terrain traversability analysis methods for unmanned
ground vehicles: A survey,” Engineering Applications of Artificial
Intelligence, vol. 26, no. 4, 2013.

[2] M. Himmelsbach, T. Luettel, and H. Wuensche, “Real-time object
classification in 3d point clouds using point feature histograms,” in
IROS, 2009.

[3] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard, “Place recognition
in 3d scans using a combination of bag of words and point feature
based relative pose estimation,” in IROS, 2011.
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